//! Transforms syntax into `Path` objects, ideally with accounting for hygiene use std::iter; use crate::{lower::LowerCtx, type_ref::ConstRef}; use hir_expand::{ mod_path::resolve_crate_root, name::{name, AsName}, }; use intern::Interned; use syntax::ast::{self, AstNode, HasTypeBounds}; use crate::{ path::{AssociatedTypeBinding, GenericArg, GenericArgs, ModPath, Path, PathKind}, type_ref::{LifetimeRef, TypeBound, TypeRef}, }; /// Converts an `ast::Path` to `Path`. Works with use trees. /// It correctly handles `$crate` based path from macro call. pub(super) fn lower_path(ctx: &LowerCtx<'_>, mut path: ast::Path) -> Option { let mut kind = PathKind::Plain; let mut type_anchor = None; let mut segments = Vec::new(); let mut generic_args = Vec::new(); let span_map = ctx.span_map(); loop { let segment = path.segment()?; if segment.coloncolon_token().is_some() { kind = PathKind::Abs; } match segment.kind()? { ast::PathSegmentKind::Name(name_ref) => { if name_ref.text() == "$crate" { break kind = resolve_crate_root( ctx.db.upcast(), span_map.span_for_range(name_ref.syntax().text_range()).ctx, ) .map(PathKind::DollarCrate) .unwrap_or(PathKind::Crate); } let name = name_ref.as_name(); let args = segment .generic_arg_list() .and_then(|it| lower_generic_args(ctx, it)) .or_else(|| { lower_generic_args_from_fn_path( ctx, segment.param_list(), segment.ret_type(), ) }) .map(Interned::new); if args.is_some() { generic_args.resize(segments.len(), None); generic_args.push(args); } segments.push(name); } ast::PathSegmentKind::SelfTypeKw => { segments.push(name![Self]); } ast::PathSegmentKind::Type { type_ref, trait_ref } => { assert!(path.qualifier().is_none()); // this can only occur at the first segment let self_type = TypeRef::from_ast(ctx, type_ref?); match trait_ref { // ::foo None => { type_anchor = Some(Interned::new(self_type)); kind = PathKind::Plain; } // >::Foo desugars to Trait::Foo Some(trait_ref) => { let Path::Normal { mod_path, generic_args: path_generic_args, .. } = Path::from_src(ctx, trait_ref.path()?)? else { return None; }; let num_segments = mod_path.segments().len(); kind = mod_path.kind; segments.extend(mod_path.segments().iter().cloned().rev()); if let Some(path_generic_args) = path_generic_args { generic_args.resize(segments.len() - num_segments, None); generic_args.extend(Vec::from(path_generic_args).into_iter().rev()); } else { generic_args.resize(segments.len(), None); } let self_type = GenericArg::Type(self_type); // Insert the type reference (T in the above example) as Self parameter for the trait let last_segment = generic_args.get_mut(segments.len() - num_segments)?; *last_segment = Some(Interned::new(match last_segment.take() { Some(it) => GenericArgs { args: iter::once(self_type) .chain(it.args.iter().cloned()) .collect(), has_self_type: true, bindings: it.bindings.clone(), desugared_from_fn: it.desugared_from_fn, }, None => GenericArgs { args: Box::new([self_type]), has_self_type: true, ..GenericArgs::empty() }, })); } } } ast::PathSegmentKind::CrateKw => { kind = PathKind::Crate; break; } ast::PathSegmentKind::SelfKw => { // don't break out if `self` is the last segment of a path, this mean we got a // use tree like `foo::{self}` which we want to resolve as `foo` if !segments.is_empty() { kind = PathKind::Super(0); break; } } ast::PathSegmentKind::SuperKw => { let nested_super_count = if let PathKind::Super(n) = kind { n } else { 0 }; kind = PathKind::Super(nested_super_count + 1); } } path = match qualifier(&path) { Some(it) => it, None => break, }; } segments.reverse(); if !generic_args.is_empty() { generic_args.resize(segments.len(), None); generic_args.reverse(); } if segments.is_empty() && kind == PathKind::Plain && type_anchor.is_none() { // plain empty paths don't exist, this means we got a single `self` segment as our path kind = PathKind::Super(0); } // handle local_inner_macros : // Basically, even in rustc it is quite hacky: // https://github.com/rust-lang/rust/blob/614f273e9388ddd7804d5cbc80b8865068a3744e/src/librustc_resolve/macros.rs#L456 // We follow what it did anyway :) if segments.len() == 1 && kind == PathKind::Plain { if let Some(_macro_call) = path.syntax().parent().and_then(ast::MacroCall::cast) { let syn_ctxt = span_map.span_for_range(path.segment()?.syntax().text_range()).ctx; if let Some(macro_call_id) = ctx.db.lookup_intern_syntax_context(syn_ctxt).outer_expn { if ctx.db.lookup_intern_macro_call(macro_call_id).def.local_inner { kind = match resolve_crate_root(ctx.db.upcast(), syn_ctxt) { Some(crate_root) => PathKind::DollarCrate(crate_root), None => PathKind::Crate, } } } } } let mod_path = Interned::new(ModPath::from_segments(kind, segments)); return Some(Path::Normal { type_anchor, mod_path, generic_args: if generic_args.is_empty() { None } else { Some(generic_args.into()) }, }); fn qualifier(path: &ast::Path) -> Option { if let Some(q) = path.qualifier() { return Some(q); } // FIXME: this bottom up traversal is not too precise. // Should we handle do a top-down analysis, recording results? let use_tree_list = path.syntax().ancestors().find_map(ast::UseTreeList::cast)?; let use_tree = use_tree_list.parent_use_tree(); use_tree.path() } } pub(super) fn lower_generic_args( lower_ctx: &LowerCtx<'_>, node: ast::GenericArgList, ) -> Option { let mut args = Vec::new(); let mut bindings = Vec::new(); for generic_arg in node.generic_args() { match generic_arg { ast::GenericArg::TypeArg(type_arg) => { let type_ref = TypeRef::from_ast_opt(lower_ctx, type_arg.ty()); args.push(GenericArg::Type(type_ref)); } ast::GenericArg::AssocTypeArg(assoc_type_arg) => { if assoc_type_arg.param_list().is_some() { // We currently ignore associated return type bounds. continue; } if let Some(name_ref) = assoc_type_arg.name_ref() { let name = name_ref.as_name(); let args = assoc_type_arg .generic_arg_list() .and_then(|args| lower_generic_args(lower_ctx, args)) .map(Interned::new); let type_ref = assoc_type_arg.ty().map(|it| TypeRef::from_ast(lower_ctx, it)); let type_ref = type_ref.inspect(|tr| { tr.walk(&mut |tr| { if let TypeRef::ImplTrait(bounds) = tr { lower_ctx.update_impl_traits_bounds(bounds.clone()); } }); }); let bounds = if let Some(l) = assoc_type_arg.type_bound_list() { l.bounds() .map(|it| Interned::new(TypeBound::from_ast(lower_ctx, it))) .collect() } else { Box::default() }; bindings.push(AssociatedTypeBinding { name, args, type_ref, bounds }); } } ast::GenericArg::LifetimeArg(lifetime_arg) => { if let Some(lifetime) = lifetime_arg.lifetime() { let lifetime_ref = LifetimeRef::new(&lifetime); args.push(GenericArg::Lifetime(lifetime_ref)) } } ast::GenericArg::ConstArg(arg) => { let arg = ConstRef::from_const_arg(lower_ctx, Some(arg)); args.push(GenericArg::Const(arg)) } } } if args.is_empty() && bindings.is_empty() { return None; } Some(GenericArgs { args: args.into_boxed_slice(), has_self_type: false, bindings: bindings.into_boxed_slice(), desugared_from_fn: false, }) } /// Collect `GenericArgs` from the parts of a fn-like path, i.e. `Fn(X, Y) /// -> Z` (which desugars to `Fn<(X, Y), Output=Z>`). fn lower_generic_args_from_fn_path( ctx: &LowerCtx<'_>, params: Option, ret_type: Option, ) -> Option { let params = params?; let mut param_types = Vec::new(); for param in params.params() { let type_ref = TypeRef::from_ast_opt(ctx, param.ty()); param_types.push(type_ref); } let args = Box::new([GenericArg::Type(TypeRef::Tuple(param_types))]); let bindings = if let Some(ret_type) = ret_type { let type_ref = TypeRef::from_ast_opt(ctx, ret_type.ty()); Box::new([AssociatedTypeBinding { name: name![Output], args: None, type_ref: Some(type_ref), bounds: Box::default(), }]) } else { // -> () let type_ref = TypeRef::Tuple(Vec::new()); Box::new([AssociatedTypeBinding { name: name![Output], args: None, type_ref: Some(type_ref), bounds: Box::default(), }]) }; Some(GenericArgs { args, has_self_type: false, bindings, desugared_from_fn: true }) }