use hir::{ Adt, AsAssocItem, HasSource, HirDisplay, HirFileIdExt, Module, PathResolution, Semantics, StructKind, Type, TypeInfo, }; use ide_db::{ defs::{Definition, NameRefClass}, famous_defs::FamousDefs, helpers::is_editable_crate, path_transform::PathTransform, source_change::SourceChangeBuilder, FileId, FxHashMap, FxHashSet, RootDatabase, SnippetCap, }; use itertools::Itertools; use stdx::to_lower_snake_case; use syntax::{ ast::{ self, edit::IndentLevel, edit_in_place::Indent, make, AstNode, BlockExpr, CallExpr, HasArgList, HasGenericParams, HasModuleItem, HasTypeBounds, }, ted, Edition, SyntaxKind, SyntaxNode, TextRange, T, }; use crate::{ utils::{convert_reference_type, find_struct_impl}, AssistContext, AssistId, AssistKind, Assists, }; // Assist: generate_function // // Adds a stub function with a signature matching the function under the cursor. // // ``` // struct Baz; // fn baz() -> Baz { Baz } // fn foo() { // bar$0("", baz()); // } // // ``` // -> // ``` // struct Baz; // fn baz() -> Baz { Baz } // fn foo() { // bar("", baz()); // } // // fn bar(arg: &str, baz: Baz) ${0:-> _} { // todo!() // } // // ``` pub(crate) fn generate_function(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> { gen_fn(acc, ctx).or_else(|| gen_method(acc, ctx)) } fn gen_fn(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> { let path_expr: ast::PathExpr = ctx.find_node_at_offset()?; let call = path_expr.syntax().parent().and_then(ast::CallExpr::cast)?; let path = path_expr.path()?; let name_ref = path.segment()?.name_ref()?; if ctx.sema.resolve_path(&path).is_some() { // The function call already resolves, no need to add a function return None; } let fn_name = &*name_ref.text(); let TargetInfo { target_module, adt_info, target, file } = fn_target_info(ctx, path, &call, fn_name)?; if let Some(m) = target_module { if !is_editable_crate(m.krate(), ctx.db()) { return None; } } let function_builder = FunctionBuilder::from_call(ctx, &call, fn_name, target_module, target, &adt_info)?; let text_range = call.syntax().text_range(); let label = format!("Generate {} function", function_builder.fn_name); add_func_to_accumulator(acc, ctx, text_range, function_builder, file, adt_info, label) } struct TargetInfo { target_module: Option, adt_info: Option, target: GeneratedFunctionTarget, file: FileId, } impl TargetInfo { fn new( target_module: Option, adt_info: Option, target: GeneratedFunctionTarget, file: FileId, ) -> Self { Self { target_module, adt_info, target, file } } } fn fn_target_info( ctx: &AssistContext<'_>, path: ast::Path, call: &CallExpr, fn_name: &str, ) -> Option { match path.qualifier() { Some(qualifier) => match ctx.sema.resolve_path(&qualifier) { Some(hir::PathResolution::Def(hir::ModuleDef::Module(module))) => { get_fn_target_info(ctx, Some(module), call.clone()) } Some(hir::PathResolution::Def(hir::ModuleDef::Adt(adt))) => { if let hir::Adt::Enum(_) = adt { // Don't suggest generating function if the name starts with an uppercase letter if fn_name.starts_with(char::is_uppercase) { return None; } } assoc_fn_target_info(ctx, call, adt, fn_name) } Some(hir::PathResolution::SelfType(impl_)) => { let adt = impl_.self_ty(ctx.db()).as_adt()?; assoc_fn_target_info(ctx, call, adt, fn_name) } _ => None, }, _ => get_fn_target_info(ctx, None, call.clone()), } } fn gen_method(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> { let call: ast::MethodCallExpr = ctx.find_node_at_offset()?; if ctx.sema.resolve_method_call(&call).is_some() { return None; } let fn_name = call.name_ref()?; let receiver_ty = ctx.sema.type_of_expr(&call.receiver()?)?.original().strip_references(); let adt = receiver_ty.as_adt()?; let target_module = adt.module(ctx.sema.db); if !is_editable_crate(target_module.krate(), ctx.db()) { return None; } let (impl_, file) = get_adt_source(ctx, &adt, fn_name.text().as_str())?; let target = get_method_target(ctx, &impl_, &adt)?; let function_builder = FunctionBuilder::from_method_call( ctx, &call, &fn_name, receiver_ty, target_module, target, )?; let text_range = call.syntax().text_range(); let adt_info = AdtInfo::new(adt, impl_.is_some()); let label = format!("Generate {} method", function_builder.fn_name); add_func_to_accumulator(acc, ctx, text_range, function_builder, file, Some(adt_info), label) } fn add_func_to_accumulator( acc: &mut Assists, ctx: &AssistContext<'_>, text_range: TextRange, function_builder: FunctionBuilder, file: FileId, adt_info: Option, label: String, ) -> Option<()> { acc.add(AssistId("generate_function", AssistKind::Generate), label, text_range, |edit| { edit.edit_file(file); let target = function_builder.target.clone(); let edition = function_builder.target_edition; let func = function_builder.render(ctx.config.snippet_cap, edit); if let Some(adt) = adt_info .and_then(|adt_info| if adt_info.impl_exists { None } else { Some(adt_info.adt) }) { let name = make::ty_path(make::ext::ident_path(&format!( "{}", adt.name(ctx.db()).display(ctx.db(), edition) ))); // FIXME: adt may have generic params. let impl_ = make::impl_(None, None, name, None, None).clone_for_update(); func.indent(IndentLevel(1)); impl_.get_or_create_assoc_item_list().add_item(func.into()); target.insert_impl_at(edit, impl_); } else { target.insert_fn_at(edit, func); } }) } fn get_adt_source( ctx: &AssistContext<'_>, adt: &hir::Adt, fn_name: &str, ) -> Option<(Option, FileId)> { let range = adt.source(ctx.sema.db)?.syntax().original_file_range_rooted(ctx.sema.db); let file = ctx.sema.parse(range.file_id); let adt_source = ctx.sema.find_node_at_offset_with_macros(file.syntax(), range.range.start())?; find_struct_impl(ctx, &adt_source, &[fn_name.to_owned()]) .map(|impl_| (impl_, range.file_id.file_id())) } struct FunctionBuilder { target: GeneratedFunctionTarget, fn_name: ast::Name, generic_param_list: Option, where_clause: Option, params: ast::ParamList, fn_body: BlockExpr, ret_type: Option, should_focus_return_type: bool, visibility: Visibility, is_async: bool, target_edition: Edition, } impl FunctionBuilder { /// Prepares a generated function that matches `call`. /// The function is generated in `target_module` or next to `call` fn from_call( ctx: &AssistContext<'_>, call: &ast::CallExpr, fn_name: &str, target_module: Option, target: GeneratedFunctionTarget, adt_info: &Option, ) -> Option { let target_module = target_module.or_else(|| ctx.sema.scope(target.syntax()).map(|it| it.module()))?; let target_edition = target_module.krate().edition(ctx.db()); let current_module = ctx.sema.scope(call.syntax())?.module(); let visibility = calculate_necessary_visibility(current_module, target_module, ctx); let fn_name = make::name(fn_name); let mut necessary_generic_params = FxHashSet::default(); let params = fn_args( ctx, target_module, ast::CallableExpr::Call(call.clone()), &mut necessary_generic_params, )?; let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast); let is_async = await_expr.is_some(); let ret_type; let should_focus_return_type; let fn_body; // If generated function has the name "new" and is an associated function, we generate fn body // as a constructor and assume a "Self" return type. if let Some(body) = make_fn_body_as_new_function(ctx, &fn_name.text(), adt_info, target_edition) { ret_type = Some(make::ret_type(make::ty_path(make::ext::ident_path("Self")))); should_focus_return_type = false; fn_body = body; } else { let expr_for_ret_ty = await_expr.map_or_else(|| call.clone().into(), |it| it.into()); (ret_type, should_focus_return_type) = make_return_type( ctx, &expr_for_ret_ty, target_module, &mut necessary_generic_params, ); let placeholder_expr = make::ext::expr_todo(); fn_body = make::block_expr(vec![], Some(placeholder_expr)); }; let (generic_param_list, where_clause) = fn_generic_params(ctx, necessary_generic_params, &target)?; Some(Self { target, fn_name, generic_param_list, where_clause, params, fn_body, ret_type, should_focus_return_type, visibility, is_async, target_edition, }) } fn from_method_call( ctx: &AssistContext<'_>, call: &ast::MethodCallExpr, name: &ast::NameRef, receiver_ty: Type, target_module: Module, target: GeneratedFunctionTarget, ) -> Option { let target_edition = target_module.krate().edition(ctx.db()); let current_module = ctx.sema.scope(call.syntax())?.module(); let visibility = calculate_necessary_visibility(current_module, target_module, ctx); let fn_name = make::name(&name.text()); let mut necessary_generic_params = FxHashSet::default(); necessary_generic_params.extend(receiver_ty.generic_params(ctx.db())); let params = fn_args( ctx, target_module, ast::CallableExpr::MethodCall(call.clone()), &mut necessary_generic_params, )?; let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast); let is_async = await_expr.is_some(); let expr_for_ret_ty = await_expr.map_or_else(|| call.clone().into(), |it| it.into()); let (ret_type, should_focus_return_type) = make_return_type(ctx, &expr_for_ret_ty, target_module, &mut necessary_generic_params); let (generic_param_list, where_clause) = fn_generic_params(ctx, necessary_generic_params, &target)?; let placeholder_expr = make::ext::expr_todo(); let fn_body = make::block_expr(vec![], Some(placeholder_expr)); Some(Self { target, fn_name, generic_param_list, where_clause, params, fn_body, ret_type, should_focus_return_type, visibility, is_async, target_edition, }) } fn render(self, cap: Option, edit: &mut SourceChangeBuilder) -> ast::Fn { let visibility = match self.visibility { Visibility::None => None, Visibility::Crate => Some(make::visibility_pub_crate()), Visibility::Pub => Some(make::visibility_pub()), }; let fn_def = make::fn_( visibility, self.fn_name, self.generic_param_list, self.where_clause, self.params, self.fn_body, self.ret_type, self.is_async, false, // FIXME : const and unsafe are not handled yet. false, false, ) .clone_for_update(); let ret_type = fn_def.ret_type(); // PANIC: we guarantee we always create a function body with a tail expr let tail_expr = fn_def .body() .expect("generated function should have a body") .tail_expr() .expect("function body should have a tail expression"); if let Some(cap) = cap { if self.should_focus_return_type { // Focus the return type if there is one match ret_type { Some(ret_type) => { edit.add_placeholder_snippet(cap, ret_type.clone()); } None => { edit.add_placeholder_snippet(cap, tail_expr.clone()); } } } else { edit.add_placeholder_snippet(cap, tail_expr.clone()); } } fn_def } } /// Makes an optional return type along with whether the return type should be focused by the cursor. /// If we cannot infer what the return type should be, we create a placeholder type. /// /// The rule for whether we focus a return type or not (and thus focus the function body), /// is rather simple: /// * If we could *not* infer what the return type should be, focus it (so the user can fill-in /// the correct return type). /// * If we could infer the return type, don't focus it (and thus focus the function body) so the /// user can change the `todo!` function body. fn make_return_type( ctx: &AssistContext<'_>, expr: &ast::Expr, target_module: Module, necessary_generic_params: &mut FxHashSet, ) -> (Option, bool) { let (ret_ty, should_focus_return_type) = { match ctx.sema.type_of_expr(expr).map(TypeInfo::original) { Some(ty) if ty.is_unknown() => (Some(make::ty_placeholder()), true), None => (Some(make::ty_placeholder()), true), Some(ty) if ty.is_unit() => (None, false), Some(ty) => { necessary_generic_params.extend(ty.generic_params(ctx.db())); let rendered = ty.display_source_code(ctx.db(), target_module.into(), true); match rendered { Ok(rendered) => (Some(make::ty(&rendered)), false), Err(_) => (Some(make::ty_placeholder()), true), } } } }; let ret_type = ret_ty.map(make::ret_type); (ret_type, should_focus_return_type) } fn make_fn_body_as_new_function( ctx: &AssistContext<'_>, fn_name: &str, adt_info: &Option, edition: Edition, ) -> Option { if fn_name != "new" { return None; }; let adt_info = adt_info.as_ref()?; let path_self = make::ext::ident_path("Self"); let placeholder_expr = make::ext::expr_todo(); let tail_expr = if let Some(strukt) = adt_info.adt.as_struct() { match strukt.kind(ctx.db()) { StructKind::Record => { let fields = strukt .fields(ctx.db()) .iter() .map(|field| { make::record_expr_field( make::name_ref(&format!( "{}", field.name(ctx.db()).display(ctx.db(), edition) )), Some(placeholder_expr.clone()), ) }) .collect::>(); make::record_expr(path_self, make::record_expr_field_list(fields)).into() } StructKind::Tuple => { let args = strukt .fields(ctx.db()) .iter() .map(|_| placeholder_expr.clone()) .collect::>(); make::expr_call(make::expr_path(path_self), make::arg_list(args)) } StructKind::Unit => make::expr_path(path_self), } } else { placeholder_expr }; let fn_body = make::block_expr(vec![], Some(tail_expr)); Some(fn_body) } fn get_fn_target_info( ctx: &AssistContext<'_>, target_module: Option, call: CallExpr, ) -> Option { let (target, file) = get_fn_target(ctx, target_module, call)?; Some(TargetInfo::new(target_module, None, target, file)) } fn get_fn_target( ctx: &AssistContext<'_>, target_module: Option, call: CallExpr, ) -> Option<(GeneratedFunctionTarget, FileId)> { let mut file = ctx.file_id().into(); let target = match target_module { Some(target_module) => { let (in_file, target) = next_space_for_fn_in_module(ctx.db(), target_module); file = in_file; target } None => next_space_for_fn_after_call_site(ast::CallableExpr::Call(call))?, }; Some((target, file)) } fn get_method_target( ctx: &AssistContext<'_>, impl_: &Option, adt: &Adt, ) -> Option { let target = match impl_ { Some(impl_) => GeneratedFunctionTarget::InImpl(impl_.clone()), None => GeneratedFunctionTarget::AfterItem(adt.source(ctx.sema.db)?.syntax().value.clone()), }; Some(target) } fn assoc_fn_target_info( ctx: &AssistContext<'_>, call: &CallExpr, adt: hir::Adt, fn_name: &str, ) -> Option { let current_module = ctx.sema.scope(call.syntax())?.module(); let module = adt.module(ctx.sema.db); let target_module = if current_module == module { None } else { Some(module) }; if current_module.krate() != module.krate() { return None; } let (impl_, file) = get_adt_source(ctx, &adt, fn_name)?; let target = get_method_target(ctx, &impl_, &adt)?; let adt_info = AdtInfo::new(adt, impl_.is_some()); Some(TargetInfo::new(target_module, Some(adt_info), target, file)) } #[derive(Clone)] enum GeneratedFunctionTarget { AfterItem(SyntaxNode), InEmptyItemList(SyntaxNode), InImpl(ast::Impl), } impl GeneratedFunctionTarget { fn syntax(&self) -> &SyntaxNode { match self { GeneratedFunctionTarget::AfterItem(it) => it, GeneratedFunctionTarget::InEmptyItemList(it) => it, GeneratedFunctionTarget::InImpl(it) => it.syntax(), } } fn parent(&self) -> SyntaxNode { match self { GeneratedFunctionTarget::AfterItem(it) => it.parent().expect("item without parent"), GeneratedFunctionTarget::InEmptyItemList(it) => it.clone(), GeneratedFunctionTarget::InImpl(it) => it.syntax().clone(), } } fn insert_impl_at(&self, edit: &mut SourceChangeBuilder, impl_: ast::Impl) { match self { GeneratedFunctionTarget::AfterItem(item) => { let item = edit.make_syntax_mut(item.clone()); let position = if item.parent().is_some() { ted::Position::after(&item) } else { ted::Position::first_child_of(&item) }; let indent = IndentLevel::from_node(&item); let leading_ws = make::tokens::whitespace(&format!("\n{indent}")); impl_.indent(indent); ted::insert_all(position, vec![leading_ws.into(), impl_.syntax().clone().into()]); } GeneratedFunctionTarget::InEmptyItemList(item_list) => { let item_list = edit.make_syntax_mut(item_list.clone()); let insert_after = item_list.children_with_tokens().find_or_first(|child| child.kind() == T!['{']); let position = match insert_after { Some(child) => ted::Position::after(child), None => ted::Position::first_child_of(&item_list), }; let indent = IndentLevel::from_node(&item_list); let leading_indent = indent + 1; let leading_ws = make::tokens::whitespace(&format!("\n{leading_indent}")); impl_.indent(indent); ted::insert_all(position, vec![leading_ws.into(), impl_.syntax().clone().into()]); } GeneratedFunctionTarget::InImpl(_) => { unreachable!("can't insert an impl inside an impl") } } } fn insert_fn_at(&self, edit: &mut SourceChangeBuilder, func: ast::Fn) { match self { GeneratedFunctionTarget::AfterItem(item) => { let item = edit.make_syntax_mut(item.clone()); let position = if item.parent().is_some() { ted::Position::after(&item) } else { ted::Position::first_child_of(&item) }; let indent = IndentLevel::from_node(&item); let leading_ws = make::tokens::whitespace(&format!("\n\n{indent}")); func.indent(indent); ted::insert_all_raw( position, vec![leading_ws.into(), func.syntax().clone().into()], ); } GeneratedFunctionTarget::InEmptyItemList(item_list) => { let item_list = edit.make_syntax_mut(item_list.clone()); let insert_after = item_list.children_with_tokens().find_or_first(|child| child.kind() == T!['{']); let position = match insert_after { Some(child) => ted::Position::after(child), None => ted::Position::first_child_of(&item_list), }; let indent = IndentLevel::from_node(&item_list); let leading_indent = indent + 1; let leading_ws = make::tokens::whitespace(&format!("\n{leading_indent}")); let trailing_ws = make::tokens::whitespace(&format!("\n{indent}")); func.indent(leading_indent); ted::insert_all( position, vec![leading_ws.into(), func.syntax().clone().into(), trailing_ws.into()], ); } GeneratedFunctionTarget::InImpl(impl_) => { let impl_ = edit.make_mut(impl_.clone()); let leading_indent = impl_.indent_level() + 1; func.indent(leading_indent); impl_.get_or_create_assoc_item_list().add_item(func.into()); } } } } struct AdtInfo { adt: hir::Adt, impl_exists: bool, } impl AdtInfo { fn new(adt: Adt, impl_exists: bool) -> Self { Self { adt, impl_exists } } } /// Computes parameter list for the generated function. fn fn_args( ctx: &AssistContext<'_>, target_module: Module, call: ast::CallableExpr, necessary_generic_params: &mut FxHashSet, ) -> Option { let mut arg_names = Vec::new(); let mut arg_types = Vec::new(); for arg in call.arg_list()?.args() { arg_names.push(fn_arg_name(&ctx.sema, &arg)); arg_types.push(fn_arg_type(ctx, target_module, &arg, necessary_generic_params)); } deduplicate_arg_names(&mut arg_names); let params = arg_names.into_iter().zip(arg_types).map(|(name, ty)| { make::param(make::ext::simple_ident_pat(make::name(&name)).into(), make::ty(&ty)) }); Some(make::param_list( match call { ast::CallableExpr::Call(_) => None, ast::CallableExpr::MethodCall(_) => Some(make::self_param()), }, params, )) } /// Gets parameter bounds and where predicates in scope and filters out irrelevant ones. Returns /// `None` when it fails to get scope information. /// /// See comment on `filter_unnecessary_bounds()` for what bounds we consider relevant. /// /// NOTE: Generic parameters returned from this function may cause name clash at `target`. We don't /// currently do anything about it because it's actually easy to resolve it after the assist: just /// use the Rename functionality. fn fn_generic_params( ctx: &AssistContext<'_>, necessary_params: FxHashSet, target: &GeneratedFunctionTarget, ) -> Option<(Option, Option)> { if necessary_params.is_empty() { // Not really needed but fast path. return Some((None, None)); } // 1. Get generic parameters (with bounds) and where predicates in scope. let (generic_params, where_preds) = params_and_where_preds_in_scope(ctx); // 2. Extract type parameters included in each bound. let mut generic_params = generic_params .into_iter() .filter_map(|it| compute_contained_params_in_generic_param(ctx, it)) .collect(); let mut where_preds = where_preds .into_iter() .filter_map(|it| compute_contained_params_in_where_pred(ctx, it)) .collect(); // 3. Filter out unnecessary bounds. filter_unnecessary_bounds(&mut generic_params, &mut where_preds, necessary_params); filter_bounds_in_scope(&mut generic_params, &mut where_preds, ctx, target); let generic_params: Vec<_> = generic_params.into_iter().map(|it| it.node.clone_for_update()).collect(); let where_preds: Vec<_> = where_preds.into_iter().map(|it| it.node.clone_for_update()).collect(); // 4. Rewrite paths if let Some(param) = generic_params.first() { let source_scope = ctx.sema.scope(param.syntax())?; let target_scope = ctx.sema.scope(&target.parent())?; if source_scope.module() != target_scope.module() { let transform = PathTransform::generic_transformation(&target_scope, &source_scope); let generic_params = generic_params.iter().map(|it| it.syntax()); let where_preds = where_preds.iter().map(|it| it.syntax()); transform.apply_all(generic_params.chain(where_preds)); } } let generic_param_list = make::generic_param_list(generic_params); let where_clause = if where_preds.is_empty() { None } else { Some(make::where_clause(where_preds)) }; Some((Some(generic_param_list), where_clause)) } fn params_and_where_preds_in_scope( ctx: &AssistContext<'_>, ) -> (Vec, Vec) { let Some(body) = containing_body(ctx) else { return Default::default(); }; let mut generic_params = Vec::new(); let mut where_clauses = Vec::new(); // There are two items where generic parameters currently in scope may be declared: the item // the cursor is at, and its parent (if any). // // We handle parent first so that their generic parameters appear first in the generic // parameter list of the function we're generating. let db = ctx.db(); if let Some(parent) = body.as_assoc_item(db).map(|it| it.container(db)) { match parent { hir::AssocItemContainer::Impl(it) => { let (params, clauses) = get_bounds_in_scope(ctx, it); generic_params.extend(params); where_clauses.extend(clauses); } hir::AssocItemContainer::Trait(it) => { let (params, clauses) = get_bounds_in_scope(ctx, it); generic_params.extend(params); where_clauses.extend(clauses); } } } // Other defs with body may inherit generic parameters from its parent, but never have their // own generic parameters. if let hir::DefWithBody::Function(it) = body { let (params, clauses) = get_bounds_in_scope(ctx, it); generic_params.extend(params); where_clauses.extend(clauses); } (generic_params, where_clauses) } fn containing_body(ctx: &AssistContext<'_>) -> Option { let item: ast::Item = ctx.find_node_at_offset()?; let def = match item { ast::Item::Fn(it) => ctx.sema.to_def(&it)?.into(), ast::Item::Const(it) => ctx.sema.to_def(&it)?.into(), ast::Item::Static(it) => ctx.sema.to_def(&it)?.into(), _ => return None, }; Some(def) } fn get_bounds_in_scope( ctx: &AssistContext<'_>, def: D, ) -> (impl Iterator, impl Iterator) where D: HasSource, D::Ast: HasGenericParams, { // This function should be only called with `Impl`, `Trait`, or `Function`, for which it's // infallible to get source ast. let node = ctx.sema.source(def).expect("definition's source couldn't be found").value; let generic_params = node.generic_param_list().into_iter().flat_map(|it| it.generic_params()); let where_clauses = node.where_clause().into_iter().flat_map(|it| it.predicates()); (generic_params, where_clauses) } #[derive(Debug)] struct ParamBoundWithParams { node: ast::GenericParam, /// Generic parameter `node` introduces. /// /// ```text /// impl S { /// fn f>() {} /// ^ this /// } /// ``` /// /// `U` in this example. self_ty_param: hir::GenericParam, /// Generic parameters contained in the trait reference of this bound. /// /// ```text /// impl S { /// fn f>() {} /// ^^^^^^^^ params in this part /// } /// ``` /// /// `T` in this example. other_params: FxHashSet, } #[derive(Debug)] struct WherePredWithParams { node: ast::WherePred, /// Generic parameters contained in the "self type" of this where predicate. /// /// ```text /// Struct: Trait, /// ^^^^^^^^^^^^ params in this part /// ``` /// /// `T` and `U` in this example. self_ty_params: FxHashSet, /// Generic parameters contained in the trait reference of this where predicate. /// /// ```text /// Struct: Trait, /// ^^^^^^^^^^^^^^^^^^^ params in this part /// ``` /// /// `T` and `V` in this example. other_params: FxHashSet, } fn compute_contained_params_in_generic_param( ctx: &AssistContext<'_>, node: ast::GenericParam, ) -> Option { match &node { ast::GenericParam::TypeParam(ty) => { let self_ty_param = ctx.sema.to_def(ty)?.into(); let other_params = ty .type_bound_list() .into_iter() .flat_map(|it| it.bounds()) .flat_map(|bound| bound.syntax().descendants()) .filter_map(|node| filter_generic_params(ctx, node)) .collect(); Some(ParamBoundWithParams { node, self_ty_param, other_params }) } ast::GenericParam::ConstParam(ct) => { let self_ty_param = ctx.sema.to_def(ct)?.into(); Some(ParamBoundWithParams { node, self_ty_param, other_params: FxHashSet::default() }) } ast::GenericParam::LifetimeParam(_) => { // FIXME: It might be a good idea to handle lifetime parameters too. None } } } fn compute_contained_params_in_where_pred( ctx: &AssistContext<'_>, node: ast::WherePred, ) -> Option { let self_ty = node.ty()?; let bound_list = node.type_bound_list()?; let self_ty_params = self_ty .syntax() .descendants() .filter_map(|node| filter_generic_params(ctx, node)) .collect(); let other_params = bound_list .bounds() .flat_map(|bound| bound.syntax().descendants()) .filter_map(|node| filter_generic_params(ctx, node)) .collect(); Some(WherePredWithParams { node, self_ty_params, other_params }) } fn filter_generic_params(ctx: &AssistContext<'_>, node: SyntaxNode) -> Option { let path = ast::Path::cast(node)?; match ctx.sema.resolve_path(&path)? { PathResolution::TypeParam(it) => Some(it.into()), PathResolution::ConstParam(it) => Some(it.into()), _ => None, } } /// Filters out irrelevant bounds from `generic_params` and `where_preds`. /// /// Say we have a trait bound `Struct: Trait`. Given `necessary_params`, when is it relevant /// and when not? Some observations: /// - When `necessary_params` contains `T`, it's likely that we want this bound, but now we have /// an extra param to consider: `U`. /// - On the other hand, when `necessary_params` contains `U` (but not `T`), then it's unlikely /// that we want this bound because it doesn't really constrain `U`. /// /// (FIXME?: The latter clause might be overstating. We may want to include the bound if the self /// type does *not* include generic params at all - like `Option: From`) /// /// Can we make this a bit more formal? Let's define "dependency" between generic parameters and /// trait bounds: /// - A generic parameter `T` depends on a trait bound if `T` appears in the self type (i.e. left /// part) of the bound. /// - A trait bound depends on a generic parameter `T` if `T` appears in the bound. /// /// Using the notion, what we want is all the bounds that params in `necessary_params` /// *transitively* depend on! /// /// Now it's not hard to solve: we build a dependency graph and compute all reachable nodes from /// nodes that represent params in `necessary_params` by usual and boring DFS. /// /// The time complexity is O(|generic_params| + |where_preds| + |necessary_params|). fn filter_unnecessary_bounds( generic_params: &mut Vec, where_preds: &mut Vec, necessary_params: FxHashSet, ) { // All `self_ty_param` should be unique as they were collected from `ast::GenericParamList`s. let param_map: FxHashMap = generic_params.iter().map(|it| it.self_ty_param).zip(0..).collect(); let param_count = param_map.len(); let generic_params_upper_bound = param_count + generic_params.len(); let node_count = generic_params_upper_bound + where_preds.len(); // | node index range | what the node represents | // |-----------------------------------------|--------------------------| // | 0..param_count | generic parameter | // | param_count..generic_params_upper_bound | `ast::GenericParam` | // | generic_params_upper_bound..node_count | `ast::WherePred` | let mut graph = Graph::new(node_count); for (pred, pred_idx) in generic_params.iter().zip(param_count..) { let param_idx = param_map[&pred.self_ty_param]; graph.add_edge(param_idx, pred_idx); graph.add_edge(pred_idx, param_idx); for param in &pred.other_params { let param_idx = param_map[param]; graph.add_edge(pred_idx, param_idx); } } for (pred, pred_idx) in where_preds.iter().zip(generic_params_upper_bound..) { for param in &pred.self_ty_params { let param_idx = param_map[param]; graph.add_edge(param_idx, pred_idx); graph.add_edge(pred_idx, param_idx); } for param in &pred.other_params { let param_idx = param_map[param]; graph.add_edge(pred_idx, param_idx); } } let starting_nodes = necessary_params.iter().flat_map(|param| param_map.get(param).copied()); let reachable = graph.compute_reachable_nodes(starting_nodes); // Not pretty, but effective. If only there were `Vec::retain_index()`... let mut idx = param_count; generic_params.retain(|_| { idx += 1; reachable[idx - 1] }); stdx::always!(idx == generic_params_upper_bound, "inconsistent index"); where_preds.retain(|_| { idx += 1; reachable[idx - 1] }); } /// Filters out bounds from impl if we're generating the function into the same impl we're /// generating from. fn filter_bounds_in_scope( generic_params: &mut Vec, where_preds: &mut Vec, ctx: &AssistContext<'_>, target: &GeneratedFunctionTarget, ) -> Option<()> { let target_impl = target.parent().ancestors().find_map(ast::Impl::cast)?; let target_impl = ctx.sema.to_def(&target_impl)?; // It's sufficient to test only the first element of `generic_params` because of the order of // insertion (see `params_and_where_preds_in_scope()`). let def = generic_params.first()?.self_ty_param.parent(); if def != hir::GenericDef::Impl(target_impl) { return None; } // Now we know every element that belongs to an impl would be in scope at `target`, we can // filter them out just by looking at their parent. generic_params.retain(|it| !matches!(it.self_ty_param.parent(), hir::GenericDef::Impl(_))); where_preds.retain(|it| { it.node.syntax().parent().and_then(|it| it.parent()).and_then(ast::Impl::cast).is_none() }); Some(()) } /// Makes duplicate argument names unique by appending incrementing numbers. /// /// ``` /// let mut names: Vec = /// vec!["foo".into(), "foo".into(), "bar".into(), "baz".into(), "bar".into()]; /// deduplicate_arg_names(&mut names); /// let expected: Vec = /// vec!["foo_1".into(), "foo_2".into(), "bar_1".into(), "baz".into(), "bar_2".into()]; /// assert_eq!(names, expected); /// ``` fn deduplicate_arg_names(arg_names: &mut [String]) { let mut arg_name_counts = FxHashMap::default(); for name in arg_names.iter() { *arg_name_counts.entry(name).or_insert(0) += 1; } let duplicate_arg_names: FxHashSet = arg_name_counts .into_iter() .filter(|(_, count)| *count >= 2) .map(|(name, _)| name.clone()) .collect(); let mut counter_per_name = FxHashMap::default(); for arg_name in arg_names.iter_mut() { if duplicate_arg_names.contains(arg_name) { let counter = counter_per_name.entry(arg_name.clone()).or_insert(1); arg_name.push('_'); arg_name.push_str(&counter.to_string()); *counter += 1; } } } fn fn_arg_name(sema: &Semantics<'_, RootDatabase>, arg_expr: &ast::Expr) -> String { let name = (|| match arg_expr { ast::Expr::CastExpr(cast_expr) => Some(fn_arg_name(sema, &cast_expr.expr()?)), expr => { let name_ref = expr .syntax() .descendants() .filter_map(ast::NameRef::cast) .filter(|name| name.ident_token().is_some()) .last()?; if let Some(NameRefClass::Definition(Definition::Const(_) | Definition::Static(_))) = NameRefClass::classify(sema, &name_ref) { return Some(name_ref.to_string().to_lowercase()); }; Some(to_lower_snake_case(&name_ref.to_string())) } })(); match name { Some(mut name) if name.starts_with(|c: char| c.is_ascii_digit()) => { name.insert_str(0, "arg"); name } Some(name) => name, None => "arg".to_owned(), } } fn fn_arg_type( ctx: &AssistContext<'_>, target_module: Module, fn_arg: &ast::Expr, generic_params: &mut FxHashSet, ) -> String { fn maybe_displayed_type( ctx: &AssistContext<'_>, target_module: Module, fn_arg: &ast::Expr, generic_params: &mut FxHashSet, ) -> Option { let ty = ctx.sema.type_of_expr(fn_arg)?.adjusted(); if ty.is_unknown() { return None; } generic_params.extend(ty.generic_params(ctx.db())); if ty.is_reference() || ty.is_mutable_reference() { let famous_defs = &FamousDefs(&ctx.sema, ctx.sema.scope(fn_arg.syntax())?.krate()); let target_edition = target_module.krate().edition(ctx.db()); convert_reference_type(ty.strip_references(), ctx.db(), famous_defs) .map(|conversion| conversion.convert_type(ctx.db(), target_edition).to_string()) .or_else(|| ty.display_source_code(ctx.db(), target_module.into(), true).ok()) } else { ty.display_source_code(ctx.db(), target_module.into(), true).ok() } } maybe_displayed_type(ctx, target_module, fn_arg, generic_params) .unwrap_or_else(|| String::from("_")) } /// Returns the position inside the current mod or file /// directly after the current block /// We want to write the generated function directly after /// fns, impls or macro calls, but inside mods fn next_space_for_fn_after_call_site(expr: ast::CallableExpr) -> Option { let mut ancestors = expr.syntax().ancestors().peekable(); let mut last_ancestor: Option = None; while let Some(next_ancestor) = ancestors.next() { match next_ancestor.kind() { SyntaxKind::SOURCE_FILE => { break; } SyntaxKind::ITEM_LIST => { if ancestors.peek().map(|a| a.kind()) == Some(SyntaxKind::MODULE) { break; } } _ => {} } last_ancestor = Some(next_ancestor); } last_ancestor.map(GeneratedFunctionTarget::AfterItem) } fn next_space_for_fn_in_module( db: &dyn hir::db::HirDatabase, target_module: hir::Module, ) -> (FileId, GeneratedFunctionTarget) { let module_source = target_module.definition_source(db); let file = module_source.file_id.original_file(db.upcast()); let assist_item = match &module_source.value { hir::ModuleSource::SourceFile(it) => match it.items().last() { Some(last_item) => GeneratedFunctionTarget::AfterItem(last_item.syntax().clone()), None => GeneratedFunctionTarget::AfterItem(it.syntax().clone()), }, hir::ModuleSource::Module(it) => match it.item_list().and_then(|it| it.items().last()) { Some(last_item) => GeneratedFunctionTarget::AfterItem(last_item.syntax().clone()), None => { let item_list = it.item_list().expect("module definition source should have an item list"); GeneratedFunctionTarget::InEmptyItemList(item_list.syntax().clone()) } }, hir::ModuleSource::BlockExpr(it) => { if let Some(last_item) = it.statements().take_while(|stmt| matches!(stmt, ast::Stmt::Item(_))).last() { GeneratedFunctionTarget::AfterItem(last_item.syntax().clone()) } else { GeneratedFunctionTarget::InEmptyItemList(it.syntax().clone()) } } }; (file.file_id(), assist_item) } #[derive(Clone, Copy)] enum Visibility { None, Crate, Pub, } fn calculate_necessary_visibility( current_module: Module, target_module: Module, ctx: &AssistContext<'_>, ) -> Visibility { let db = ctx.db(); let current_module = current_module.nearest_non_block_module(db); let target_module = target_module.nearest_non_block_module(db); if target_module.krate() != current_module.krate() { Visibility::Pub } else if current_module.path_to_root(db).contains(&target_module) { Visibility::None } else { Visibility::Crate } } // This is never intended to be used as a generic graph structure. If there's ever another need of // graph algorithm, consider adding a library for that (and replace the following). /// Minimally implemented directed graph structure represented by adjacency list. struct Graph { edges: Vec>, } impl Graph { fn new(node_count: usize) -> Self { Self { edges: vec![Vec::new(); node_count] } } fn add_edge(&mut self, from: usize, to: usize) { self.edges[from].push(to); } fn edges_for(&self, node_idx: usize) -> &[usize] { &self.edges[node_idx] } fn len(&self) -> usize { self.edges.len() } fn compute_reachable_nodes( &self, starting_nodes: impl IntoIterator, ) -> Vec { let mut visitor = Visitor::new(self); for idx in starting_nodes { visitor.mark_reachable(idx); } visitor.visited } } struct Visitor<'g> { graph: &'g Graph, visited: Vec, // Stack is held in this struct so we can reuse its buffer. stack: Vec, } impl<'g> Visitor<'g> { fn new(graph: &'g Graph) -> Self { let visited = vec![false; graph.len()]; Self { graph, visited, stack: Vec::new() } } fn mark_reachable(&mut self, start_idx: usize) { // non-recursive DFS stdx::always!(self.stack.is_empty()); self.stack.push(start_idx); while let Some(idx) = self.stack.pop() { if !self.visited[idx] { self.visited[idx] = true; for &neighbor in self.graph.edges_for(idx) { if !self.visited[neighbor] { self.stack.push(neighbor); } } } } } } #[cfg(test)] mod tests { use crate::tests::{check_assist, check_assist_not_applicable}; use super::*; #[test] fn add_function_with_no_args() { check_assist( generate_function, r" fn foo() { bar$0(); } ", r" fn foo() { bar(); } fn bar() ${0:-> _} { todo!() } ", ) } #[test] fn add_function_from_method() { // This ensures that the function is correctly generated // in the next outer mod or file check_assist( generate_function, r" impl Foo { fn foo() { bar$0(); } } ", r" impl Foo { fn foo() { bar(); } } fn bar() ${0:-> _} { todo!() } ", ) } #[test] fn add_function_directly_after_current_block() { // The new fn should not be created at the end of the file or module check_assist( generate_function, r" fn foo1() { bar$0(); } fn foo2() {} ", r" fn foo1() { bar(); } fn bar() ${0:-> _} { todo!() } fn foo2() {} ", ) } #[test] fn add_function_with_no_args_in_same_module() { check_assist( generate_function, r" mod baz { fn foo() { bar$0(); } } ", r" mod baz { fn foo() { bar(); } fn bar() ${0:-> _} { todo!() } } ", ) } #[test] fn add_function_with_upper_camel_case_arg() { check_assist( generate_function, r" struct BazBaz; fn foo() { bar$0(BazBaz); } ", r" struct BazBaz; fn foo() { bar(BazBaz); } fn bar(baz_baz: BazBaz) ${0:-> _} { todo!() } ", ); } #[test] fn add_function_with_upper_camel_case_arg_as_cast() { check_assist( generate_function, r" struct BazBaz; fn foo() { bar$0(&BazBaz as *const BazBaz); } ", r" struct BazBaz; fn foo() { bar(&BazBaz as *const BazBaz); } fn bar(baz_baz: *const BazBaz) ${0:-> _} { todo!() } ", ); } #[test] fn add_function_with_function_call_arg() { check_assist( generate_function, r" struct Baz; fn baz() -> Baz { todo!() } fn foo() { bar$0(baz()); } ", r" struct Baz; fn baz() -> Baz { todo!() } fn foo() { bar(baz()); } fn bar(baz: Baz) ${0:-> _} { todo!() } ", ); } #[test] fn add_function_with_method_call_arg() { check_assist( generate_function, r" struct Baz; impl Baz { fn foo(&self) -> Baz { ba$0r(self.baz()) } fn baz(&self) -> Baz { Baz } } ", r" struct Baz; impl Baz { fn foo(&self) -> Baz { bar(self.baz()) } fn baz(&self) -> Baz { Baz } } fn bar(baz: Baz) -> Baz { ${0:todo!()} } ", ) } #[test] fn add_function_with_string_literal_arg() { check_assist( generate_function, r#" fn foo() { $0bar("bar") } "#, r#" fn foo() { bar("bar") } fn bar(arg: &str) { ${0:todo!()} } "#, ) } #[test] fn add_function_with_char_literal_arg() { check_assist( generate_function, r#" fn foo() { $0bar('x') } "#, r#" fn foo() { bar('x') } fn bar(arg: char) { ${0:todo!()} } "#, ) } #[test] fn add_function_with_int_literal_arg() { check_assist( generate_function, r" fn foo() { $0bar(42) } ", r" fn foo() { bar(42) } fn bar(arg: i32) { ${0:todo!()} } ", ) } #[test] fn add_function_with_cast_int_literal_arg() { check_assist( generate_function, r" fn foo() { $0bar(42 as u8) } ", r" fn foo() { bar(42 as u8) } fn bar(arg: u8) { ${0:todo!()} } ", ) } #[test] fn name_of_cast_variable_is_used() { // Ensures that the name of the cast type isn't used // in the generated function signature. check_assist( generate_function, r" fn foo() { let x = 42; bar$0(x as u8) } ", r" fn foo() { let x = 42; bar(x as u8) } fn bar(x: u8) { ${0:todo!()} } ", ) } #[test] fn add_function_with_variable_arg() { check_assist( generate_function, r" fn foo() { let worble = (); $0bar(worble) } ", r" fn foo() { let worble = (); bar(worble) } fn bar(worble: ()) { ${0:todo!()} } ", ) } #[test] fn add_function_with_impl_trait_arg() { check_assist( generate_function, r#" //- minicore: sized trait Foo {} fn foo() -> impl Foo { todo!() } fn baz() { $0bar(foo()) } "#, r#" trait Foo {} fn foo() -> impl Foo { todo!() } fn baz() { bar(foo()) } fn bar(foo: impl Foo) { ${0:todo!()} } "#, ) } #[test] fn borrowed_arg() { check_assist( generate_function, r" struct Baz; fn baz() -> Baz { todo!() } fn foo() { bar$0(&baz()) } ", r" struct Baz; fn baz() -> Baz { todo!() } fn foo() { bar(&baz()) } fn bar(baz: &Baz) { ${0:todo!()} } ", ) } #[test] fn add_function_with_qualified_path_arg() { check_assist( generate_function, r" mod Baz { pub struct Bof; pub fn baz() -> Bof { Bof } } fn foo() { $0bar(Baz::baz()) } ", r" mod Baz { pub struct Bof; pub fn baz() -> Bof { Bof } } fn foo() { bar(Baz::baz()) } fn bar(baz: Baz::Bof) { ${0:todo!()} } ", ) } #[test] fn generate_function_with_generic_param() { check_assist( generate_function, r" fn foo(t: [T; N]) { $0bar(t) } ", r" fn foo(t: [T; N]) { bar(t) } fn bar(t: [T; N]) { ${0:todo!()} } ", ) } #[test] fn generate_function_with_parent_generic_param() { check_assist( generate_function, r" struct S(T); impl S { fn foo(t: T, u: U) { $0bar(t, u) } } ", r" struct S(T); impl S { fn foo(t: T, u: U) { bar(t, u) } } fn bar(t: T, u: U) { ${0:todo!()} } ", ) } #[test] fn generic_param_in_receiver_type() { // FIXME: Generic parameter `T` should be part of impl, not method. check_assist( generate_function, r" struct S(T); fn foo(s: S, u: U) { s.$0foo(u) } ", r" struct S(T); impl S { fn foo(&self, u: U) { ${0:todo!()} } } fn foo(s: S, u: U) { s.foo(u) } ", ) } #[test] fn generic_param_in_return_type() { check_assist( generate_function, r" fn foo() -> [T; N] { $0bar() } ", r" fn foo() -> [T; N] { bar() } fn bar() -> [T; N] { ${0:todo!()} } ", ) } #[test] fn generate_fn_with_bounds() { // FIXME: where predicates should be on next lines. check_assist( generate_function, r" trait A {} struct S(T); impl> S where T: A, { fn foo(t: T, u: U) where T: A<()>, U: A + A, { $0bar(t, u) } } ", r" trait A {} struct S(T); impl> S where T: A, { fn foo(t: T, u: U) where T: A<()>, U: A + A, { bar(t, u) } } fn bar, U>(t: T, u: U) where T: A, T: A<()>, U: A + A { ${0:todo!()} } ", ) } #[test] fn include_transitive_param_dependency() { // FIXME: where predicates should be on next lines. check_assist( generate_function, r" trait A { type Assoc; } trait B { type Item; } struct S(T); impl S<(T, U, V, W)> where T: A, S: A, { fn foo(t: T, u: U) where U: A, { $0bar(u) } } ", r" trait A { type Assoc; } trait B { type Item; } struct S(T); impl S<(T, U, V, W)> where T: A, S: A, { fn foo(t: T, u: U) where U: A, { bar(u) } } fn bar(u: U) where T: A, S: A, U: A { ${0:todo!()} } ", ) } #[test] fn irrelevant_bounds_are_filtered_out() { check_assist( generate_function, r" trait A {} struct S(T); impl S<(T, U, V, W)> where T: A, V: A, { fn foo(t: T, u: U) where U: A + A, { $0bar(u) } } ", r" trait A {} struct S(T); impl S<(T, U, V, W)> where T: A, V: A, { fn foo(t: T, u: U) where U: A + A, { bar(u) } } fn bar(u: U) where T: A, U: A + A { ${0:todo!()} } ", ) } #[test] fn params_in_trait_arg_are_not_dependency() { // Even though `bar` depends on `U` and `I`, we don't have to copy these bounds: // `T: A` and `T: A`. check_assist( generate_function, r" trait A {} struct S(T); impl S<(T, U)> where T: A, { fn foo(t: T, u: U) where T: A, U: A, { $0bar(u) } } ", r" trait A {} struct S(T); impl S<(T, U)> where T: A, { fn foo(t: T, u: U) where T: A, U: A, { bar(u) } } fn bar(u: U) where U: A { ${0:todo!()} } ", ) } #[test] fn dont_copy_bounds_already_in_scope() { check_assist( generate_function, r" trait A {} struct S(T); impl> S where T: A, { fn foo>(t: T, u: U) where T: A>, { Self::$0bar(t, u); } } ", r" trait A {} struct S(T); impl> S where T: A, { fn foo>(t: T, u: U) where T: A>, { Self::bar(t, u); } fn bar>(t: T, u: U) ${0:-> _} where T: A> { todo!() } } ", ) } #[test] fn add_function_with_fn_arg() { check_assist( generate_function, r" struct Baz; impl Baz { fn new() -> Self { Baz } } fn foo() { $0bar(Baz::new); } ", r" struct Baz; impl Baz { fn new() -> Self { Baz } } fn foo() { bar(Baz::new); } fn bar(new: fn() -> Baz) ${0:-> _} { todo!() } ", ) } #[test] fn add_function_with_closure_arg() { check_assist( generate_function, r" fn foo() { let closure = |x: i64| x - 1; $0bar(closure) } ", r" fn foo() { let closure = |x: i64| x - 1; bar(closure) } fn bar(closure: impl Fn(i64) -> i64) { ${0:todo!()} } ", ) } #[test] fn unresolvable_types_default_to_placeholder() { check_assist( generate_function, r" fn foo() { $0bar(baz) } ", r" fn foo() { bar(baz) } fn bar(baz: _) { ${0:todo!()} } ", ) } #[test] fn arg_names_dont_overlap() { check_assist( generate_function, r" struct Baz; fn baz() -> Baz { Baz } fn foo() { $0bar(baz(), baz()) } ", r" struct Baz; fn baz() -> Baz { Baz } fn foo() { bar(baz(), baz()) } fn bar(baz_1: Baz, baz_2: Baz) { ${0:todo!()} } ", ) } #[test] fn arg_name_counters_start_at_1_per_name() { check_assist( generate_function, r#" struct Baz; fn baz() -> Baz { Baz } fn foo() { $0bar(baz(), baz(), "foo", "bar") } "#, r#" struct Baz; fn baz() -> Baz { Baz } fn foo() { bar(baz(), baz(), "foo", "bar") } fn bar(baz_1: Baz, baz_2: Baz, arg_1: &str, arg_2: &str) { ${0:todo!()} } "#, ) } #[test] fn add_function_in_module() { check_assist( generate_function, r" mod bar {} fn foo() { bar::my_fn$0() } ", r" mod bar { pub(crate) fn my_fn() { ${0:todo!()} } } fn foo() { bar::my_fn() } ", ) } #[test] fn qualified_path_uses_correct_scope() { check_assist( generate_function, r#" mod foo { pub struct Foo; } fn bar() { use foo::Foo; let foo = Foo; baz$0(foo) } "#, r#" mod foo { pub struct Foo; } fn bar() { use foo::Foo; let foo = Foo; baz(foo) } fn baz(foo: foo::Foo) { ${0:todo!()} } "#, ) } #[test] fn qualified_path_in_generic_bounds_uses_correct_scope() { check_assist( generate_function, r" mod a { pub trait A {}; } pub mod b { pub struct S(T); } struct S(T); impl S where T: a::A, { fn foo(t: b::S, u: S) { a::$0bar(t, u); } } ", r" mod a { pub trait A {} pub(crate) fn bar(t: crate::b::S, u: crate::S) ${0:-> _} where T: self::A { todo!() }; } pub mod b { pub struct S(T); } struct S(T); impl S where T: a::A, { fn foo(t: b::S, u: S) { a::bar(t, u); } } ", ) } #[test] fn add_function_in_module_containing_other_items() { check_assist( generate_function, r" mod bar { fn something_else() {} } fn foo() { bar::my_fn$0() } ", r" mod bar { fn something_else() {} pub(crate) fn my_fn() { ${0:todo!()} } } fn foo() { bar::my_fn() } ", ) } #[test] fn add_function_in_nested_module() { check_assist( generate_function, r" mod bar { pub mod baz {} } fn foo() { bar::baz::my_fn$0() } ", r" mod bar { pub mod baz { pub(crate) fn my_fn() { ${0:todo!()} } } } fn foo() { bar::baz::my_fn() } ", ) } #[test] fn add_function_in_another_file() { check_assist( generate_function, r" //- /main.rs mod foo; fn main() { foo::bar$0() } //- /foo.rs ", r" pub(crate) fn bar() { ${0:todo!()} }", ) } #[test] fn add_function_with_return_type() { check_assist( generate_function, r" fn main() { let x: u32 = foo$0(); } ", r" fn main() { let x: u32 = foo(); } fn foo() -> u32 { ${0:todo!()} } ", ) } #[test] fn add_function_not_applicable_if_function_already_exists() { check_assist_not_applicable( generate_function, r" fn foo() { bar$0(); } fn bar() {} ", ) } #[test] fn add_function_not_applicable_if_unresolved_variable_in_call_is_selected() { check_assist_not_applicable( // bar is resolved, but baz isn't. // The assist is only active if the cursor is on an unresolved path, // but the assist should only be offered if the path is a function call. generate_function, r#" fn foo() { bar(b$0az); } fn bar(baz: ()) {} "#, ) } #[test] fn create_method_with_no_args() { check_assist( generate_function, r#" struct Foo; impl Foo { fn foo(&self) { self.bar()$0; } } "#, r#" struct Foo; impl Foo { fn foo(&self) { self.bar(); } fn bar(&self) ${0:-> _} { todo!() } } "#, ) } #[test] fn create_function_with_async() { check_assist( generate_function, r" async fn foo() { $0bar(42).await; } ", r" async fn foo() { bar(42).await; } async fn bar(arg: i32) ${0:-> _} { todo!() } ", ) } #[test] fn return_type_for_async_fn() { check_assist( generate_function, r" //- minicore: result async fn foo() { if Err(()) = $0bar(42).await {} } ", r" async fn foo() { if Err(()) = bar(42).await {} } async fn bar(arg: i32) -> Result<_, ()> { ${0:todo!()} } ", ); } #[test] fn create_method() { check_assist( generate_function, r" struct S; fn foo() {S.bar$0();} ", r" struct S; impl S { fn bar(&self) ${0:-> _} { todo!() } } fn foo() {S.bar();} ", ) } #[test] fn create_method_within_an_impl() { check_assist( generate_function, r" struct S; fn foo() {S.bar$0();} impl S {} ", r" struct S; fn foo() {S.bar();} impl S { fn bar(&self) ${0:-> _} { todo!() } } ", ) } #[test] fn create_method_from_different_module() { check_assist( generate_function, r" mod s { pub struct S; } fn foo() {s::S.bar$0();} ", r" mod s { pub struct S; impl S { pub(crate) fn bar(&self) ${0:-> _} { todo!() } } } fn foo() {s::S.bar();} ", ) } #[test] fn create_method_from_descendant_module() { check_assist( generate_function, r" struct S; mod s { fn foo() { super::S.bar$0(); } } ", r" struct S; impl S { fn bar(&self) ${0:-> _} { todo!() } } mod s { fn foo() { super::S.bar(); } } ", ) } #[test] fn create_method_with_cursor_anywhere_on_call_expression() { check_assist( generate_function, r" struct S; fn foo() {$0S.bar();} ", r" struct S; impl S { fn bar(&self) ${0:-> _} { todo!() } } fn foo() {S.bar();} ", ) } #[test] fn create_async_method() { check_assist( generate_function, r" //- minicore: result struct S; async fn foo() { if let Err(()) = S.$0bar(42).await {} } ", r" struct S; impl S { async fn bar(&self, arg: i32) -> Result<_, ()> { ${0:todo!()} } } async fn foo() { if let Err(()) = S.bar(42).await {} } ", ) } #[test] fn create_static_method() { check_assist( generate_function, r" struct S; fn foo() {S::bar$0();} ", r" struct S; impl S { fn bar() ${0:-> _} { todo!() } } fn foo() {S::bar();} ", ) } #[test] fn create_async_static_method() { check_assist( generate_function, r" //- minicore: result struct S; async fn foo() { if let Err(()) = S::$0bar(42).await {} } ", r" struct S; impl S { async fn bar(arg: i32) -> Result<_, ()> { ${0:todo!()} } } async fn foo() { if let Err(()) = S::bar(42).await {} } ", ) } #[test] fn create_generic_static_method() { check_assist( generate_function, r" struct S; fn foo(t: [T; N]) { S::bar$0(t); } ", r" struct S; impl S { fn bar(t: [T; N]) ${0:-> _} { todo!() } } fn foo(t: [T; N]) { S::bar(t); } ", ) } #[test] fn create_static_method_within_an_impl() { check_assist( generate_function, r" struct S; fn foo() {S::bar$0();} impl S {} ", r" struct S; fn foo() {S::bar();} impl S { fn bar() ${0:-> _} { todo!() } } ", ) } #[test] fn create_static_method_from_different_module() { check_assist( generate_function, r" mod s { pub struct S; } fn foo() {s::S::bar$0();} ", r" mod s { pub struct S; impl S { pub(crate) fn bar() ${0:-> _} { todo!() } } } fn foo() {s::S::bar();} ", ) } #[test] fn create_static_method_with_cursor_anywhere_on_call_expression() { check_assist( generate_function, r" struct S; fn foo() {$0S::bar();} ", r" struct S; impl S { fn bar() ${0:-> _} { todo!() } } fn foo() {S::bar();} ", ) } #[test] fn create_static_method_within_an_impl_with_self_syntax() { check_assist( generate_function, r" struct S; impl S { fn foo(&self) { Self::bar$0(); } } ", r" struct S; impl S { fn foo(&self) { Self::bar(); } fn bar() ${0:-> _} { todo!() } } ", ) } #[test] fn no_panic_on_invalid_global_path() { check_assist( generate_function, r" fn main() { ::foo$0(); } ", r" fn main() { ::foo(); } fn foo() ${0:-> _} { todo!() } ", ) } #[test] fn handle_tuple_indexing() { check_assist( generate_function, r" fn main() { let a = ((),); foo$0(a.0); } ", r" fn main() { let a = ((),); foo(a.0); } fn foo(a: ()) ${0:-> _} { todo!() } ", ) } #[test] fn add_function_with_const_arg() { check_assist( generate_function, r" const VALUE: usize = 0; fn main() { foo$0(VALUE); } ", r" const VALUE: usize = 0; fn main() { foo(VALUE); } fn foo(value: usize) ${0:-> _} { todo!() } ", ) } #[test] fn add_function_with_static_arg() { check_assist( generate_function, r" static VALUE: usize = 0; fn main() { foo$0(VALUE); } ", r" static VALUE: usize = 0; fn main() { foo(VALUE); } fn foo(value: usize) ${0:-> _} { todo!() } ", ) } #[test] fn add_function_with_static_mut_arg() { check_assist( generate_function, r" static mut VALUE: usize = 0; fn main() { foo$0(VALUE); } ", r" static mut VALUE: usize = 0; fn main() { foo(VALUE); } fn foo(value: usize) ${0:-> _} { todo!() } ", ) } #[test] fn not_applicable_for_enum_variant() { check_assist_not_applicable( generate_function, r" enum Foo {} fn main() { Foo::Bar$0(true) } ", ); } #[test] fn applicable_for_enum_method() { check_assist( generate_function, r" enum Foo {} fn main() { Foo::bar$0(); } ", r" enum Foo {} impl Foo { fn bar() ${0:-> _} { todo!() } } fn main() { Foo::bar(); } ", ) } #[test] fn applicable_in_different_local_crate() { check_assist( generate_function, r" //- /lib.rs crate:lib new_source_root:local fn dummy() {} //- /main.rs crate:main deps:lib new_source_root:local fn main() { lib::foo$0(); } ", r" fn dummy() {} pub fn foo() ${0:-> _} { todo!() } ", ); } #[test] fn applicable_in_different_local_crate_method() { check_assist( generate_function, r" //- /lib.rs crate:lib new_source_root:local pub struct S; //- /main.rs crate:main deps:lib new_source_root:local fn main() { lib::S.foo$0(); } ", r" pub struct S; impl S { pub fn foo(&self) ${0:-> _} { todo!() } } ", ); } #[test] fn not_applicable_in_different_library_crate() { check_assist_not_applicable( generate_function, r" //- /lib.rs crate:lib new_source_root:library fn dummy() {} //- /main.rs crate:main deps:lib new_source_root:local fn main() { lib::foo$0(); } ", ); } #[test] fn not_applicable_in_different_library_crate_method() { check_assist_not_applicable( generate_function, r" //- /lib.rs crate:lib new_source_root:library pub struct S; //- /main.rs crate:main deps:lib new_source_root:local fn main() { lib::S.foo$0(); } ", ); } #[test] fn new_function_assume_self_type() { check_assist( generate_function, r" pub struct Foo { field_1: usize, field_2: String, } fn main() { let foo = Foo::new$0(); } ", r" pub struct Foo { field_1: usize, field_2: String, } impl Foo { fn new() -> Self { ${0:Self { field_1: todo!(), field_2: todo!() }} } } fn main() { let foo = Foo::new(); } ", ) } #[test] fn new_function_assume_self_type_for_tuple_struct() { check_assist( generate_function, r" pub struct Foo (usize, String); fn main() { let foo = Foo::new$0(); } ", r" pub struct Foo (usize, String); impl Foo { fn new() -> Self { ${0:Self(todo!(), todo!())} } } fn main() { let foo = Foo::new(); } ", ) } #[test] fn new_function_assume_self_type_for_unit_struct() { check_assist( generate_function, r" pub struct Foo; fn main() { let foo = Foo::new$0(); } ", r" pub struct Foo; impl Foo { fn new() -> Self { ${0:Self} } } fn main() { let foo = Foo::new(); } ", ) } #[test] fn new_function_assume_self_type_for_enum() { check_assist( generate_function, r" pub enum Foo {} fn main() { let foo = Foo::new$0(); } ", r" pub enum Foo {} impl Foo { fn new() -> Self { ${0:todo!()} } } fn main() { let foo = Foo::new(); } ", ) } #[test] fn new_function_assume_self_type_with_args() { check_assist( generate_function, r#" pub struct Foo { field_1: usize, field_2: String, } struct Baz; fn baz() -> Baz { Baz } fn main() { let foo = Foo::new$0(baz(), baz(), "foo", "bar"); } "#, r#" pub struct Foo { field_1: usize, field_2: String, } impl Foo { fn new(baz_1: Baz, baz_2: Baz, arg_1: &str, arg_2: &str) -> Self { ${0:Self { field_1: todo!(), field_2: todo!() }} } } struct Baz; fn baz() -> Baz { Baz } fn main() { let foo = Foo::new(baz(), baz(), "foo", "bar"); } "#, ) } }