Auto merge of #17478 - kilpkonn:master, r=Veykril

Simplify some term search tactics

Working on the paper `@phijor` found that "Data constructor" tactic could be simplified quite a bit by running it only in the backwards direction. With n+1 rounds it has same coverage as previous implementation in n rounds, however the tactic it self is more simple and also potentially faster as there is less to do.

In a nutshell the idea is to only work with types in the wish-list rather than with any types.

Turns out it is quite a bit faster:

Before:
```
ripgrep:
Tail Expr syntactic hits: 238/1692 (14%)
Tail Exprs found: 1223/1692 (72%)
Term search avg time: 15ms

nalgebra:
Tail Expr syntactic hits: 125/3001 (4%)
Tail Exprs found: 2143/3001 (71%)
Term search avg time: 849ms
```

After
````
ripgrep:
Tail Expr syntactic hits: 246/1692 (14%)
Tail Exprs found: 1209/1692 (71%)
Term search avg time: 8ms

nalgebra:
Tail Expr syntactic hits: 125/3001 (4%)
Tail Exprs found: 2028/3001 (67%)
Term search avg time: 305ms
````

_Also removed niche optimization of removing scope defs from the search space as this wasn't helping much anyway and made code a bit more complex._
This commit is contained in:
bors 2024-06-24 07:20:50 +00:00
commit db69df3216
8 changed files with 182 additions and 475 deletions

View file

@ -93,12 +93,6 @@ struct LookupTable {
data: FxHashMap<Type, AlternativeExprs>,
/// New types reached since last query by the `NewTypesKey`
new_types: FxHashMap<NewTypesKey, Vec<Type>>,
/// ScopeDefs that are not interesting any more
exhausted_scopedefs: FxHashSet<ScopeDef>,
/// ScopeDefs that were used in current round
round_scopedef_hits: FxHashSet<ScopeDef>,
/// Amount of rounds since scopedef was first used.
rounds_since_sopedef_hit: FxHashMap<ScopeDef, u32>,
/// Types queried but not present
types_wishlist: FxHashSet<Type>,
/// Threshold to squash trees to `Many`
@ -212,37 +206,6 @@ impl LookupTable {
}
}
/// Mark `ScopeDef` as exhausted meaning it is not interesting for us any more
fn mark_exhausted(&mut self, def: ScopeDef) {
self.exhausted_scopedefs.insert(def);
}
/// Mark `ScopeDef` as used meaning we managed to produce something useful from it
fn mark_fulfilled(&mut self, def: ScopeDef) {
self.round_scopedef_hits.insert(def);
}
/// Start new round (meant to be called at the beginning of iteration in `term_search`)
///
/// This functions marks some `ScopeDef`s as exhausted if there have been
/// `MAX_ROUNDS_AFTER_HIT` rounds after first using a `ScopeDef`.
fn new_round(&mut self) {
for def in &self.round_scopedef_hits {
let hits =
self.rounds_since_sopedef_hit.entry(*def).and_modify(|n| *n += 1).or_insert(0);
const MAX_ROUNDS_AFTER_HIT: u32 = 2;
if *hits > MAX_ROUNDS_AFTER_HIT {
self.exhausted_scopedefs.insert(*def);
}
}
self.round_scopedef_hits.clear();
}
/// Get exhausted `ScopeDef`s
fn exhausted_scopedefs(&self) -> &FxHashSet<ScopeDef> {
&self.exhausted_scopedefs
}
/// Types queried but not found
fn types_wishlist(&mut self) -> &FxHashSet<Type> {
&self.types_wishlist
@ -275,7 +238,7 @@ pub struct TermSearchConfig {
impl Default for TermSearchConfig {
fn default() -> Self {
Self { enable_borrowcheck: true, many_alternatives_threshold: 1, fuel: 400 }
Self { enable_borrowcheck: true, many_alternatives_threshold: 1, fuel: 1200 }
}
}
@ -328,19 +291,12 @@ pub fn term_search<DB: HirDatabase>(ctx: &TermSearchCtx<'_, DB>) -> Vec<Expr> {
solutions.extend(tactics::assoc_const(ctx, &defs, &mut lookup));
while should_continue() {
lookup.new_round();
solutions.extend(tactics::data_constructor(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::free_function(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::impl_method(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::struct_projection(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::impl_static_method(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::make_tuple(ctx, &defs, &mut lookup, should_continue));
// Discard not interesting `ScopeDef`s for speedup
for def in lookup.exhausted_scopedefs() {
defs.remove(def);
}
}
solutions.into_iter().filter(|it| !it.is_many()).unique().collect()

View file

@ -17,11 +17,11 @@ use itertools::Itertools;
use rustc_hash::FxHashSet;
use crate::{
Adt, AssocItem, Enum, GenericDef, GenericParam, HasVisibility, Impl, ModuleDef, ScopeDef, Type,
TypeParam, Variant,
Adt, AssocItem, GenericDef, GenericParam, HasAttrs, HasVisibility, Impl, ModuleDef, ScopeDef,
Type, TypeParam,
};
use crate::term_search::{Expr, TermSearchConfig};
use crate::term_search::Expr;
use super::{LookupTable, NewTypesKey, TermSearchCtx};
@ -74,8 +74,6 @@ pub(super) fn trivial<'a, DB: HirDatabase>(
_ => None,
}?;
lookup.mark_exhausted(*def);
let ty = expr.ty(db);
lookup.insert(ty.clone(), std::iter::once(expr.clone()));
@ -124,6 +122,10 @@ pub(super) fn assoc_const<'a, DB: HirDatabase>(
.filter(move |it| it.is_visible_from(db, module))
.filter_map(AssocItem::as_const)
.filter_map(|it| {
if it.attrs(db).is_unstable() {
return None;
}
let expr = Expr::Const(it);
let ty = it.ty(db);
@ -151,163 +153,27 @@ pub(super) fn assoc_const<'a, DB: HirDatabase>(
/// * `should_continue` - Function that indicates when to stop iterating
pub(super) fn data_constructor<'a, DB: HirDatabase>(
ctx: &'a TermSearchCtx<'a, DB>,
defs: &'a FxHashSet<ScopeDef>,
_defs: &'a FxHashSet<ScopeDef>,
lookup: &'a mut LookupTable,
should_continue: &'a dyn std::ops::Fn() -> bool,
) -> impl Iterator<Item = Expr> + 'a {
let db = ctx.sema.db;
let module = ctx.scope.module();
fn variant_helper(
db: &dyn HirDatabase,
lookup: &mut LookupTable,
should_continue: &dyn std::ops::Fn() -> bool,
parent_enum: Enum,
variant: Variant,
config: &TermSearchConfig,
) -> Vec<(Type, Vec<Expr>)> {
// Ignore unstable
if variant.is_unstable(db) {
return Vec::new();
}
let generics = GenericDef::from(variant.parent_enum(db));
let Some(type_params) = generics
.type_or_const_params(db)
.into_iter()
.map(|it| it.as_type_param(db))
.collect::<Option<Vec<TypeParam>>>()
else {
// Ignore enums with const generics
return Vec::new();
};
// We currently do not check lifetime bounds so ignore all types that have something to do
// with them
if !generics.lifetime_params(db).is_empty() {
return Vec::new();
}
// Only account for stable type parameters for now, unstable params can be default
// tho, for example in `Box<T, #[unstable] A: Allocator>`
if type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none()) {
return Vec::new();
}
let non_default_type_params_len =
type_params.iter().filter(|it| it.default(db).is_none()).count();
let enum_ty_shallow = Adt::from(parent_enum).ty(db);
let generic_params = lookup
.types_wishlist()
.clone()
.into_iter()
.filter(|ty| ty.could_unify_with(db, &enum_ty_shallow))
.map(|it| it.type_arguments().collect::<Vec<Type>>())
.chain((non_default_type_params_len == 0).then_some(Vec::new()));
generic_params
.filter(|_| should_continue())
.filter_map(move |generics| {
// Insert default type params
let mut g = generics.into_iter();
let generics: Vec<_> = type_params
.iter()
.map(|it| it.default(db).or_else(|| g.next()))
.collect::<Option<_>>()?;
let enum_ty = Adt::from(parent_enum).ty_with_args(db, generics.iter().cloned());
// Ignore types that have something to do with lifetimes
if config.enable_borrowcheck && enum_ty.contains_reference(db) {
lookup
.types_wishlist()
.clone()
.into_iter()
.chain(iter::once(ctx.goal.clone()))
.filter_map(|ty| ty.as_adt().map(|adt| (adt, ty)))
.filter(|_| should_continue())
.filter_map(move |(adt, ty)| match adt {
Adt::Struct(strukt) => {
// Ignore unstable or not visible
if strukt.is_unstable(db) || !strukt.is_visible_from(db, module) {
return None;
}
// Early exit if some param cannot be filled from lookup
let param_exprs: Vec<Vec<Expr>> = variant
.fields(db)
.into_iter()
.map(|field| lookup.find(db, &field.ty_with_args(db, generics.iter().cloned())))
.collect::<Option<_>>()?;
// Note that we need special case for 0 param constructors because of multi cartesian
// product
let variant_exprs: Vec<Expr> = if param_exprs.is_empty() {
vec![Expr::Variant { variant, generics, params: Vec::new() }]
} else {
param_exprs
.into_iter()
.multi_cartesian_product()
.map(|params| Expr::Variant { variant, generics: generics.clone(), params })
.collect()
};
lookup.insert(enum_ty.clone(), variant_exprs.iter().cloned());
Some((enum_ty, variant_exprs))
})
.collect()
}
defs.iter()
.filter_map(move |def| match def {
ScopeDef::ModuleDef(ModuleDef::Variant(it)) => {
let variant_exprs = variant_helper(
db,
lookup,
should_continue,
it.parent_enum(db),
*it,
&ctx.config,
);
if variant_exprs.is_empty() {
return None;
}
if GenericDef::from(it.parent_enum(db))
.type_or_const_params(db)
.into_iter()
.filter_map(|it| it.as_type_param(db))
.all(|it| it.default(db).is_some())
{
lookup.mark_fulfilled(ScopeDef::ModuleDef(ModuleDef::Variant(*it)));
}
Some(variant_exprs)
}
ScopeDef::ModuleDef(ModuleDef::Adt(Adt::Enum(enum_))) => {
let exprs: Vec<(Type, Vec<Expr>)> = enum_
.variants(db)
.into_iter()
.flat_map(|it| {
variant_helper(db, lookup, should_continue, *enum_, it, &ctx.config)
})
.collect();
if exprs.is_empty() {
return None;
}
if GenericDef::from(*enum_)
.type_or_const_params(db)
.into_iter()
.filter_map(|it| it.as_type_param(db))
.all(|it| it.default(db).is_some())
{
lookup.mark_fulfilled(ScopeDef::ModuleDef(ModuleDef::Adt(Adt::Enum(*enum_))));
}
Some(exprs)
}
ScopeDef::ModuleDef(ModuleDef::Adt(Adt::Struct(it))) => {
// Ignore unstable and not visible
if it.is_unstable(db) || !it.is_visible_from(db, module) {
return None;
}
let generics = GenericDef::from(*it);
// Ignore const params for now
let type_params = generics
.type_or_const_params(db)
.into_iter()
.map(|it| it.as_type_param(db))
.collect::<Option<Vec<TypeParam>>>()?;
let generics = GenericDef::from(strukt);
// We currently do not check lifetime bounds so ignore all types that have something to do
// with them
@ -315,48 +181,73 @@ pub(super) fn data_constructor<'a, DB: HirDatabase>(
return None;
}
// Only account for stable type parameters for now, unstable params can be default
// tho, for example in `Box<T, #[unstable] A: Allocator>`
if type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none()) {
if ty.contains_unknown() {
return None;
}
let non_default_type_params_len =
type_params.iter().filter(|it| it.default(db).is_none()).count();
// Ignore types that have something to do with lifetimes
if ctx.config.enable_borrowcheck && ty.contains_reference(db) {
return None;
}
let fields = strukt.fields(db);
// Check if all fields are visible, otherwise we cannot fill them
if fields.iter().any(|it| !it.is_visible_from(db, module)) {
return None;
}
let struct_ty_shallow = Adt::from(*it).ty(db);
let generic_params = lookup
.types_wishlist()
.clone()
let generics: Vec<_> = ty.type_arguments().collect();
// Early exit if some param cannot be filled from lookup
let param_exprs: Vec<Vec<Expr>> = fields
.into_iter()
.filter(|ty| ty.could_unify_with(db, &struct_ty_shallow))
.map(|it| it.type_arguments().collect::<Vec<Type>>())
.chain((non_default_type_params_len == 0).then_some(Vec::new()));
.map(|field| lookup.find(db, &field.ty_with_args(db, generics.iter().cloned())))
.collect::<Option<_>>()?;
let exprs = generic_params
.filter(|_| should_continue())
.filter_map(|generics| {
// Insert default type params
let mut g = generics.into_iter();
let generics: Vec<_> = type_params
.iter()
.map(|it| it.default(db).or_else(|| g.next()))
.collect::<Option<_>>()?;
// Note that we need special case for 0 param constructors because of multi cartesian
// product
let exprs: Vec<Expr> = if param_exprs.is_empty() {
vec![Expr::Struct { strukt, generics, params: Vec::new() }]
} else {
param_exprs
.into_iter()
.multi_cartesian_product()
.map(|params| Expr::Struct { strukt, generics: generics.clone(), params })
.collect()
};
let struct_ty = Adt::from(*it).ty_with_args(db, generics.iter().cloned());
lookup.insert(ty.clone(), exprs.iter().cloned());
Some((ty, exprs))
}
Adt::Enum(enum_) => {
// Ignore unstable or not visible
if enum_.is_unstable(db) || !enum_.is_visible_from(db, module) {
return None;
}
// Ignore types that have something to do with lifetimes
if ctx.config.enable_borrowcheck && struct_ty.contains_reference(db) {
return None;
}
let fields = it.fields(db);
// Check if all fields are visible, otherwise we cannot fill them
if fields.iter().any(|it| !it.is_visible_from(db, module)) {
return None;
}
let generics = GenericDef::from(enum_);
// We currently do not check lifetime bounds so ignore all types that have something to do
// with them
if !generics.lifetime_params(db).is_empty() {
return None;
}
if ty.contains_unknown() {
return None;
}
// Ignore types that have something to do with lifetimes
if ctx.config.enable_borrowcheck && ty.contains_reference(db) {
return None;
}
let generics: Vec<_> = ty.type_arguments().collect();
let exprs = enum_
.variants(db)
.into_iter()
.filter_map(|variant| {
// Early exit if some param cannot be filled from lookup
let param_exprs: Vec<Vec<Expr>> = fields
let param_exprs: Vec<Vec<Expr>> = variant
.fields(db)
.into_iter()
.map(|field| {
lookup.find(db, &field.ty_with_args(db, generics.iter().cloned()))
@ -365,36 +256,33 @@ pub(super) fn data_constructor<'a, DB: HirDatabase>(
// Note that we need special case for 0 param constructors because of multi cartesian
// product
let struct_exprs: Vec<Expr> = if param_exprs.is_empty() {
vec![Expr::Struct { strukt: *it, generics, params: Vec::new() }]
let variant_exprs: Vec<Expr> = if param_exprs.is_empty() {
vec![Expr::Variant {
variant,
generics: generics.clone(),
params: Vec::new(),
}]
} else {
param_exprs
.into_iter()
.multi_cartesian_product()
.map(|params| Expr::Struct {
strukt: *it,
.map(|params| Expr::Variant {
variant,
generics: generics.clone(),
params,
})
.collect()
};
if non_default_type_params_len == 0 {
// Fulfilled only if there are no generic parameters
lookup.mark_fulfilled(ScopeDef::ModuleDef(ModuleDef::Adt(
Adt::Struct(*it),
)));
}
lookup.insert(struct_ty.clone(), struct_exprs.iter().cloned());
Some((struct_ty, struct_exprs))
lookup.insert(ty.clone(), variant_exprs.iter().cloned());
Some(variant_exprs)
})
.flatten()
.collect();
Some(exprs)
Some((ty, exprs))
}
_ => None,
Adt::Union(_) => None,
})
.flatten()
.filter_map(|(ty, exprs)| ty.could_unify_with_deeply(db, &ctx.goal).then_some(exprs))
.flatten()
}
@ -515,7 +403,6 @@ pub(super) fn free_function<'a, DB: HirDatabase>(
.collect()
};
lookup.mark_fulfilled(ScopeDef::ModuleDef(ModuleDef::Function(*it)));
lookup.insert(ret_ty.clone(), fn_exprs.iter().cloned());
Some((ret_ty, fn_exprs))
})
@ -555,6 +442,8 @@ pub(super) fn impl_method<'a, DB: HirDatabase>(
lookup
.new_types(NewTypesKey::ImplMethod)
.into_iter()
.filter(|ty| !ty.type_arguments().any(|it| it.contains_unknown()))
.filter(|_| should_continue())
.flat_map(|ty| {
Impl::all_for_type(db, ty.clone()).into_iter().map(move |imp| (ty.clone(), imp))
})
@ -563,26 +452,15 @@ pub(super) fn impl_method<'a, DB: HirDatabase>(
AssocItem::Function(f) => Some((imp, ty, f)),
_ => None,
})
.filter(|_| should_continue())
.filter_map(move |(imp, ty, it)| {
let fn_generics = GenericDef::from(it);
let imp_generics = GenericDef::from(imp);
// Ignore const params for now
let imp_type_params = imp_generics
.type_or_const_params(db)
.into_iter()
.map(|it| it.as_type_param(db))
.collect::<Option<Vec<TypeParam>>>()?;
// Ignore const params for now
let fn_type_params = fn_generics
.type_or_const_params(db)
.into_iter()
.map(|it| it.as_type_param(db))
.collect::<Option<Vec<TypeParam>>>()?;
// Ignore all functions that have something to do with lifetimes as we don't check them
if !fn_generics.lifetime_params(db).is_empty() {
if !fn_generics.lifetime_params(db).is_empty()
|| !imp_generics.lifetime_params(db).is_empty()
{
return None;
}
@ -596,112 +474,59 @@ pub(super) fn impl_method<'a, DB: HirDatabase>(
return None;
}
// Only account for stable type parameters for now, unstable params can be default
// tho, for example in `Box<T, #[unstable] A: Allocator>`
if imp_type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none())
|| fn_type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none())
// Ignore functions with generics for now as they kill the performance
// Also checking bounds for generics is problematic
if !fn_generics.type_or_const_params(db).is_empty() {
return None;
}
let ret_ty = it.ret_type_with_args(db, ty.type_arguments());
// Filter out functions that return references
if ctx.config.enable_borrowcheck && ret_ty.contains_reference(db) || ret_ty.is_raw_ptr()
{
return None;
}
// Double check that we have fully known type
if ty.type_arguments().any(|it| it.contains_unknown()) {
// Ignore functions that do not change the type
if ty.could_unify_with_deeply(db, &ret_ty) {
return None;
}
let non_default_fn_type_params_len =
fn_type_params.iter().filter(|it| it.default(db).is_none()).count();
let self_ty =
it.self_param(db).expect("No self param").ty_with_args(db, ty.type_arguments());
// Ignore functions with generics for now as they kill the performance
// Also checking bounds for generics is problematic
if non_default_fn_type_params_len > 0 {
// Ignore functions that have different self type
if !self_ty.autoderef(db).any(|s_ty| ty == s_ty) {
return None;
}
let generic_params = lookup
.iter_types()
.collect::<Vec<_>>() // Force take ownership
let target_type_exprs = lookup.find(db, &ty).expect("Type not in lookup");
// Early exit if some param cannot be filled from lookup
let param_exprs: Vec<Vec<Expr>> = it
.params_without_self_with_args(db, ty.type_arguments())
.into_iter()
.permutations(non_default_fn_type_params_len);
.map(|field| lookup.find_autoref(db, field.ty()))
.collect::<Option<_>>()?;
let exprs: Vec<_> = generic_params
.filter(|_| should_continue())
.filter_map(|generics| {
// Insert default type params
let mut g = generics.into_iter();
let generics: Vec<_> = ty
.type_arguments()
.map(Some)
.chain(fn_type_params.iter().map(|it| match it.default(db) {
Some(ty) => Some(ty),
None => {
let generic = g.next().expect("Missing type param");
// Filter out generics that do not unify due to trait bounds
it.ty(db).could_unify_with(db, &generic).then_some(generic)
}
}))
.collect::<Option<_>>()?;
let ret_ty = it.ret_type_with_args(
db,
ty.type_arguments().chain(generics.iter().cloned()),
);
// Filter out functions that return references
if ctx.config.enable_borrowcheck && ret_ty.contains_reference(db)
|| ret_ty.is_raw_ptr()
{
return None;
let generics: Vec<_> = ty.type_arguments().collect();
let fn_exprs: Vec<Expr> = std::iter::once(target_type_exprs)
.chain(param_exprs)
.multi_cartesian_product()
.map(|params| {
let mut params = params.into_iter();
let target = Box::new(params.next().unwrap());
Expr::Method {
func: it,
generics: generics.clone(),
target,
params: params.collect(),
}
// Ignore functions that do not change the type
if ty.could_unify_with_deeply(db, &ret_ty) {
return None;
}
let self_ty = it
.self_param(db)
.expect("No self param")
.ty_with_args(db, ty.type_arguments().chain(generics.iter().cloned()));
// Ignore functions that have different self type
if !self_ty.autoderef(db).any(|s_ty| ty == s_ty) {
return None;
}
let target_type_exprs = lookup.find(db, &ty).expect("Type not in lookup");
// Early exit if some param cannot be filled from lookup
let param_exprs: Vec<Vec<Expr>> = it
.params_without_self_with_args(
db,
ty.type_arguments().chain(generics.iter().cloned()),
)
.into_iter()
.map(|field| lookup.find_autoref(db, field.ty()))
.collect::<Option<_>>()?;
let fn_exprs: Vec<Expr> = std::iter::once(target_type_exprs)
.chain(param_exprs)
.multi_cartesian_product()
.map(|params| {
let mut params = params.into_iter();
let target = Box::new(params.next().unwrap());
Expr::Method {
func: it,
generics: generics.clone(),
target,
params: params.collect(),
}
})
.collect();
lookup.insert(ret_ty.clone(), fn_exprs.iter().cloned());
Some((ret_ty, fn_exprs))
})
.collect();
Some(exprs)
Some((ret_ty, fn_exprs))
})
.flatten()
.filter_map(|(ty, exprs)| ty.could_unify_with_deeply(db, &ctx.goal).then_some(exprs))
.flatten()
}
@ -805,6 +630,7 @@ pub(super) fn impl_static_method<'a, DB: HirDatabase>(
.clone()
.into_iter()
.chain(iter::once(ctx.goal.clone()))
.filter(|ty| !ty.type_arguments().any(|it| it.contains_unknown()))
.filter(|_| should_continue())
.flat_map(|ty| {
Impl::all_for_type(db, ty.clone()).into_iter().map(move |imp| (ty.clone(), imp))
@ -815,24 +641,11 @@ pub(super) fn impl_static_method<'a, DB: HirDatabase>(
AssocItem::Function(f) => Some((imp, ty, f)),
_ => None,
})
.filter(|_| should_continue())
.filter_map(move |(imp, ty, it)| {
let fn_generics = GenericDef::from(it);
let imp_generics = GenericDef::from(imp);
// Ignore const params for now
let imp_type_params = imp_generics
.type_or_const_params(db)
.into_iter()
.map(|it| it.as_type_param(db))
.collect::<Option<Vec<TypeParam>>>()?;
// Ignore const params for now
let fn_type_params = fn_generics
.type_or_const_params(db)
.into_iter()
.map(|it| it.as_type_param(db))
.collect::<Option<Vec<TypeParam>>>()?;
// Ignore all functions that have something to do with lifetimes as we don't check them
if !fn_generics.lifetime_params(db).is_empty()
|| !imp_generics.lifetime_params(db).is_empty()
@ -850,104 +663,43 @@ pub(super) fn impl_static_method<'a, DB: HirDatabase>(
return None;
}
// Only account for stable type parameters for now, unstable params can be default
// tho, for example in `Box<T, #[unstable] A: Allocator>`
if imp_type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none())
|| fn_type_params.iter().any(|it| it.is_unstable(db) && it.default(db).is_none())
// Ignore functions with generics for now as they kill the performance
// Also checking bounds for generics is problematic
if !fn_generics.type_or_const_params(db).is_empty() {
return None;
}
let ret_ty = it.ret_type_with_args(db, ty.type_arguments());
// Filter out functions that return references
if ctx.config.enable_borrowcheck && ret_ty.contains_reference(db) || ret_ty.is_raw_ptr()
{
return None;
}
// Double check that we have fully known type
if ty.type_arguments().any(|it| it.contains_unknown()) {
return None;
}
let non_default_fn_type_params_len =
fn_type_params.iter().filter(|it| it.default(db).is_none()).count();
// Ignore functions with generics for now as they kill the performance
// Also checking bounds for generics is problematic
if non_default_fn_type_params_len > 0 {
return None;
}
let generic_params = lookup
.iter_types()
.collect::<Vec<_>>() // Force take ownership
// Early exit if some param cannot be filled from lookup
let param_exprs: Vec<Vec<Expr>> = it
.params_without_self_with_args(db, ty.type_arguments())
.into_iter()
.permutations(non_default_fn_type_params_len);
.map(|field| lookup.find_autoref(db, field.ty()))
.collect::<Option<_>>()?;
let exprs: Vec<_> = generic_params
.filter(|_| should_continue())
.filter_map(|generics| {
// Insert default type params
let mut g = generics.into_iter();
let generics: Vec<_> = ty
.type_arguments()
.map(Some)
.chain(fn_type_params.iter().map(|it| match it.default(db) {
Some(ty) => Some(ty),
None => {
let generic = g.next().expect("Missing type param");
it.trait_bounds(db)
.into_iter()
.all(|bound| generic.impls_trait(db, bound, &[]));
// Filter out generics that do not unify due to trait bounds
it.ty(db).could_unify_with(db, &generic).then_some(generic)
}
}))
.collect::<Option<_>>()?;
// Note that we need special case for 0 param constructors because of multi cartesian
// product
let generics = ty.type_arguments().collect();
let fn_exprs: Vec<Expr> = if param_exprs.is_empty() {
vec![Expr::Function { func: it, generics, params: Vec::new() }]
} else {
param_exprs
.into_iter()
.multi_cartesian_product()
.map(|params| Expr::Function { func: it, generics: generics.clone(), params })
.collect()
};
let ret_ty = it.ret_type_with_args(
db,
ty.type_arguments().chain(generics.iter().cloned()),
);
// Filter out functions that return references
if ctx.config.enable_borrowcheck && ret_ty.contains_reference(db)
|| ret_ty.is_raw_ptr()
{
return None;
}
lookup.insert(ret_ty.clone(), fn_exprs.iter().cloned());
// Ignore functions that do not change the type
// if ty.could_unify_with_deeply(db, &ret_ty) {
// return None;
// }
// Early exit if some param cannot be filled from lookup
let param_exprs: Vec<Vec<Expr>> = it
.params_without_self_with_args(
db,
ty.type_arguments().chain(generics.iter().cloned()),
)
.into_iter()
.map(|field| lookup.find_autoref(db, field.ty()))
.collect::<Option<_>>()?;
// Note that we need special case for 0 param constructors because of multi cartesian
// product
let fn_exprs: Vec<Expr> = if param_exprs.is_empty() {
vec![Expr::Function { func: it, generics, params: Vec::new() }]
} else {
param_exprs
.into_iter()
.multi_cartesian_product()
.map(|params| Expr::Function {
func: it,
generics: generics.clone(),
params,
})
.collect()
};
lookup.insert(ret_ty.clone(), fn_exprs.iter().cloned());
Some((ret_ty, fn_exprs))
})
.collect();
Some(exprs)
Some((ret_ty, fn_exprs))
})
.flatten()
.filter_map(|(ty, exprs)| ty.could_unify_with_deeply(db, &ctx.goal).then_some(exprs))
.flatten()
}

View file

@ -144,7 +144,7 @@ fn f() { let a = A { x: 1, y: true }; let b: i32 = a.x; }"#,
term_search,
r#"//- minicore: todo, unimplemented, option
fn f() { let a: i32 = 1; let b: Option<i32> = todo$0!(); }"#,
r#"fn f() { let a: i32 = 1; let b: Option<i32> = None; }"#,
r#"fn f() { let a: i32 = 1; let b: Option<i32> = Some(a); }"#,
)
}

View file

@ -764,6 +764,7 @@ fn main() {
"#,
expect![[r#"
st dep::test_mod_b::Struct {} [type_could_unify]
ex dep::test_mod_b::Struct { } [type_could_unify]
st Struct (use dep::test_mod_b::Struct) [type_could_unify+requires_import]
fn main() []
fn test() []
@ -839,6 +840,7 @@ fn main() {
"#,
expect![[r#"
ev dep::test_mod_b::Enum::variant [type_could_unify]
ex dep::test_mod_b::Enum::variant [type_could_unify]
en Enum (use dep::test_mod_b::Enum) [type_could_unify+requires_import]
fn main() []
fn test() []
@ -876,6 +878,7 @@ fn main() {
"#,
expect![[r#"
ev dep::test_mod_b::Enum::Variant [type_could_unify]
ex dep::test_mod_b::Enum::Variant [type_could_unify]
fn main() []
fn test() []
md dep []
@ -1839,7 +1842,6 @@ fn f() { A { bar: b$0 }; }
fn baz() [type]
ex baz() [type]
ex bar() [type]
ex A { bar: ... }.bar [type]
st A []
fn f() []
"#]],
@ -1978,7 +1980,6 @@ fn main() {
"#,
expect![[r#"
ex core::ops::Deref::deref(&t) (use core::ops::Deref) [type_could_unify]
ex core::ops::Deref::deref(&T(S)) (use core::ops::Deref) [type_could_unify]
lc m [local]
lc t [local]
lc &t [type+local]
@ -2028,7 +2029,6 @@ fn main() {
"#,
expect![[r#"
ex core::ops::DerefMut::deref_mut(&mut t) (use core::ops::DerefMut) [type_could_unify]
ex core::ops::DerefMut::deref_mut(&mut T(S)) (use core::ops::DerefMut) [type_could_unify]
lc m [local]
lc t [local]
lc &mut t [type+local]
@ -2132,7 +2132,6 @@ fn main() {
}
"#,
expect![[r#"
ex core::ops::Deref::deref(&T(S)) (use core::ops::Deref) [type_could_unify]
ex core::ops::Deref::deref(&bar()) (use core::ops::Deref) [type_could_unify]
st S []
st &S [type]

View file

@ -276,7 +276,7 @@ impl Foo for Baz {
}
fn asd() -> Bar {
let a = Baz;
Foo::foo(_)
Foo::foo(a)
}
",
);
@ -365,7 +365,7 @@ impl Foo for A {
}
fn main() {
let a = A;
let c: Bar = Foo::foo(_);
let c: Bar = Foo::foo(&a);
}"#,
);
}

View file

@ -341,8 +341,8 @@ config_data! {
assist_emitMustUse: bool = false,
/// Placeholder expression to use for missing expressions in assists.
assist_expressionFillDefault: ExprFillDefaultDef = ExprFillDefaultDef::Todo,
/// Term search fuel in "units of work" for assists (Defaults to 400).
assist_termSearch_fuel: usize = 400,
/// Term search fuel in "units of work" for assists (Defaults to 1800).
assist_termSearch_fuel: usize = 1800,
/// Whether to enforce the import granularity setting for all files. If set to false rust-analyzer will try to keep import styles consistent per file.
imports_granularity_enforce: bool = false,
@ -426,8 +426,8 @@ config_data! {
}"#).unwrap(),
/// Whether to enable term search based snippets like `Some(foo.bar().baz())`.
completion_termSearch_enable: bool = false,
/// Term search fuel in "units of work" for autocompletion (Defaults to 200).
completion_termSearch_fuel: usize = 200,
/// Term search fuel in "units of work" for autocompletion (Defaults to 1000).
completion_termSearch_fuel: usize = 1000,
/// Controls file watching implementation.
files_watcher: FilesWatcherDef = FilesWatcherDef::Client,

View file

@ -9,10 +9,10 @@ for enum variants.
--
Placeholder expression to use for missing expressions in assists.
--
[[rust-analyzer.assist.termSearch.fuel]]rust-analyzer.assist.termSearch.fuel (default: `400`)::
[[rust-analyzer.assist.termSearch.fuel]]rust-analyzer.assist.termSearch.fuel (default: `1800`)::
+
--
Term search fuel in "units of work" for assists (Defaults to 400).
Term search fuel in "units of work" for assists (Defaults to 1800).
--
[[rust-analyzer.cachePriming.enable]]rust-analyzer.cachePriming.enable (default: `true`)::
+
@ -378,10 +378,10 @@ Custom completion snippets.
--
Whether to enable term search based snippets like `Some(foo.bar().baz())`.
--
[[rust-analyzer.completion.termSearch.fuel]]rust-analyzer.completion.termSearch.fuel (default: `200`)::
[[rust-analyzer.completion.termSearch.fuel]]rust-analyzer.completion.termSearch.fuel (default: `1000`)::
+
--
Term search fuel in "units of work" for autocompletion (Defaults to 200).
Term search fuel in "units of work" for autocompletion (Defaults to 1000).
--
[[rust-analyzer.diagnostics.disabled]]rust-analyzer.diagnostics.disabled (default: `[]`)::
+

View file

@ -592,8 +592,8 @@
"title": "assist",
"properties": {
"rust-analyzer.assist.termSearch.fuel": {
"markdownDescription": "Term search fuel in \"units of work\" for assists (Defaults to 400).",
"default": 400,
"markdownDescription": "Term search fuel in \"units of work\" for assists (Defaults to 1800).",
"default": 1800,
"type": "integer",
"minimum": 0
}
@ -1224,8 +1224,8 @@
"title": "completion",
"properties": {
"rust-analyzer.completion.termSearch.fuel": {
"markdownDescription": "Term search fuel in \"units of work\" for autocompletion (Defaults to 200).",
"default": 200,
"markdownDescription": "Term search fuel in \"units of work\" for autocompletion (Defaults to 1000).",
"default": 1000,
"type": "integer",
"minimum": 0
}