This refactors how we deal with items in hir-def lowering.
- It now lowers all of them through an "ExpressionStore" (kind of a misnomer as this point) as their so called *Signatures.
- We now uniformly lower type AST into TypeRefs before type inference.
- Likewise, this moves macro expansion out of type inference, resulting in a single place where we do non-defmap macro expansion.
- Finally, this PR removes a lot of information from ItemTree, making the DefMap a lot less likely to be recomputed and have it only depend on actual early name resolution related information (not 100% true, we still have ADT fields in there but thats a follow up removal).
And add a new diagnostic for non-`Fn` parenthesized generic args.
Path lowering started to look like a mess, with each function carrying additional parameters for the diagnostic callback (since paths can occur both in type and in expression/pattern position, and their diagnostic handling is different) and the segment index, for the diagnostics report. So I refactored it from stateless functions on `TyLoweringContext` into stateful struct, `PathLoweringContext`, that tracks the process of lowering a path from resolution til assoc types selection.
Because it was a mess.
Previously, pretty much you had to handle all path diagnostics manually: remember to check for them and handle them. Now, we wrap the resolver in `TyLoweringContext` and ensure proper error reporting.
This means that you don't have to worry about them: most of the things are handled automatically, and things that cannot will create a compile-time error (forcing you top `drop(ty_lowering_context);`) if forgotten, instead of silently dropping the diagnostics.
The real place for error reporting is in the hir-def resolver, because there are other things resolving, both in hir-ty and in hir-def, and they all need to ensure proper diagnostics. But this is a good start, and future compatible.
This commit also ensures proper path diagnostics for value/pattern paths, which is why it's marked "feat".
Implement diagnostics in all places left: generics (predicates, defaults, const params' types), fields, and type aliases.
Unfortunately this results in a 20mb addition in `analysis-stats .` due to many type methods returning an addition diagnostics result now (even if it's `None` in most cases). I'm not sure if this can be improved.
An alternative strategy that can prevent the memory usage growth is to never produce diagnostics in hir-ty methods. Instead, lower all types in the hir crate when computing diagnostics from scratch (with diagnostics this time). But this has two serious disadvantages:
1. This can cause code duplication (although it can probably be not that bad, it will still mean a lot more code).
2. I believe we eventually want to compute diagnostics for the *entire* workspace (either on-type or on-save or something alike), so users can know when they have diagnostics even in inactive files. Choosing this approach will mean we lose all precomputed salsa queries. For one file this is fine, for the whole workspace this will be very slow.
The diagnostic implemented is a simple one (E0109). It serves as a test for the new foundation.
This commit only implements diagnostics for type in bodies and body-carrying signatures; the next commit will include diagnostics in the rest of the things.
Also fix one weird bug that was detected when implementing this that caused `Fn::(A, B) -> C` (which is a valid, if bizarre, alternative syntax to `Fn(A, B) -> C` to lower incorrectly.
And also fix a maybe-bug where parentheses were sneaked into a code string needlessly; this was not detected until now because the parentheses were removed (by the make-AST family API), but with a change in this commit they are now inserted. So fix that too.
Most paths are types and therefore already are in the source map, but the trait in impl trait and in bounds are not.
We do this by storing them basically as `TypeRef`s. For convenience, I created a wrapper around `TypeRefId` called `PathId` that always stores a path, and implemented indexing from the types map to it.
Fortunately, this change impacts memory usage negligibly (adds 2mb to `analysis-stats .`, but that could be just fluff). Probably because there aren't that many trait bounds and impl traits, and this also shrinks `TypeBound` by 8 bytes.
I also added an accessor to `TypesSourceMap` to get the source code, which will be needed for diagnostics.
So that given a `TypeRef` we will be able to trace it back to source code.
This is necessary to be able to provide diagnostics for lowering to chalk tys, since the input to that is `TypeRef`.
This means that `TypeRef`s now have an identity, which means storing them in arena and not interning them, which is an unfortunate (but necessary) loss but also a pretty massive change. Luckily, because of the separation layer we have for IDE and HIR, this change never crosses the IDE boundary.
internal: Replace once_cell with std's recently stabilized OnceCell/Lock and LazyCell/Lock
This doesn't get rid of the once_cell dependency, unfortunately, since we have dependencies that use it, but it's a nice to do cleanup. And when our deps will eventually get rid of once_cell we will get rid of it for free.
This doesn't get rid of the once_cell dependency, unfortunately, since we have dependencies that use it, but it's a nice to do cleanup. And when our deps will eventually get rid of once_cell we will get rid of it for free.