//! `rust-project.json` file format. //! //! This format is spiritually a serialization of [`base_db::CrateGraph`]. The //! idea here is that people who do not use Cargo, can instead teach their build //! system to generate `rust-project.json` which can be ingested by //! rust-analyzer. //! //! This short file is a somewhat big conceptual piece of the architecture of //! rust-analyzer, so it's worth elaborating on the underlying ideas and //! motivation. //! //! For rust-analyzer to function, it needs some information about the project. //! Specifically, it maintains an in-memory data structure which lists all the //! crates (compilation units) and dependencies between them. This is necessary //! a global singleton, as we do want, eg, find usages to always search across //! the whole project, rather than just in the "current" crate. //! //! Normally, we get this "crate graph" by calling `cargo metadata //! --message-format=json` for each cargo workspace and merging results. This //! works for your typical cargo project, but breaks down for large folks who //! have a monorepo with an infinite amount of Rust code which is built with bazel or //! some such. //! //! To support this use case, we need to make _something_ configurable. To avoid //! a [midlayer mistake](https://lwn.net/Articles/336262/), we allow configuring //! the lowest possible layer. `ProjectJson` is essentially a hook to just set //! that global singleton in-memory data structure. It is optimized for power, //! not for convenience (you'd be using cargo anyway if you wanted nice things, //! right? :) //! //! `rust-project.json` also isn't necessary a file. Architecturally, we support //! any convenient way to specify this data, which today is: //! //! * file on disk //! * a field in the config (ie, you can send a JSON request with the contents //! of `rust-project.json` to rust-analyzer, no need to write anything to disk) //! //! Another possible thing we don't do today, but which would be totally valid, //! is to add an extension point to VS Code extension to register custom //! project. //! //! In general, it is assumed that if you are going to use `rust-project.json`, //! you'd write a fair bit of custom code gluing your build system to ra through //! this JSON format. This logic can take form of a VS Code extension, or a //! proxy process which injects data into "configure" LSP request, or maybe just //! a simple build system rule to generate the file. //! //! In particular, the logic for lazily loading parts of the monorepo as the //! user explores them belongs to that extension (it's totally valid to change //! rust-project.json over time via configuration request!) use base_db::{CrateDisplayName, CrateName}; use cfg::CfgAtom; use paths::{AbsPath, AbsPathBuf, Utf8PathBuf}; use rustc_hash::{FxHashMap, FxHashSet}; use serde::{de, Deserialize, Serialize}; use span::Edition; use crate::{ManifestPath, TargetKind}; /// Roots and crates that compose this Rust project. #[derive(Clone, Debug, Eq, PartialEq)] pub struct ProjectJson { /// e.g. `path/to/sysroot` pub(crate) sysroot: Option, /// e.g. `path/to/sysroot/lib/rustlib/src/rust` pub(crate) sysroot_src: Option, project_root: AbsPathBuf, /// The path to the rust-project.json file. May be None if this /// data was generated by the discoverConfig command. manifest: Option, crates: Vec, /// Configuration for CLI commands. /// /// Examples include a check build or a test run. runnables: Vec, } impl ProjectJson { /// Create a new ProjectJson instance. /// /// # Arguments /// /// * `manifest` - The path to the `rust-project.json`. /// * `base` - The path to the workspace root (i.e. the folder containing `rust-project.json`) /// * `data` - The parsed contents of `rust-project.json`, or project json that's passed via /// configuration. pub fn new( manifest: Option, base: &AbsPath, data: ProjectJsonData, ) -> ProjectJson { let absolutize_on_base = |p| base.absolutize(p); ProjectJson { sysroot: data.sysroot.map(absolutize_on_base), sysroot_src: data.sysroot_src.map(absolutize_on_base), project_root: base.to_path_buf(), manifest, runnables: data.runnables.into_iter().map(Runnable::from).collect(), crates: data .crates .into_iter() .map(|crate_data| { let root_module = absolutize_on_base(crate_data.root_module); let is_workspace_member = crate_data .is_workspace_member .unwrap_or_else(|| root_module.starts_with(base)); let (include, exclude) = match crate_data.source { Some(src) => { let absolutize = |dirs: Vec| { dirs.into_iter().map(absolutize_on_base).collect::>() }; (absolutize(src.include_dirs), absolutize(src.exclude_dirs)) } None => (vec![root_module.parent().unwrap().to_path_buf()], Vec::new()), }; let build = match crate_data.build { Some(build) => Some(Build { label: build.label, build_file: build.build_file, target_kind: build.target_kind.into(), }), None => None, }; let cfg = crate_data .cfg_groups .iter() .flat_map(|cfg_extend| { let cfg_group = data.cfg_groups.get(cfg_extend); match cfg_group { Some(cfg_group) => cfg_group.0.iter().cloned(), None => { tracing::error!( "Unknown cfg group `{cfg_extend}` in crate `{}`", crate_data.display_name.as_deref().unwrap_or(""), ); [].iter().cloned() } } }) .chain(crate_data.cfg.0) .collect(); Crate { display_name: crate_data .display_name .as_deref() .map(CrateDisplayName::from_canonical_name), root_module, edition: crate_data.edition.into(), version: crate_data.version.as_ref().map(ToString::to_string), deps: crate_data.deps, cfg, target: crate_data.target, env: crate_data.env, proc_macro_dylib_path: crate_data .proc_macro_dylib_path .map(absolutize_on_base), is_workspace_member, include, exclude, is_proc_macro: crate_data.is_proc_macro, repository: crate_data.repository, build, } }) .collect(), } } /// Returns the number of crates in the project. pub fn n_crates(&self) -> usize { self.crates.len() } /// Returns an iterator over the crates in the project. pub fn crates(&self) -> impl Iterator { self.crates.iter().enumerate().map(|(idx, krate)| (CrateArrayIdx(idx), krate)) } /// Returns the path to the project's root folder. pub fn path(&self) -> &AbsPath { &self.project_root } pub fn crate_by_root(&self, root: &AbsPath) -> Option { self.crates .iter() .filter(|krate| krate.is_workspace_member) .find(|krate| krate.root_module == root) .cloned() } /// Returns the path to the project's manifest, if it exists. pub fn manifest(&self) -> Option<&ManifestPath> { self.manifest.as_ref() } pub fn crate_by_buildfile(&self, path: &AbsPath) -> Option { // this is fast enough for now, but it's unfortunate that this is O(crates). let path: &std::path::Path = path.as_ref(); self.crates .iter() .filter(|krate| krate.is_workspace_member) .filter_map(|krate| krate.build.clone()) .find(|build| build.build_file.as_std_path() == path) } /// Returns the path to the project's manifest or root folder, if no manifest exists. pub fn manifest_or_root(&self) -> &AbsPath { self.manifest.as_ref().map_or(&self.project_root, |manifest| manifest.as_ref()) } /// Returns the path to the project's root folder. pub fn project_root(&self) -> &AbsPath { &self.project_root } pub fn runnables(&self) -> &[Runnable] { &self.runnables } } /// A crate points to the root module of a crate and lists the dependencies of the crate. This is /// useful in creating the crate graph. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Crate { pub(crate) display_name: Option, pub root_module: AbsPathBuf, pub(crate) edition: Edition, pub(crate) version: Option, pub(crate) deps: Vec, pub(crate) cfg: Vec, pub(crate) target: Option, pub(crate) env: FxHashMap, pub(crate) proc_macro_dylib_path: Option, pub(crate) is_workspace_member: bool, pub(crate) include: Vec, pub(crate) exclude: Vec, pub(crate) is_proc_macro: bool, pub(crate) repository: Option, pub build: Option, } /// Additional, build-specific data about a crate. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Build { /// The name associated with this crate. /// /// This is determined by the build system that produced /// the `rust-project.json` in question. For instance, if buck were used, /// the label might be something like `//ide/rust/rust-analyzer:rust-analyzer`. /// /// Do not attempt to parse the contents of this string; it is a build system-specific /// identifier similar to [`Crate::display_name`]. pub label: String, /// Path corresponding to the build system-specific file defining the crate. /// /// It is roughly analogous to [`ManifestPath`], but it should *not* be used with /// [`crate::ProjectManifest::from_manifest_file`], as the build file may not be /// be in the `rust-project.json`. pub build_file: Utf8PathBuf, /// The kind of target. /// /// Examples (non-exhaustively) include [`TargetKind::Bin`], [`TargetKind::Lib`], /// and [`TargetKind::Test`]. This information is used to determine what sort /// of runnable codelens to provide, if any. pub target_kind: TargetKind, } /// A template-like structure for describing runnables. /// /// These are used for running and debugging binaries and tests without encoding /// build system-specific knowledge into rust-analyzer. /// /// # Example /// /// Below is an example of a test runnable. `{label}` and `{test_id}` /// are explained in [`Runnable::args`]'s documentation. /// /// ```json /// { /// "program": "buck", /// "args": [ /// "test", /// "{label}", /// "--", /// "{test_id}", /// "--print-passing-details" /// ], /// "cwd": "/home/user/repo-root/", /// "kind": "testOne" /// } /// ``` #[derive(Debug, Clone, PartialEq, Eq)] pub struct Runnable { /// The program invoked by the runnable. /// /// For example, this might be `cargo`, `buck`, or `bazel`. pub program: String, /// The arguments passed to [`Runnable::program`]. /// /// The args can contain two template strings: `{label}` and `{test_id}`. /// rust-analyzer will find and replace `{label}` with [`Build::label`] and /// `{test_id}` with the test name. pub args: Vec, /// The current working directory of the runnable. pub cwd: Utf8PathBuf, pub kind: RunnableKind, } /// The kind of runnable. #[derive(Debug, Clone, PartialEq, Eq)] pub enum RunnableKind { Check, /// Can run a binary. Run, /// Run a single test. TestOne, } #[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq)] pub struct ProjectJsonData { sysroot: Option, sysroot_src: Option, #[serde(default)] cfg_groups: FxHashMap, crates: Vec, #[serde(default)] runnables: Vec, } #[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq, Default)] #[serde(transparent)] struct CfgList(#[serde(with = "cfg_")] Vec); #[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq)] struct CrateData { display_name: Option, root_module: Utf8PathBuf, edition: EditionData, #[serde(default)] version: Option, deps: Vec, #[serde(default)] cfg_groups: FxHashSet, #[serde(default)] cfg: CfgList, target: Option, #[serde(default)] env: FxHashMap, proc_macro_dylib_path: Option, is_workspace_member: Option, source: Option, #[serde(default)] is_proc_macro: bool, #[serde(default)] repository: Option, #[serde(default)] build: Option, } mod cfg_ { use cfg::CfgAtom; use serde::{Deserialize, Serialize}; pub(super) fn deserialize<'de, D>(deserializer: D) -> Result, D::Error> where D: serde::Deserializer<'de>, { let cfg: Vec = Vec::deserialize(deserializer)?; cfg.into_iter().map(|it| crate::parse_cfg(&it).map_err(serde::de::Error::custom)).collect() } pub(super) fn serialize(cfg: &[CfgAtom], serializer: S) -> Result where S: serde::Serializer, { cfg.iter() .map(|cfg| match cfg { CfgAtom::Flag(flag) => flag.as_str().to_owned(), CfgAtom::KeyValue { key, value } => { format!("{}=\"{}\"", key.as_str(), value.as_str()) } }) .collect::>() .serialize(serializer) } } #[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq)] #[serde(rename = "edition")] enum EditionData { #[serde(rename = "2015")] Edition2015, #[serde(rename = "2018")] Edition2018, #[serde(rename = "2021")] Edition2021, #[serde(rename = "2024")] Edition2024, } #[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq)] pub struct BuildData { label: String, build_file: Utf8PathBuf, target_kind: TargetKindData, } #[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)] pub struct RunnableData { pub program: String, pub args: Vec, pub cwd: Utf8PathBuf, pub kind: RunnableKindData, } #[derive(Debug, Clone, PartialEq, Eq, Deserialize, Serialize)] #[serde(rename_all = "camelCase")] pub enum RunnableKindData { Check, Run, TestOne, } #[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize, Serialize)] #[serde(rename_all = "camelCase")] pub enum TargetKindData { Bin, /// Any kind of Cargo lib crate-type (dylib, rlib, proc-macro, ...). Lib, Test, } /// Identifies a crate by position in the crates array. /// /// This will differ from `CrateId` when multiple `ProjectJson` /// workspaces are loaded. #[derive(Serialize, Deserialize, Debug, Clone, Copy, Eq, PartialEq, Hash)] #[serde(transparent)] pub struct CrateArrayIdx(pub usize); #[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq)] pub(crate) struct Dep { /// Identifies a crate by position in the crates array. #[serde(rename = "crate")] pub(crate) krate: CrateArrayIdx, #[serde(serialize_with = "serialize_crate_name")] #[serde(deserialize_with = "deserialize_crate_name")] pub(crate) name: CrateName, } #[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)] struct CrateSource { include_dirs: Vec, exclude_dirs: Vec, } impl From for TargetKind { fn from(data: TargetKindData) -> Self { match data { TargetKindData::Bin => TargetKind::Bin, TargetKindData::Lib => TargetKind::Lib { is_proc_macro: false }, TargetKindData::Test => TargetKind::Test, } } } impl From for Edition { fn from(data: EditionData) -> Self { match data { EditionData::Edition2015 => Edition::Edition2015, EditionData::Edition2018 => Edition::Edition2018, EditionData::Edition2021 => Edition::Edition2021, EditionData::Edition2024 => Edition::Edition2024, } } } impl From for Runnable { fn from(data: RunnableData) -> Self { Runnable { program: data.program, args: data.args, cwd: data.cwd, kind: data.kind.into() } } } impl From for RunnableKind { fn from(data: RunnableKindData) -> Self { match data { RunnableKindData::Check => RunnableKind::Check, RunnableKindData::Run => RunnableKind::Run, RunnableKindData::TestOne => RunnableKind::TestOne, } } } fn deserialize_crate_name<'de, D>(de: D) -> std::result::Result where D: de::Deserializer<'de>, { let name = String::deserialize(de)?; CrateName::new(&name).map_err(|err| de::Error::custom(format!("invalid crate name: {err:?}"))) } fn serialize_crate_name(name: &CrateName, se: S) -> Result where S: serde::Serializer, { se.serialize_str(name) }