//! Assorted functions shared by several assists. use std::slice; pub(crate) use gen_trait_fn_body::gen_trait_fn_body; use hir::{ DisplayTarget, HasAttrs as HirHasAttrs, HirDisplay, InFile, ModuleDef, PathResolution, Semantics, db::{ExpandDatabase, HirDatabase}, }; use ide_db::{ RootDatabase, assists::ExprFillDefaultMode, famous_defs::FamousDefs, path_transform::PathTransform, syntax_helpers::{node_ext::preorder_expr, prettify_macro_expansion}, }; use stdx::format_to; use syntax::{ AstNode, AstToken, Direction, NodeOrToken, SourceFile, SyntaxKind::*, SyntaxNode, SyntaxToken, T, TextRange, TextSize, WalkEvent, ast::{ self, HasArgList, HasAttrs, HasGenericParams, HasName, HasTypeBounds, Whitespace, edit::{AstNodeEdit, IndentLevel}, edit_in_place::AttrsOwnerEdit, make, syntax_factory::SyntaxFactory, }, syntax_editor::{Removable, SyntaxEditor}, }; use crate::{ AssistConfig, assist_context::{AssistContext, SourceChangeBuilder}, }; mod gen_trait_fn_body; pub(crate) mod ref_field_expr; pub(crate) fn unwrap_trivial_block(block_expr: ast::BlockExpr) -> ast::Expr { extract_trivial_expression(&block_expr) .filter(|expr| !expr.syntax().text().contains_char('\n')) .unwrap_or_else(|| block_expr.into()) } pub fn extract_trivial_expression(block_expr: &ast::BlockExpr) -> Option { if block_expr.modifier().is_some() { return None; } let stmt_list = block_expr.stmt_list()?; let has_anything_else = |thing: &SyntaxNode| -> bool { let mut non_trivial_children = stmt_list.syntax().children_with_tokens().filter(|it| match it.kind() { WHITESPACE | T!['{'] | T!['}'] => false, _ => it.as_node() != Some(thing), }); non_trivial_children.next().is_some() }; if let Some(expr) = stmt_list.tail_expr() { if has_anything_else(expr.syntax()) { return None; } return Some(expr); } // Unwrap `{ continue; }` let stmt = stmt_list.statements().next()?; if let ast::Stmt::ExprStmt(expr_stmt) = stmt { if has_anything_else(expr_stmt.syntax()) { return None; } let expr = expr_stmt.expr()?; if matches!(expr.syntax().kind(), CONTINUE_EXPR | BREAK_EXPR | RETURN_EXPR) { return Some(expr); } } None } /// This is a method with a heuristics to support test methods annotated with custom test annotations, such as /// `#[test_case(...)]`, `#[tokio::test]` and similar. /// Also a regular `#[test]` annotation is supported. /// /// It may produce false positives, for example, `#[wasm_bindgen_test]` requires a different command to run the test, /// but it's better than not to have the runnables for the tests at all. pub fn test_related_attribute_syn(fn_def: &ast::Fn) -> Option { fn_def.attrs().find_map(|attr| { let path = attr.path()?; let text = path.syntax().text().to_string(); if text.starts_with("test") || text.ends_with("test") { Some(attr) } else { None } }) } pub fn has_test_related_attribute(attrs: &hir::AttrsWithOwner) -> bool { attrs.iter().any(|attr| { let path = attr.path(); (|| { Some( path.segments().first()?.as_str().starts_with("test") || path.segments().last()?.as_str().ends_with("test"), ) })() .unwrap_or_default() }) } #[derive(Clone, Copy, PartialEq)] pub enum IgnoreAssocItems { DocHiddenAttrPresent, No, } #[derive(Copy, Clone, PartialEq)] pub enum DefaultMethods { Only, No, } pub fn filter_assoc_items( sema: &Semantics<'_, RootDatabase>, items: &[hir::AssocItem], default_methods: DefaultMethods, ignore_items: IgnoreAssocItems, ) -> Vec> { return items .iter() .copied() .filter(|assoc_item| { if ignore_items == IgnoreAssocItems::DocHiddenAttrPresent && assoc_item.attrs(sema.db).has_doc_hidden() { if let hir::AssocItem::Function(f) = assoc_item && !f.has_body(sema.db) { return true; } return false; } true }) // Note: This throws away items with no source. .filter_map(|assoc_item| { let item = match assoc_item { hir::AssocItem::Function(it) => sema.source(it)?.map(ast::AssocItem::Fn), hir::AssocItem::TypeAlias(it) => sema.source(it)?.map(ast::AssocItem::TypeAlias), hir::AssocItem::Const(it) => sema.source(it)?.map(ast::AssocItem::Const), }; Some(item) }) .filter(has_def_name) .filter(|it| match &it.value { ast::AssocItem::Fn(def) => matches!( (default_methods, def.body()), (DefaultMethods::Only, Some(_)) | (DefaultMethods::No, None) ), ast::AssocItem::Const(def) => matches!( (default_methods, def.body()), (DefaultMethods::Only, Some(_)) | (DefaultMethods::No, None) ), _ => default_methods == DefaultMethods::No, }) .collect(); fn has_def_name(item: &InFile) -> bool { match &item.value { ast::AssocItem::Fn(def) => def.name(), ast::AssocItem::TypeAlias(def) => def.name(), ast::AssocItem::Const(def) => def.name(), ast::AssocItem::MacroCall(_) => None, } .is_some() } } /// Given `original_items` retrieved from the trait definition (usually by /// [`filter_assoc_items()`]), clones each item for update and applies path transformation to it, /// then inserts into `impl_`. Returns the modified `impl_` and the first associated item that got /// inserted. #[must_use] pub fn add_trait_assoc_items_to_impl( sema: &Semantics<'_, RootDatabase>, config: &AssistConfig, original_items: &[InFile], trait_: hir::Trait, impl_: &ast::Impl, target_scope: &hir::SemanticsScope<'_>, ) -> Vec { let new_indent_level = IndentLevel::from_node(impl_.syntax()) + 1; original_items .iter() .map(|InFile { file_id, value: original_item }| { let mut cloned_item = { if let Some(macro_file) = file_id.macro_file() { let span_map = sema.db.expansion_span_map(macro_file); let item_prettified = prettify_macro_expansion( sema.db, original_item.syntax().clone(), &span_map, target_scope.krate().into(), ); if let Some(formatted) = ast::AssocItem::cast(item_prettified) { return formatted; } else { stdx::never!("formatted `AssocItem` could not be cast back to `AssocItem`"); } } original_item } .reset_indent(); if let Some(source_scope) = sema.scope(original_item.syntax()) { // FIXME: Paths in nested macros are not handled well. See // `add_missing_impl_members::paths_in_nested_macro_should_get_transformed` test. let transform = PathTransform::trait_impl(target_scope, &source_scope, trait_, impl_.clone()); cloned_item = ast::AssocItem::cast(transform.apply(cloned_item.syntax())).unwrap(); } cloned_item.remove_attrs_and_docs(); cloned_item }) .filter_map(|item| match item { ast::AssocItem::Fn(fn_) if fn_.body().is_none() => { let fn_ = fn_.clone_subtree(); let new_body = &make::block_expr( None, Some(match config.expr_fill_default { ExprFillDefaultMode::Todo => make::ext::expr_todo(), ExprFillDefaultMode::Underscore => make::ext::expr_underscore(), ExprFillDefaultMode::Default => make::ext::expr_todo(), }), ); let new_body = AstNodeEdit::indent(new_body, IndentLevel::single()); let mut fn_editor = SyntaxEditor::new(fn_.syntax().clone()); fn_.replace_or_insert_body(&mut fn_editor, new_body); let new_fn_ = fn_editor.finish().new_root().clone(); ast::AssocItem::cast(new_fn_) } ast::AssocItem::TypeAlias(type_alias) => { let type_alias = type_alias.clone_subtree(); if let Some(type_bound_list) = type_alias.type_bound_list() { let mut type_alias_editor = SyntaxEditor::new(type_alias.syntax().clone()); type_bound_list.remove(&mut type_alias_editor); let type_alias = type_alias_editor.finish().new_root().clone(); ast::AssocItem::cast(type_alias) } else { Some(ast::AssocItem::TypeAlias(type_alias)) } } item => Some(item), }) .map(|item| AstNodeEdit::indent(&item, new_indent_level)) .collect() } pub(crate) fn vis_offset(node: &SyntaxNode) -> TextSize { node.children_with_tokens() .find(|it| !matches!(it.kind(), WHITESPACE | COMMENT | ATTR)) .map(|it| it.text_range().start()) .unwrap_or_else(|| node.text_range().start()) } pub(crate) fn invert_boolean_expression(make: &SyntaxFactory, expr: ast::Expr) -> ast::Expr { invert_special_case(make, &expr).unwrap_or_else(|| make.expr_prefix(T![!], expr).into()) } // FIXME: Migrate usages of this function to the above function and remove this. pub(crate) fn invert_boolean_expression_legacy(expr: ast::Expr) -> ast::Expr { invert_special_case_legacy(&expr).unwrap_or_else(|| make::expr_prefix(T![!], expr).into()) } fn invert_special_case(make: &SyntaxFactory, expr: &ast::Expr) -> Option { match expr { ast::Expr::BinExpr(bin) => { let op_kind = bin.op_kind()?; let rev_kind = match op_kind { ast::BinaryOp::CmpOp(ast::CmpOp::Eq { negated }) => { ast::BinaryOp::CmpOp(ast::CmpOp::Eq { negated: !negated }) } ast::BinaryOp::CmpOp(ast::CmpOp::Ord { ordering: ast::Ordering::Less, strict }) => { ast::BinaryOp::CmpOp(ast::CmpOp::Ord { ordering: ast::Ordering::Greater, strict: !strict, }) } ast::BinaryOp::CmpOp(ast::CmpOp::Ord { ordering: ast::Ordering::Greater, strict, }) => ast::BinaryOp::CmpOp(ast::CmpOp::Ord { ordering: ast::Ordering::Less, strict: !strict, }), // Parenthesize other expressions before prefixing `!` _ => { return Some( make.expr_prefix(T![!], make.expr_paren(expr.clone()).into()).into(), ); } }; Some(make.expr_bin(bin.lhs()?, rev_kind, bin.rhs()?).into()) } ast::Expr::MethodCallExpr(mce) => { let receiver = mce.receiver()?; let method = mce.name_ref()?; let arg_list = mce.arg_list()?; let method = match method.text().as_str() { "is_some" => "is_none", "is_none" => "is_some", "is_ok" => "is_err", "is_err" => "is_ok", _ => return None, }; Some(make.expr_method_call(receiver, make.name_ref(method), arg_list).into()) } ast::Expr::PrefixExpr(pe) if pe.op_kind()? == ast::UnaryOp::Not => match pe.expr()? { ast::Expr::ParenExpr(parexpr) => { parexpr.expr().map(|e| e.clone_subtree().clone_for_update()) } _ => pe.expr().map(|e| e.clone_subtree().clone_for_update()), }, ast::Expr::Literal(lit) => match lit.kind() { ast::LiteralKind::Bool(b) => match b { true => Some(ast::Expr::Literal(make.expr_literal("false"))), false => Some(ast::Expr::Literal(make.expr_literal("true"))), }, _ => None, }, _ => None, } } fn invert_special_case_legacy(expr: &ast::Expr) -> Option { match expr { ast::Expr::BinExpr(bin) => { let bin = bin.clone_subtree(); let op_token = bin.op_token()?; let rev_token = match op_token.kind() { T![==] => T![!=], T![!=] => T![==], T![<] => T![>=], T![<=] => T![>], T![>] => T![<=], T![>=] => T![<], // Parenthesize other expressions before prefixing `!` _ => { return Some( make::expr_prefix(T![!], make::expr_paren(expr.clone()).into()).into(), ); } }; let mut bin_editor = SyntaxEditor::new(bin.syntax().clone()); bin_editor.replace(op_token, make::token(rev_token)); ast::Expr::cast(bin_editor.finish().new_root().clone()) } ast::Expr::MethodCallExpr(mce) => { let receiver = mce.receiver()?; let method = mce.name_ref()?; let arg_list = mce.arg_list()?; let method = match method.text().as_str() { "is_some" => "is_none", "is_none" => "is_some", "is_ok" => "is_err", "is_err" => "is_ok", _ => return None, }; Some(make::expr_method_call(receiver, make::name_ref(method), arg_list).into()) } ast::Expr::PrefixExpr(pe) if pe.op_kind()? == ast::UnaryOp::Not => match pe.expr()? { ast::Expr::ParenExpr(parexpr) => parexpr.expr(), _ => pe.expr(), }, ast::Expr::Literal(lit) => match lit.kind() { ast::LiteralKind::Bool(b) => match b { true => Some(ast::Expr::Literal(make::expr_literal("false"))), false => Some(ast::Expr::Literal(make::expr_literal("true"))), }, _ => None, }, _ => None, } } pub(crate) fn next_prev() -> impl Iterator { [Direction::Next, Direction::Prev].into_iter() } pub(crate) fn does_pat_match_variant(pat: &ast::Pat, var: &ast::Pat) -> bool { let first_node_text = |pat: &ast::Pat| pat.syntax().first_child().map(|node| node.text()); let pat_head = match pat { ast::Pat::IdentPat(bind_pat) => match bind_pat.pat() { Some(p) => first_node_text(&p), None => return pat.syntax().text() == var.syntax().text(), }, pat => first_node_text(pat), }; let var_head = first_node_text(var); pat_head == var_head } pub(crate) fn does_pat_variant_nested_or_literal(ctx: &AssistContext<'_>, pat: &ast::Pat) -> bool { check_pat_variant_nested_or_literal_with_depth(ctx, pat, 0) } fn check_pat_variant_from_enum(ctx: &AssistContext<'_>, pat: &ast::Pat) -> bool { ctx.sema.type_of_pat(pat).is_none_or(|ty: hir::TypeInfo<'_>| { ty.adjusted().as_adt().is_some_and(|adt| matches!(adt, hir::Adt::Enum(_))) }) } fn check_pat_variant_nested_or_literal_with_depth( ctx: &AssistContext<'_>, pat: &ast::Pat, depth_after_refutable: usize, ) -> bool { if depth_after_refutable > 1 { return true; } match pat { ast::Pat::RestPat(_) | ast::Pat::WildcardPat(_) | ast::Pat::RefPat(_) => false, ast::Pat::LiteralPat(_) | ast::Pat::RangePat(_) | ast::Pat::MacroPat(_) | ast::Pat::PathPat(_) | ast::Pat::BoxPat(_) | ast::Pat::ConstBlockPat(_) => true, ast::Pat::IdentPat(ident_pat) => ident_pat.pat().is_some_and(|pat| { check_pat_variant_nested_or_literal_with_depth(ctx, &pat, depth_after_refutable) }), ast::Pat::ParenPat(paren_pat) => paren_pat.pat().is_none_or(|pat| { check_pat_variant_nested_or_literal_with_depth(ctx, &pat, depth_after_refutable) }), ast::Pat::TuplePat(tuple_pat) => tuple_pat.fields().any(|pat| { check_pat_variant_nested_or_literal_with_depth(ctx, &pat, depth_after_refutable) }), ast::Pat::RecordPat(record_pat) => { let adjusted_next_depth = depth_after_refutable + if check_pat_variant_from_enum(ctx, pat) { 1 } else { 0 }; record_pat.record_pat_field_list().is_none_or(|pat| { pat.fields().any(|pat| { pat.pat().is_none_or(|pat| { check_pat_variant_nested_or_literal_with_depth( ctx, &pat, adjusted_next_depth, ) }) }) }) } ast::Pat::OrPat(or_pat) => or_pat.pats().any(|pat| { check_pat_variant_nested_or_literal_with_depth(ctx, &pat, depth_after_refutable) }), ast::Pat::TupleStructPat(tuple_struct_pat) => { let adjusted_next_depth = depth_after_refutable + if check_pat_variant_from_enum(ctx, pat) { 1 } else { 0 }; tuple_struct_pat.fields().any(|pat| { check_pat_variant_nested_or_literal_with_depth(ctx, &pat, adjusted_next_depth) }) } ast::Pat::SlicePat(slice_pat) => { let mut pats = slice_pat.pats(); pats.next() .is_none_or(|pat| !matches!(pat, ast::Pat::RestPat(_)) || pats.next().is_some()) } } } // Uses a syntax-driven approach to find any impl blocks for the struct that // exist within the module/file // // Returns `None` if we've found an existing fn // // FIXME: change the new fn checking to a more semantic approach when that's more // viable (e.g. we process proc macros, etc) // FIXME: this partially overlaps with `find_impl_block_*` /// `find_struct_impl` looks for impl of a struct, but this also has additional feature /// where it takes a list of function names and check if they exist inside impl_, if /// even one match is found, it returns None. /// /// That means this function can have 3 potential return values: /// - `None`: an impl exists, but one of the function names within the impl matches one of the provided names. /// - `Some(None)`: no impl exists. /// - `Some(Some(_))`: an impl exists, with no matching function names. pub(crate) fn find_struct_impl( ctx: &AssistContext<'_>, adt: &ast::Adt, names: &[String], ) -> Option> { let db = ctx.db(); let module = adt.syntax().parent()?; let struct_def = ctx.sema.to_def(adt)?; let block = module.descendants().filter_map(ast::Impl::cast).find_map(|impl_blk| { let blk = ctx.sema.to_def(&impl_blk)?; // FIXME: handle e.g. `struct S; impl S {}` // (we currently use the wrong type parameter) // also we wouldn't want to use e.g. `impl S` let same_ty = match blk.self_ty(db).as_adt() { Some(def) => def == struct_def, None => false, }; let not_trait_impl = blk.trait_(db).is_none(); if !(same_ty && not_trait_impl) { None } else { Some(impl_blk) } }); if let Some(ref impl_blk) = block && has_any_fn(impl_blk, names) { return None; } Some(block) } fn has_any_fn(imp: &ast::Impl, names: &[String]) -> bool { if let Some(il) = imp.assoc_item_list() { for item in il.assoc_items() { if let ast::AssocItem::Fn(f) = item && let Some(name) = f.name() && names.iter().any(|n| n.eq_ignore_ascii_case(&name.text())) { return true; } } } false } /// Find the end of the `impl` block for the given `ast::Impl`. // // FIXME: this partially overlaps with `find_struct_impl` pub(crate) fn find_impl_block_end(impl_def: ast::Impl, buf: &mut String) -> Option { buf.push('\n'); let end = impl_def .assoc_item_list() .and_then(|it| it.r_curly_token())? .prev_sibling_or_token()? .text_range() .end(); Some(end) } /// Generates the surrounding `impl Type { }` including type and lifetime /// parameters. // FIXME: migrate remaining uses to `generate_impl` pub(crate) fn generate_impl_text(adt: &ast::Adt, code: &str) -> String { generate_impl_text_inner(adt, None, true, code) } /// Generates the surrounding `impl for Type { }` including type /// and lifetime parameters, with `` appended to `impl`'s generic parameters' bounds. /// /// This is useful for traits like `PartialEq`, since `impl PartialEq for U` often requires `T: PartialEq`. // FIXME: migrate remaining uses to `generate_trait_impl` #[allow(dead_code)] pub(crate) fn generate_trait_impl_text(adt: &ast::Adt, trait_text: &str, code: &str) -> String { generate_impl_text_inner(adt, Some(trait_text), true, code) } /// Generates the surrounding `impl for Type { }` including type /// and lifetime parameters, with `impl`'s generic parameters' bounds kept as-is. /// /// This is useful for traits like `From`, since `impl From for U` doesn't require `T: From`. // FIXME: migrate remaining uses to `generate_trait_impl_intransitive` pub(crate) fn generate_trait_impl_text_intransitive( adt: &ast::Adt, trait_text: &str, code: &str, ) -> String { generate_impl_text_inner(adt, Some(trait_text), false, code) } fn generate_impl_text_inner( adt: &ast::Adt, trait_text: Option<&str>, trait_is_transitive: bool, code: &str, ) -> String { // Ensure lifetime params are before type & const params let generic_params = adt.generic_param_list().map(|generic_params| { let lifetime_params = generic_params.lifetime_params().map(ast::GenericParam::LifetimeParam); let ty_or_const_params = generic_params.type_or_const_params().filter_map(|param| { let param = match param { ast::TypeOrConstParam::Type(param) => { // remove defaults since they can't be specified in impls let mut bounds = param.type_bound_list().map_or_else(Vec::new, |it| it.bounds().collect()); if let Some(trait_) = trait_text { // Add the current trait to `bounds` if the trait is transitive, // meaning `impl Trait for U` requires `T: Trait`. if trait_is_transitive { bounds.push(make::type_bound_text(trait_)); } }; // `{ty_param}: {bounds}` let param = make::type_param(param.name()?, make::type_bound_list(bounds)); ast::GenericParam::TypeParam(param) } ast::TypeOrConstParam::Const(param) => { // remove defaults since they can't be specified in impls let param = make::const_param(param.name()?, param.ty()?); ast::GenericParam::ConstParam(param) } }; Some(param) }); make::generic_param_list(itertools::chain(lifetime_params, ty_or_const_params)) }); // FIXME: use syntax::make & mutable AST apis instead // `trait_text` and `code` can't be opaque blobs of text let mut buf = String::with_capacity(code.len()); // Copy any cfg attrs from the original adt buf.push_str("\n\n"); let cfg_attrs = adt .attrs() .filter(|attr| attr.as_simple_call().map(|(name, _arg)| name == "cfg").unwrap_or(false)); cfg_attrs.for_each(|attr| buf.push_str(&format!("{attr}\n"))); // `impl{generic_params} {trait_text} for {name}{generic_params.to_generic_args()}` buf.push_str("impl"); if let Some(generic_params) = &generic_params { format_to!(buf, "{generic_params}"); } buf.push(' '); if let Some(trait_text) = trait_text { buf.push_str(trait_text); buf.push_str(" for "); } buf.push_str(&adt.name().unwrap().text()); if let Some(generic_params) = generic_params { format_to!(buf, "{}", generic_params.to_generic_args()); } match adt.where_clause() { Some(where_clause) => { format_to!(buf, "\n{where_clause}\n{{\n{code}\n}}"); } None => { format_to!(buf, " {{\n{code}\n}}"); } } buf } /// Generates the corresponding `impl Type {}` including type and lifetime /// parameters. pub(crate) fn generate_impl_with_item( adt: &ast::Adt, body: Option, ) -> ast::Impl { generate_impl_inner(false, adt, None, true, body) } pub(crate) fn generate_impl(adt: &ast::Adt) -> ast::Impl { generate_impl_inner(false, adt, None, true, None) } /// Generates the corresponding `impl for Type {}` including type /// and lifetime parameters, with `` appended to `impl`'s generic parameters' bounds. /// /// This is useful for traits like `PartialEq`, since `impl PartialEq for U` often requires `T: PartialEq`. pub(crate) fn generate_trait_impl(is_unsafe: bool, adt: &ast::Adt, trait_: ast::Type) -> ast::Impl { generate_impl_inner(is_unsafe, adt, Some(trait_), true, None) } /// Generates the corresponding `impl for Type {}` including type /// and lifetime parameters, with `impl`'s generic parameters' bounds kept as-is. /// /// This is useful for traits like `From`, since `impl From for U` doesn't require `T: From`. pub(crate) fn generate_trait_impl_intransitive(adt: &ast::Adt, trait_: ast::Type) -> ast::Impl { generate_impl_inner(false, adt, Some(trait_), false, None) } fn generate_impl_inner( is_unsafe: bool, adt: &ast::Adt, trait_: Option, trait_is_transitive: bool, body: Option, ) -> ast::Impl { // Ensure lifetime params are before type & const params let generic_params = adt.generic_param_list().map(|generic_params| { let lifetime_params = generic_params.lifetime_params().map(ast::GenericParam::LifetimeParam); let ty_or_const_params = generic_params.type_or_const_params().filter_map(|param| { let param = match param { ast::TypeOrConstParam::Type(param) => { // remove defaults since they can't be specified in impls let mut bounds = param.type_bound_list().map_or_else(Vec::new, |it| it.bounds().collect()); if let Some(trait_) = &trait_ { // Add the current trait to `bounds` if the trait is transitive, // meaning `impl Trait for U` requires `T: Trait`. if trait_is_transitive { bounds.push(make::type_bound(trait_.clone())); } }; // `{ty_param}: {bounds}` let param = make::type_param(param.name()?, make::type_bound_list(bounds)); ast::GenericParam::TypeParam(param) } ast::TypeOrConstParam::Const(param) => { // remove defaults since they can't be specified in impls let param = make::const_param(param.name()?, param.ty()?); ast::GenericParam::ConstParam(param) } }; Some(param) }); make::generic_param_list(itertools::chain(lifetime_params, ty_or_const_params)) }); let generic_args = generic_params.as_ref().map(|params| params.to_generic_args().clone_for_update()); let ty = make::ty_path(make::ext::ident_path(&adt.name().unwrap().text())); let cfg_attrs = adt.attrs().filter(|attr| attr.as_simple_call().is_some_and(|(name, _arg)| name == "cfg")); match trait_ { Some(trait_) => make::impl_trait( cfg_attrs, is_unsafe, None, None, generic_params, generic_args, false, trait_, ty, None, adt.where_clause(), body, ), None => make::impl_(cfg_attrs, generic_params, generic_args, ty, adt.where_clause(), body), } .clone_for_update() } pub(crate) fn add_method_to_adt( builder: &mut SourceChangeBuilder, adt: &ast::Adt, impl_def: Option, method: &str, ) { let mut buf = String::with_capacity(method.len() + 2); if impl_def.is_some() { buf.push('\n'); } buf.push_str(method); let start_offset = impl_def .and_then(|impl_def| find_impl_block_end(impl_def, &mut buf)) .unwrap_or_else(|| { buf = generate_impl_text(adt, &buf); adt.syntax().text_range().end() }); builder.insert(start_offset, buf); } #[derive(Debug)] pub(crate) struct ReferenceConversion<'db> { conversion: ReferenceConversionType, ty: hir::Type<'db>, impls_deref: bool, } #[derive(Debug)] enum ReferenceConversionType { // reference can be stripped if the type is Copy Copy, // &String -> &str AsRefStr, // &Vec -> &[T] AsRefSlice, // &Box -> &T Dereferenced, // &Option -> Option<&T> Option, // &Result -> Result<&T, &E> Result, } impl<'db> ReferenceConversion<'db> { pub(crate) fn convert_type( &self, db: &'db dyn HirDatabase, display_target: DisplayTarget, ) -> ast::Type { let ty = match self.conversion { ReferenceConversionType::Copy => self.ty.display(db, display_target).to_string(), ReferenceConversionType::AsRefStr => "&str".to_owned(), ReferenceConversionType::AsRefSlice => { let type_argument_name = self .ty .type_arguments() .next() .unwrap() .display(db, display_target) .to_string(); format!("&[{type_argument_name}]") } ReferenceConversionType::Dereferenced => { let type_argument_name = self .ty .type_arguments() .next() .unwrap() .display(db, display_target) .to_string(); format!("&{type_argument_name}") } ReferenceConversionType::Option => { let type_argument_name = self .ty .type_arguments() .next() .unwrap() .display(db, display_target) .to_string(); format!("Option<&{type_argument_name}>") } ReferenceConversionType::Result => { let mut type_arguments = self.ty.type_arguments(); let first_type_argument_name = type_arguments.next().unwrap().display(db, display_target).to_string(); let second_type_argument_name = type_arguments.next().unwrap().display(db, display_target).to_string(); format!("Result<&{first_type_argument_name}, &{second_type_argument_name}>") } }; make::ty(&ty) } pub(crate) fn getter(&self, field_name: String) -> ast::Expr { let expr = make::expr_field(make::ext::expr_self(), &field_name); match self.conversion { ReferenceConversionType::Copy => expr, ReferenceConversionType::AsRefStr | ReferenceConversionType::AsRefSlice | ReferenceConversionType::Dereferenced | ReferenceConversionType::Option | ReferenceConversionType::Result => { if self.impls_deref { make::expr_ref(expr, false) } else { make::expr_method_call(expr, make::name_ref("as_ref"), make::arg_list([])) .into() } } } } } // FIXME: It should return a new hir::Type, but currently constructing new types is too cumbersome // and all users of this function operate on string type names, so they can do the conversion // itself themselves. pub(crate) fn convert_reference_type<'db>( ty: hir::Type<'db>, db: &'db RootDatabase, famous_defs: &FamousDefs<'_, 'db>, ) -> Option> { handle_copy(&ty, db) .or_else(|| handle_as_ref_str(&ty, db, famous_defs)) .or_else(|| handle_as_ref_slice(&ty, db, famous_defs)) .or_else(|| handle_dereferenced(&ty, db, famous_defs)) .or_else(|| handle_option_as_ref(&ty, db, famous_defs)) .or_else(|| handle_result_as_ref(&ty, db, famous_defs)) .map(|(conversion, impls_deref)| ReferenceConversion { ty, conversion, impls_deref }) } fn could_deref_to_target(ty: &hir::Type<'_>, target: &hir::Type<'_>, db: &dyn HirDatabase) -> bool { let ty_ref = ty.add_reference(hir::Mutability::Shared); let target_ref = target.add_reference(hir::Mutability::Shared); ty_ref.could_coerce_to(db, &target_ref) } fn handle_copy( ty: &hir::Type<'_>, db: &dyn HirDatabase, ) -> Option<(ReferenceConversionType, bool)> { ty.is_copy(db).then_some((ReferenceConversionType::Copy, true)) } fn handle_as_ref_str( ty: &hir::Type<'_>, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option<(ReferenceConversionType, bool)> { let str_type = hir::BuiltinType::str().ty(db); ty.impls_trait(db, famous_defs.core_convert_AsRef()?, slice::from_ref(&str_type)) .then_some((ReferenceConversionType::AsRefStr, could_deref_to_target(ty, &str_type, db))) } fn handle_as_ref_slice( ty: &hir::Type<'_>, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option<(ReferenceConversionType, bool)> { let type_argument = ty.type_arguments().next()?; let slice_type = hir::Type::new_slice(type_argument); ty.impls_trait(db, famous_defs.core_convert_AsRef()?, slice::from_ref(&slice_type)).then_some(( ReferenceConversionType::AsRefSlice, could_deref_to_target(ty, &slice_type, db), )) } fn handle_dereferenced( ty: &hir::Type<'_>, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option<(ReferenceConversionType, bool)> { let type_argument = ty.type_arguments().next()?; ty.impls_trait(db, famous_defs.core_convert_AsRef()?, slice::from_ref(&type_argument)) .then_some(( ReferenceConversionType::Dereferenced, could_deref_to_target(ty, &type_argument, db), )) } fn handle_option_as_ref( ty: &hir::Type<'_>, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option<(ReferenceConversionType, bool)> { if ty.as_adt() == famous_defs.core_option_Option()?.ty(db).as_adt() { Some((ReferenceConversionType::Option, false)) } else { None } } fn handle_result_as_ref( ty: &hir::Type<'_>, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option<(ReferenceConversionType, bool)> { if ty.as_adt() == famous_defs.core_result_Result()?.ty(db).as_adt() { Some((ReferenceConversionType::Result, false)) } else { None } } pub(crate) fn get_methods(items: &ast::AssocItemList) -> Vec { items .assoc_items() .flat_map(|i| match i { ast::AssocItem::Fn(f) => Some(f), _ => None, }) .filter(|f| f.name().is_some()) .collect() } /// Trim(remove leading and trailing whitespace) `initial_range` in `source_file`, return the trimmed range. pub(crate) fn trimmed_text_range(source_file: &SourceFile, initial_range: TextRange) -> TextRange { let mut trimmed_range = initial_range; while source_file .syntax() .token_at_offset(trimmed_range.start()) .find_map(Whitespace::cast) .is_some() && trimmed_range.start() < trimmed_range.end() { let start = trimmed_range.start() + TextSize::from(1); trimmed_range = TextRange::new(start, trimmed_range.end()); } while source_file .syntax() .token_at_offset(trimmed_range.end()) .find_map(Whitespace::cast) .is_some() && trimmed_range.start() < trimmed_range.end() { let end = trimmed_range.end() - TextSize::from(1); trimmed_range = TextRange::new(trimmed_range.start(), end); } trimmed_range } /// Convert a list of function params to a list of arguments that can be passed /// into a function call. pub(crate) fn convert_param_list_to_arg_list(list: ast::ParamList) -> ast::ArgList { let mut args = vec![]; for param in list.params() { if let Some(ast::Pat::IdentPat(pat)) = param.pat() && let Some(name) = pat.name() { let name = name.to_string(); let expr = make::expr_path(make::ext::ident_path(&name)); args.push(expr); } } make::arg_list(args) } /// Calculate the number of hashes required for a raw string containing `s` pub(crate) fn required_hashes(s: &str) -> usize { let mut res = 0usize; for idx in s.match_indices('"').map(|(i, _)| i) { let (_, sub) = s.split_at(idx + 1); let n_hashes = sub.chars().take_while(|c| *c == '#').count(); res = res.max(n_hashes + 1) } res } #[test] fn test_required_hashes() { assert_eq!(0, required_hashes("abc")); assert_eq!(0, required_hashes("###")); assert_eq!(1, required_hashes("\"")); assert_eq!(2, required_hashes("\"#abc")); assert_eq!(0, required_hashes("#abc")); assert_eq!(3, required_hashes("#ab\"##c")); assert_eq!(5, required_hashes("#ab\"##\"####c")); } /// Calculate the string literal suffix length pub(crate) fn string_suffix(s: &str) -> Option<&str> { s.rfind(['"', '\'', '#']).map(|i| &s[i + 1..]) } #[test] fn test_string_suffix() { assert_eq!(Some(""), string_suffix(r#""abc""#)); assert_eq!(Some(""), string_suffix(r#""""#)); assert_eq!(Some("a"), string_suffix(r#"""a"#)); assert_eq!(Some("i32"), string_suffix(r#"""i32"#)); assert_eq!(Some("i32"), string_suffix(r#"r""i32"#)); assert_eq!(Some("i32"), string_suffix(r##"r#""#i32"##)); } /// Replaces the record expression, handling field shorthands including inside macros. pub(crate) fn replace_record_field_expr( ctx: &AssistContext<'_>, edit: &mut SourceChangeBuilder, record_field: ast::RecordExprField, initializer: ast::Expr, ) { if let Some(ast::Expr::PathExpr(path_expr)) = record_field.expr() { // replace field shorthand let file_range = ctx.sema.original_range(path_expr.syntax()); edit.insert(file_range.range.end(), format!(": {}", initializer.syntax().text())) } else if let Some(expr) = record_field.expr() { // just replace expr let file_range = ctx.sema.original_range(expr.syntax()); edit.replace(file_range.range, initializer.syntax().text()); } } /// Creates a token tree list from a syntax node, creating the needed delimited sub token trees. /// Assumes that the input syntax node is a valid syntax tree. pub(crate) fn tt_from_syntax(node: SyntaxNode) -> Vec> { let mut tt_stack = vec![(None, vec![])]; for element in node.descendants_with_tokens() { let NodeOrToken::Token(token) = element else { continue }; match token.kind() { T!['('] | T!['{'] | T!['['] => { // Found an opening delimiter, start a new sub token tree tt_stack.push((Some(token.kind()), vec![])); } T![')'] | T!['}'] | T![']'] => { // Closing a subtree let (delimiter, tt) = tt_stack.pop().expect("unbalanced delimiters"); let (_, parent_tt) = tt_stack .last_mut() .expect("parent token tree was closed before it was completed"); let closing_delimiter = delimiter.map(|it| match it { T!['('] => T![')'], T!['{'] => T!['}'], T!['['] => T![']'], _ => unreachable!(), }); stdx::always!( closing_delimiter == Some(token.kind()), "mismatched opening and closing delimiters" ); let sub_tt = make::token_tree(delimiter.expect("unbalanced delimiters"), tt); parent_tt.push(NodeOrToken::Node(sub_tt)); } _ => { let (_, current_tt) = tt_stack.last_mut().expect("unmatched delimiters"); current_tt.push(NodeOrToken::Token(token)) } } } tt_stack.pop().expect("parent token tree was closed before it was completed").1 } pub fn is_body_const(sema: &Semantics<'_, RootDatabase>, expr: &ast::Expr) -> bool { let mut is_const = true; preorder_expr(expr, &mut |ev| { let expr = match ev { WalkEvent::Enter(_) if !is_const => return true, WalkEvent::Enter(expr) => expr, WalkEvent::Leave(_) => return false, }; match expr { ast::Expr::CallExpr(call) => { if let Some(ast::Expr::PathExpr(path_expr)) = call.expr() && let Some(PathResolution::Def(ModuleDef::Function(func))) = path_expr.path().and_then(|path| sema.resolve_path(&path)) { is_const &= func.is_const(sema.db); } } ast::Expr::MethodCallExpr(call) => { is_const &= sema.resolve_method_call(&call).map(|it| it.is_const(sema.db)).unwrap_or(true) } ast::Expr::ForExpr(_) | ast::Expr::ReturnExpr(_) | ast::Expr::TryExpr(_) | ast::Expr::YieldExpr(_) | ast::Expr::AwaitExpr(_) => is_const = false, _ => (), } !is_const }); is_const }