//! `mbe` (short for Macro By Example) crate contains code for handling //! `macro_rules` macros. It uses `TokenTree` (from `tt` package) as the //! interface, although it contains some code to bridge `SyntaxNode`s and //! `TokenTree`s as well! //! //! The tests for this functionality live in another crate: //! `hir_def::macro_expansion_tests::mbe`. #![cfg_attr(feature = "in-rust-tree", feature(rustc_private))] #[cfg(not(feature = "in-rust-tree"))] extern crate ra_ap_rustc_lexer as rustc_lexer; #[cfg(feature = "in-rust-tree")] extern crate rustc_lexer; mod expander; mod parser; #[cfg(test)] mod benchmark; #[cfg(test)] mod tests; use span::{Edition, Span, SyntaxContextId}; use syntax_bridge::to_parser_input; use tt::iter::TtIter; use tt::DelimSpan; use std::fmt; use std::sync::Arc; use crate::parser::{MetaTemplate, MetaVarKind, Op}; pub use tt::{Delimiter, DelimiterKind, Punct}; #[derive(Debug, PartialEq, Eq, Clone)] pub enum ParseError { UnexpectedToken(Box), Expected(Box), InvalidRepeat, RepetitionEmptyTokenTree, } impl ParseError { fn expected(e: &str) -> ParseError { ParseError::Expected(e.into()) } fn unexpected(e: &str) -> ParseError { ParseError::UnexpectedToken(e.into()) } } impl fmt::Display for ParseError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { ParseError::UnexpectedToken(it) => f.write_str(it), ParseError::Expected(it) => f.write_str(it), ParseError::InvalidRepeat => f.write_str("invalid repeat"), ParseError::RepetitionEmptyTokenTree => f.write_str("empty token tree in repetition"), } } } #[derive(Debug, PartialEq, Eq, Clone, Hash)] pub struct ExpandError { pub inner: Arc<(Span, ExpandErrorKind)>, } #[derive(Debug, PartialEq, Eq, Clone, Hash)] pub enum ExpandErrorKind { BindingError(Box>), UnresolvedBinding(Box>), LeftoverTokens, LimitExceeded, NoMatchingRule, UnexpectedToken, } impl ExpandError { fn new(span: Span, kind: ExpandErrorKind) -> ExpandError { ExpandError { inner: Arc::new((span, kind)) } } fn binding_error(span: Span, e: impl Into>) -> ExpandError { ExpandError { inner: Arc::new((span, ExpandErrorKind::BindingError(Box::new(e.into())))) } } } impl fmt::Display for ExpandError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.inner.1.fmt(f) } } impl fmt::Display for ExpandErrorKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { ExpandErrorKind::NoMatchingRule => f.write_str("no rule matches input tokens"), ExpandErrorKind::UnexpectedToken => f.write_str("unexpected token in input"), ExpandErrorKind::BindingError(e) => f.write_str(e), ExpandErrorKind::UnresolvedBinding(binding) => { f.write_str("could not find binding ")?; f.write_str(binding) } ExpandErrorKind::LimitExceeded => f.write_str("Expand exceed limit"), ExpandErrorKind::LeftoverTokens => f.write_str("leftover tokens"), } } } // FIXME: Showing these errors could be nicer. #[derive(Debug, PartialEq, Eq, Clone, Hash)] pub enum CountError { OutOfBounds, Misplaced, } impl fmt::Display for CountError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { CountError::OutOfBounds => f.write_str("${count} out of bounds"), CountError::Misplaced => f.write_str("${count} misplaced"), } } } /// Index of the matched macro arm on successful expansion. pub type MatchedArmIndex = Option; /// This struct contains AST for a single `macro_rules` definition. What might /// be very confusing is that AST has almost exactly the same shape as /// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident` /// and `$()*` have special meaning (see `Var` and `Repeat` data structures) #[derive(Clone, Debug, PartialEq, Eq)] pub struct DeclarativeMacro { rules: Box<[Rule]>, err: Option>, } #[derive(Clone, Debug, PartialEq, Eq)] struct Rule { lhs: MetaTemplate, rhs: MetaTemplate, } impl DeclarativeMacro { pub fn from_err(err: ParseError) -> DeclarativeMacro { DeclarativeMacro { rules: Box::default(), err: Some(Box::new(err)) } } /// The old, `macro_rules! m {}` flavor. pub fn parse_macro_rules( tt: &tt::Subtree, ctx_edition: impl Copy + Fn(SyntaxContextId) -> Edition, ) -> DeclarativeMacro { // Note: this parsing can be implemented using mbe machinery itself, by // matching against `$($lhs:tt => $rhs:tt);*` pattern, but implementing // manually seems easier. let mut src = TtIter::new(tt); let mut rules = Vec::new(); let mut err = None; while src.len() > 0 { let rule = match Rule::parse(ctx_edition, &mut src) { Ok(it) => it, Err(e) => { err = Some(Box::new(e)); break; } }; rules.push(rule); if let Err(()) = src.expect_char(';') { if src.len() > 0 { err = Some(Box::new(ParseError::expected("expected `;`"))); } break; } } for Rule { lhs, .. } in &rules { if let Err(e) = validate(lhs) { err = Some(Box::new(e)); break; } } DeclarativeMacro { rules: rules.into_boxed_slice(), err } } /// The new, unstable `macro m {}` flavor. pub fn parse_macro2( args: Option<&tt::Subtree>, body: &tt::Subtree, ctx_edition: impl Copy + Fn(SyntaxContextId) -> Edition, ) -> DeclarativeMacro { let mut rules = Vec::new(); let mut err = None; if let Some(args) = args { cov_mark::hit!(parse_macro_def_simple); let rule = (|| { let lhs = MetaTemplate::parse_pattern(ctx_edition, args)?; let rhs = MetaTemplate::parse_template(ctx_edition, body)?; Ok(crate::Rule { lhs, rhs }) })(); match rule { Ok(rule) => rules.push(rule), Err(e) => err = Some(Box::new(e)), } } else { cov_mark::hit!(parse_macro_def_rules); let mut src = TtIter::new(body); while src.len() > 0 { let rule = match Rule::parse(ctx_edition, &mut src) { Ok(it) => it, Err(e) => { err = Some(Box::new(e)); break; } }; rules.push(rule); if let Err(()) = src.expect_any_char(&[';', ',']) { if src.len() > 0 { err = Some(Box::new(ParseError::expected( "expected `;` or `,` to delimit rules", ))); } break; } } } for Rule { lhs, .. } in &rules { if let Err(e) = validate(lhs) { err = Some(Box::new(e)); break; } } DeclarativeMacro { rules: rules.into_boxed_slice(), err } } pub fn err(&self) -> Option<&ParseError> { self.err.as_deref() } pub fn num_rules(&self) -> usize { self.rules.len() } pub fn expand( &self, tt: &tt::Subtree, marker: impl Fn(&mut Span) + Copy, call_site: Span, def_site_edition: Edition, ) -> ExpandResult<(tt::Subtree, MatchedArmIndex)> { expander::expand_rules(&self.rules, tt, marker, call_site, def_site_edition) } } impl Rule { fn parse( edition: impl Copy + Fn(SyntaxContextId) -> Edition, src: &mut TtIter<'_, Span>, ) -> Result { let lhs = src.expect_subtree().map_err(|()| ParseError::expected("expected subtree"))?; src.expect_char('=').map_err(|()| ParseError::expected("expected `=`"))?; src.expect_char('>').map_err(|()| ParseError::expected("expected `>`"))?; let rhs = src.expect_subtree().map_err(|()| ParseError::expected("expected subtree"))?; let lhs = MetaTemplate::parse_pattern(edition, lhs)?; let rhs = MetaTemplate::parse_template(edition, rhs)?; Ok(crate::Rule { lhs, rhs }) } } fn validate(pattern: &MetaTemplate) -> Result<(), ParseError> { for op in pattern.iter() { match op { Op::Subtree { tokens, .. } => validate(tokens)?, Op::Repeat { tokens: subtree, separator, .. } => { // Checks that no repetition which could match an empty token // https://github.com/rust-lang/rust/blob/a58b1ed44f5e06976de2bdc4d7dc81c36a96934f/src/librustc_expand/mbe/macro_rules.rs#L558 let lsh_is_empty_seq = separator.is_none() && subtree.iter().all(|child_op| { match *child_op { // vis is optional Op::Var { kind: Some(kind), .. } => kind == MetaVarKind::Vis, Op::Repeat { kind: parser::RepeatKind::ZeroOrMore | parser::RepeatKind::ZeroOrOne, .. } => true, _ => false, } }); if lsh_is_empty_seq { return Err(ParseError::RepetitionEmptyTokenTree); } validate(subtree)? } _ => (), } } Ok(()) } pub type ExpandResult = ValueResult; #[derive(Debug, Clone, Eq, PartialEq)] pub struct ValueResult { pub value: T, pub err: Option, } impl Default for ValueResult { fn default() -> Self { Self { value: Default::default(), err: Default::default() } } } impl ValueResult { pub fn new(value: T, err: E) -> Self { Self { value, err: Some(err) } } pub fn ok(value: T) -> Self { Self { value, err: None } } pub fn only_err(err: E) -> Self where T: Default, { Self { value: Default::default(), err: Some(err) } } pub fn zip_val(self, other: U) -> ValueResult<(T, U), E> { ValueResult { value: (self.value, other), err: self.err } } pub fn map(self, f: impl FnOnce(T) -> U) -> ValueResult { ValueResult { value: f(self.value), err: self.err } } pub fn map_err(self, f: impl FnOnce(E) -> E2) -> ValueResult { ValueResult { value: self.value, err: self.err.map(f) } } pub fn result(self) -> Result { self.err.map_or(Ok(self.value), Err) } } impl From> for ValueResult { fn from(result: Result) -> Self { result.map_or_else(Self::only_err, Self::ok) } } pub fn expect_fragment( tt_iter: &mut TtIter<'_, Span>, entry_point: ::parser::PrefixEntryPoint, edition: ::parser::Edition, delim_span: DelimSpan, ) -> ExpandResult>> { use ::parser; let buffer = tt::buffer::TokenBuffer::from_tokens(tt_iter.as_slice()); let parser_input = to_parser_input(edition, &buffer); let tree_traversal = entry_point.parse(&parser_input, edition); let mut cursor = buffer.begin(); let mut error = false; for step in tree_traversal.iter() { match step { parser::Step::Token { kind, mut n_input_tokens } => { if kind == ::parser::SyntaxKind::LIFETIME_IDENT { n_input_tokens = 2; } for _ in 0..n_input_tokens { cursor = cursor.bump_subtree(); } } parser::Step::FloatSplit { .. } => { // FIXME: We need to split the tree properly here, but mutating the token trees // in the buffer is somewhat tricky to pull off. cursor = cursor.bump_subtree(); } parser::Step::Enter { .. } | parser::Step::Exit => (), parser::Step::Error { .. } => error = true, } } let err = if error || !cursor.is_root() { Some(ExpandError::binding_error( buffer.begin().token_tree().map_or(delim_span.close, |tt| tt.span()), format!("expected {entry_point:?}"), )) } else { None }; let mut curr = buffer.begin(); let mut res = vec![]; while curr != cursor { let Some(token) = curr.token_tree() else { break }; res.push(token.cloned()); curr = curr.bump(); } *tt_iter = TtIter::new_iter(tt_iter.as_slice()[res.len()..].iter()); let res = match &*res { [] | [_] => res.pop(), [first, ..] => Some(tt::TokenTree::Subtree(tt::Subtree { delimiter: Delimiter::invisible_spanned(first.first_span()), token_trees: res.into_boxed_slice(), })), }; ExpandResult { value: res, err } }