rust-analyzer/crates/hir-def/src/expr_store.rs
Chayim Refael Friedman ad708fdbd1 Put the expression stuff in the expression store behind an Option<Box>
And leave only the type stuff without it.

This is because most expression stores don't have anything but types (e.g. generics, fields, signatures) so this saves a lot of memory.

This saves 58mb on `analysis-stats .`.
2025-07-10 05:18:43 +03:00

1013 lines
35 KiB
Rust

//! Defines `ExpressionStore`: a lowered representation of functions, statics and
//! consts.
pub mod body;
mod expander;
pub mod lower;
pub mod path;
pub mod pretty;
pub mod scope;
#[cfg(test)]
mod tests;
use std::{
ops::{Deref, Index},
sync::LazyLock,
};
use cfg::{CfgExpr, CfgOptions};
use either::Either;
use hir_expand::{ExpandError, InFile, MacroCallId, mod_path::ModPath, name::Name};
use la_arena::{Arena, ArenaMap};
use rustc_hash::FxHashMap;
use smallvec::SmallVec;
use span::{Edition, SyntaxContext};
use syntax::{AstPtr, SyntaxNodePtr, ast};
use thin_vec::ThinVec;
use triomphe::Arc;
use tt::TextRange;
use crate::{
BlockId, SyntheticSyntax,
db::DefDatabase,
expr_store::path::Path,
hir::{
Array, AsmOperand, Binding, BindingId, Expr, ExprId, ExprOrPatId, Label, LabelId, Pat,
PatId, RecordFieldPat, Statement,
},
nameres::{DefMap, block_def_map},
type_ref::{LifetimeRef, LifetimeRefId, PathId, TypeRef, TypeRefId},
};
pub use self::body::{Body, BodySourceMap};
pub use self::lower::{
hir_assoc_type_binding_to_ast, hir_generic_arg_to_ast, hir_segment_to_ast_segment,
};
/// A wrapper around [`span::SyntaxContextId`] that is intended only for comparisons.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct HygieneId(span::SyntaxContext);
impl HygieneId {
// The edition doesn't matter here, we only use this for comparisons and to lookup the macro.
pub const ROOT: Self = Self(span::SyntaxContext::root(Edition::Edition2015));
pub fn new(mut ctx: span::SyntaxContext) -> Self {
// See `Name` for why we're doing that.
ctx.remove_root_edition();
Self(ctx)
}
// FIXME: Inline this
pub(crate) fn lookup(self) -> SyntaxContext {
self.0
}
pub(crate) fn is_root(self) -> bool {
self.0.is_root()
}
}
pub type ExprPtr = AstPtr<ast::Expr>;
pub type ExprSource = InFile<ExprPtr>;
pub type PatPtr = AstPtr<ast::Pat>;
pub type PatSource = InFile<PatPtr>;
pub type LabelPtr = AstPtr<ast::Label>;
pub type LabelSource = InFile<LabelPtr>;
pub type FieldPtr = AstPtr<ast::RecordExprField>;
pub type FieldSource = InFile<FieldPtr>;
pub type PatFieldPtr = AstPtr<Either<ast::RecordExprField, ast::RecordPatField>>;
pub type PatFieldSource = InFile<PatFieldPtr>;
pub type ExprOrPatPtr = AstPtr<Either<ast::Expr, ast::Pat>>;
pub type ExprOrPatSource = InFile<ExprOrPatPtr>;
pub type SelfParamPtr = AstPtr<ast::SelfParam>;
pub type MacroCallPtr = AstPtr<ast::MacroCall>;
pub type TypePtr = AstPtr<ast::Type>;
pub type TypeSource = InFile<TypePtr>;
pub type LifetimePtr = AstPtr<ast::Lifetime>;
pub type LifetimeSource = InFile<LifetimePtr>;
// We split the store into types-only and expressions, because most stores (e.g. generics)
// don't store any expressions and this saves memory. Same thing for the source map.
#[derive(Debug, PartialEq, Eq)]
struct ExpressionOnlyStore {
exprs: Arena<Expr>,
pats: Arena<Pat>,
bindings: Arena<Binding>,
labels: Arena<Label>,
/// Id of the closure/coroutine that owns the corresponding binding. If a binding is owned by the
/// top level expression, it will not be listed in here.
binding_owners: FxHashMap<BindingId, ExprId>,
/// Block expressions in this store that may contain inner items.
block_scopes: Box<[BlockId]>,
/// A map from an variable usages to their hygiene ID.
///
/// Expressions (and destructuing patterns) that can be recorded here are single segment path, although not all single segments path refer
/// to variables and have hygiene (some refer to items, we don't know at this stage).
ident_hygiene: FxHashMap<ExprOrPatId, HygieneId>,
}
#[derive(Debug, PartialEq, Eq)]
pub struct ExpressionStore {
expr_only: Option<Box<ExpressionOnlyStore>>,
pub types: Arena<TypeRef>,
pub lifetimes: Arena<LifetimeRef>,
}
#[derive(Debug, Eq, Default)]
struct ExpressionOnlySourceMap {
// AST expressions can create patterns in destructuring assignments. Therefore, `ExprSource` can also map
// to `PatId`, and `PatId` can also map to `ExprSource` (the other way around is unaffected).
expr_map: FxHashMap<ExprSource, ExprOrPatId>,
expr_map_back: ArenaMap<ExprId, ExprOrPatSource>,
pat_map: FxHashMap<PatSource, ExprOrPatId>,
pat_map_back: ArenaMap<PatId, ExprOrPatSource>,
label_map: FxHashMap<LabelSource, LabelId>,
label_map_back: ArenaMap<LabelId, LabelSource>,
binding_definitions:
ArenaMap<BindingId, SmallVec<[PatId; 2 * size_of::<usize>() / size_of::<PatId>()]>>,
/// We don't create explicit nodes for record fields (`S { record_field: 92 }`).
/// Instead, we use id of expression (`92`) to identify the field.
field_map_back: FxHashMap<ExprId, FieldSource>,
pat_field_map_back: FxHashMap<PatId, PatFieldSource>,
template_map: Option<Box<FormatTemplate>>,
expansions: FxHashMap<InFile<MacroCallPtr>, MacroCallId>,
/// Diagnostics accumulated during lowering. These contain `AstPtr`s and so are stored in
/// the source map (since they're just as volatile).
//
// We store diagnostics on the `ExpressionOnlySourceMap` because diagnostics are rare (except
// maybe for cfgs, and they are also not common in type places).
diagnostics: ThinVec<ExpressionStoreDiagnostics>,
}
impl PartialEq for ExpressionOnlySourceMap {
fn eq(&self, other: &Self) -> bool {
// we only need to compare one of the two mappings
// as the other is a reverse mapping and thus will compare
// the same as normal mapping
let Self {
expr_map: _,
expr_map_back,
pat_map: _,
pat_map_back,
label_map: _,
label_map_back,
// If this changed, our pattern data must have changed
binding_definitions: _,
// If this changed, our expression data must have changed
field_map_back: _,
// If this changed, our pattern data must have changed
pat_field_map_back: _,
template_map,
expansions,
diagnostics,
} = self;
*expr_map_back == other.expr_map_back
&& *pat_map_back == other.pat_map_back
&& *label_map_back == other.label_map_back
&& *template_map == other.template_map
&& *expansions == other.expansions
&& *diagnostics == other.diagnostics
}
}
#[derive(Debug, Eq, Default)]
pub struct ExpressionStoreSourceMap {
expr_only: Option<Box<ExpressionOnlySourceMap>>,
types_map_back: ArenaMap<TypeRefId, TypeSource>,
types_map: FxHashMap<TypeSource, TypeRefId>,
lifetime_map_back: ArenaMap<LifetimeRefId, LifetimeSource>,
#[expect(
unused,
reason = "this is here for completeness, and maybe we'll need it in the future"
)]
lifetime_map: FxHashMap<LifetimeSource, LifetimeRefId>,
}
impl PartialEq for ExpressionStoreSourceMap {
fn eq(&self, other: &Self) -> bool {
// we only need to compare one of the two mappings
// as the other is a reverse mapping and thus will compare
// the same as normal mapping
let Self { expr_only, types_map_back, types_map: _, lifetime_map_back, lifetime_map: _ } =
self;
*expr_only == other.expr_only
&& *types_map_back == other.types_map_back
&& *lifetime_map_back == other.lifetime_map_back
}
}
/// The body of an item (function, const etc.).
#[derive(Debug, Eq, PartialEq, Default)]
pub struct ExpressionStoreBuilder {
pub exprs: Arena<Expr>,
pub pats: Arena<Pat>,
pub bindings: Arena<Binding>,
pub labels: Arena<Label>,
pub lifetimes: Arena<LifetimeRef>,
pub binding_owners: FxHashMap<BindingId, ExprId>,
pub types: Arena<TypeRef>,
block_scopes: Vec<BlockId>,
ident_hygiene: FxHashMap<ExprOrPatId, HygieneId>,
// AST expressions can create patterns in destructuring assignments. Therefore, `ExprSource` can also map
// to `PatId`, and `PatId` can also map to `ExprSource` (the other way around is unaffected).
expr_map: FxHashMap<ExprSource, ExprOrPatId>,
expr_map_back: ArenaMap<ExprId, ExprOrPatSource>,
pat_map: FxHashMap<PatSource, ExprOrPatId>,
pat_map_back: ArenaMap<PatId, ExprOrPatSource>,
label_map: FxHashMap<LabelSource, LabelId>,
label_map_back: ArenaMap<LabelId, LabelSource>,
types_map_back: ArenaMap<TypeRefId, TypeSource>,
types_map: FxHashMap<TypeSource, TypeRefId>,
lifetime_map_back: ArenaMap<LifetimeRefId, LifetimeSource>,
lifetime_map: FxHashMap<LifetimeSource, LifetimeRefId>,
binding_definitions:
ArenaMap<BindingId, SmallVec<[PatId; 2 * size_of::<usize>() / size_of::<PatId>()]>>,
/// We don't create explicit nodes for record fields (`S { record_field: 92 }`).
/// Instead, we use id of expression (`92`) to identify the field.
field_map_back: FxHashMap<ExprId, FieldSource>,
pat_field_map_back: FxHashMap<PatId, PatFieldSource>,
template_map: Option<Box<FormatTemplate>>,
expansions: FxHashMap<InFile<MacroCallPtr>, MacroCallId>,
/// Diagnostics accumulated during lowering. These contain `AstPtr`s and so are stored in
/// the source map (since they're just as volatile).
//
// We store diagnostics on the `ExpressionOnlySourceMap` because diagnostics are rare (except
// maybe for cfgs, and they are also not common in type places).
pub(crate) diagnostics: Vec<ExpressionStoreDiagnostics>,
}
#[derive(Default, Debug, Eq, PartialEq)]
struct FormatTemplate {
/// A map from `format_args!()` expressions to their captures.
format_args_to_captures: FxHashMap<ExprId, (HygieneId, Vec<(syntax::TextRange, Name)>)>,
/// A map from `asm!()` expressions to their captures.
asm_to_captures: FxHashMap<ExprId, Vec<Vec<(syntax::TextRange, usize)>>>,
/// A map from desugared expressions of implicit captures to their source.
///
/// The value stored for each capture is its template literal and offset inside it. The template literal
/// is from the `format_args[_nl]!()` macro and so needs to be mapped up once to go to the user-written
/// template.
implicit_capture_to_source: FxHashMap<ExprId, InFile<(ExprPtr, TextRange)>>,
}
#[derive(Debug, Eq, PartialEq)]
pub enum ExpressionStoreDiagnostics {
InactiveCode { node: InFile<SyntaxNodePtr>, cfg: CfgExpr, opts: CfgOptions },
MacroError { node: InFile<MacroCallPtr>, err: ExpandError },
UnresolvedMacroCall { node: InFile<MacroCallPtr>, path: ModPath },
UnreachableLabel { node: InFile<AstPtr<ast::Lifetime>>, name: Name },
AwaitOutsideOfAsync { node: InFile<AstPtr<ast::AwaitExpr>>, location: String },
UndeclaredLabel { node: InFile<AstPtr<ast::Lifetime>>, name: Name },
}
impl ExpressionStoreBuilder {
pub fn finish(self) -> (ExpressionStore, ExpressionStoreSourceMap) {
let Self {
block_scopes,
mut exprs,
mut labels,
mut pats,
mut bindings,
mut binding_owners,
mut ident_hygiene,
mut types,
mut lifetimes,
mut expr_map,
mut expr_map_back,
mut pat_map,
mut pat_map_back,
mut label_map,
mut label_map_back,
mut types_map_back,
mut types_map,
mut lifetime_map_back,
mut lifetime_map,
mut binding_definitions,
mut field_map_back,
mut pat_field_map_back,
mut template_map,
mut expansions,
diagnostics,
} = self;
exprs.shrink_to_fit();
labels.shrink_to_fit();
pats.shrink_to_fit();
bindings.shrink_to_fit();
binding_owners.shrink_to_fit();
ident_hygiene.shrink_to_fit();
types.shrink_to_fit();
lifetimes.shrink_to_fit();
expr_map.shrink_to_fit();
expr_map_back.shrink_to_fit();
pat_map.shrink_to_fit();
pat_map_back.shrink_to_fit();
label_map.shrink_to_fit();
label_map_back.shrink_to_fit();
types_map_back.shrink_to_fit();
types_map.shrink_to_fit();
lifetime_map_back.shrink_to_fit();
lifetime_map.shrink_to_fit();
binding_definitions.shrink_to_fit();
field_map_back.shrink_to_fit();
pat_field_map_back.shrink_to_fit();
if let Some(template_map) = &mut template_map {
let FormatTemplate {
format_args_to_captures,
asm_to_captures,
implicit_capture_to_source,
} = &mut **template_map;
format_args_to_captures.shrink_to_fit();
asm_to_captures.shrink_to_fit();
implicit_capture_to_source.shrink_to_fit();
}
expansions.shrink_to_fit();
let has_exprs =
!exprs.is_empty() || !labels.is_empty() || !pats.is_empty() || !bindings.is_empty();
let store = {
let expr_only = if has_exprs {
Some(Box::new(ExpressionOnlyStore {
exprs,
pats,
bindings,
labels,
binding_owners,
block_scopes: block_scopes.into_boxed_slice(),
ident_hygiene,
}))
} else {
None
};
ExpressionStore { expr_only, types, lifetimes }
};
let source_map = {
let expr_only = if has_exprs || !expansions.is_empty() || !diagnostics.is_empty() {
Some(Box::new(ExpressionOnlySourceMap {
expr_map,
expr_map_back,
pat_map,
pat_map_back,
label_map,
label_map_back,
binding_definitions,
field_map_back,
pat_field_map_back,
template_map,
expansions,
diagnostics: ThinVec::from_iter(diagnostics),
}))
} else {
None
};
ExpressionStoreSourceMap {
expr_only,
types_map_back,
types_map,
lifetime_map_back,
lifetime_map,
}
};
(store, source_map)
}
}
impl ExpressionStore {
pub fn empty_singleton() -> (Arc<ExpressionStore>, Arc<ExpressionStoreSourceMap>) {
static EMPTY: LazyLock<(Arc<ExpressionStore>, Arc<ExpressionStoreSourceMap>)> =
LazyLock::new(|| {
let (store, source_map) = ExpressionStoreBuilder::default().finish();
(Arc::new(store), Arc::new(source_map))
});
EMPTY.clone()
}
/// Returns an iterator over all block expressions in this store that define inner items.
pub fn blocks<'a>(
&'a self,
db: &'a dyn DefDatabase,
) -> impl Iterator<Item = (BlockId, &'a DefMap)> + 'a {
self.expr_only
.as_ref()
.map(|it| &*it.block_scopes)
.unwrap_or_default()
.iter()
.map(move |&block| (block, block_def_map(db, block)))
}
pub fn walk_bindings_in_pat(&self, pat_id: PatId, mut f: impl FnMut(BindingId)) {
self.walk_pats(pat_id, &mut |pat| {
if let Pat::Bind { id, .. } = &self[pat] {
f(*id);
}
});
}
pub fn walk_pats_shallow(&self, pat_id: PatId, mut f: impl FnMut(PatId)) {
let pat = &self[pat_id];
match pat {
Pat::Range { .. }
| Pat::Lit(..)
| Pat::Path(..)
| Pat::ConstBlock(..)
| Pat::Wild
| Pat::Missing
| Pat::Expr(_) => {}
&Pat::Bind { subpat, .. } => {
if let Some(subpat) = subpat {
f(subpat);
}
}
Pat::Or(args) | Pat::Tuple { args, .. } | Pat::TupleStruct { args, .. } => {
args.iter().copied().for_each(f);
}
Pat::Ref { pat, .. } => f(*pat),
Pat::Slice { prefix, slice, suffix } => {
let total_iter = prefix.iter().chain(slice.iter()).chain(suffix.iter());
total_iter.copied().for_each(f);
}
Pat::Record { args, .. } => {
args.iter().for_each(|RecordFieldPat { pat, .. }| f(*pat));
}
Pat::Box { inner } => f(*inner),
}
}
pub fn walk_pats(&self, pat_id: PatId, f: &mut impl FnMut(PatId)) {
f(pat_id);
self.walk_pats_shallow(pat_id, |p| self.walk_pats(p, f));
}
pub fn is_binding_upvar(&self, binding: BindingId, relative_to: ExprId) -> bool {
let Some(expr_only) = &self.expr_only else { return false };
match expr_only.binding_owners.get(&binding) {
Some(it) => {
// We assign expression ids in a way that outer closures will receive
// a lower id
it.into_raw() < relative_to.into_raw()
}
None => true,
}
}
#[inline]
pub fn binding_owner(&self, id: BindingId) -> Option<ExprId> {
self.expr_only.as_ref()?.binding_owners.get(&id).copied()
}
/// Walks the immediate children expressions and calls `f` for each child expression.
///
/// Note that this does not walk const blocks.
pub fn walk_child_exprs(&self, expr_id: ExprId, mut f: impl FnMut(ExprId)) {
let expr = &self[expr_id];
match expr {
Expr::Continue { .. }
| Expr::Const(_)
| Expr::Missing
| Expr::Path(_)
| Expr::OffsetOf(_)
| Expr::Literal(_)
| Expr::Underscore => {}
Expr::InlineAsm(it) => it.operands.iter().for_each(|(_, op)| match op {
AsmOperand::In { expr, .. }
| AsmOperand::Out { expr: Some(expr), .. }
| AsmOperand::InOut { expr, .. }
| AsmOperand::Const(expr)
| AsmOperand::Label(expr) => f(*expr),
AsmOperand::SplitInOut { in_expr, out_expr, .. } => {
f(*in_expr);
if let Some(out_expr) = out_expr {
f(*out_expr);
}
}
AsmOperand::Out { expr: None, .. } | AsmOperand::Sym(_) => (),
}),
Expr::If { condition, then_branch, else_branch } => {
f(*condition);
f(*then_branch);
if let &Some(else_branch) = else_branch {
f(else_branch);
}
}
Expr::Let { expr, pat } => {
self.walk_exprs_in_pat(*pat, &mut f);
f(*expr);
}
Expr::Block { statements, tail, .. }
| Expr::Unsafe { statements, tail, .. }
| Expr::Async { statements, tail, .. } => {
for stmt in statements.iter() {
match stmt {
Statement::Let { initializer, else_branch, pat, .. } => {
if let &Some(expr) = initializer {
f(expr);
}
if let &Some(expr) = else_branch {
f(expr);
}
self.walk_exprs_in_pat(*pat, &mut f);
}
Statement::Expr { expr: expression, .. } => f(*expression),
Statement::Item(_) => (),
}
}
if let &Some(expr) = tail {
f(expr);
}
}
Expr::Loop { body, .. } => f(*body),
Expr::Call { callee, args, .. } => {
f(*callee);
args.iter().copied().for_each(f);
}
Expr::MethodCall { receiver, args, .. } => {
f(*receiver);
args.iter().copied().for_each(f);
}
Expr::Match { expr, arms } => {
f(*expr);
arms.iter().for_each(|arm| {
f(arm.expr);
self.walk_exprs_in_pat(arm.pat, &mut f);
});
}
Expr::Break { expr, .. }
| Expr::Return { expr }
| Expr::Yield { expr }
| Expr::Yeet { expr } => {
if let &Some(expr) = expr {
f(expr);
}
}
Expr::Become { expr } => f(*expr),
Expr::RecordLit { fields, spread, .. } => {
for field in fields.iter() {
f(field.expr);
}
if let &Some(expr) = spread {
f(expr);
}
}
Expr::Closure { body, .. } => {
f(*body);
}
Expr::BinaryOp { lhs, rhs, .. } => {
f(*lhs);
f(*rhs);
}
Expr::Range { lhs, rhs, .. } => {
if let &Some(lhs) = rhs {
f(lhs);
}
if let &Some(rhs) = lhs {
f(rhs);
}
}
Expr::Index { base, index, .. } => {
f(*base);
f(*index);
}
Expr::Field { expr, .. }
| Expr::Await { expr }
| Expr::Cast { expr, .. }
| Expr::Ref { expr, .. }
| Expr::UnaryOp { expr, .. }
| Expr::Box { expr } => {
f(*expr);
}
Expr::Tuple { exprs, .. } => exprs.iter().copied().for_each(f),
Expr::Array(a) => match a {
Array::ElementList { elements, .. } => elements.iter().copied().for_each(f),
Array::Repeat { initializer, repeat } => {
f(*initializer);
f(*repeat)
}
},
&Expr::Assignment { target, value } => {
self.walk_exprs_in_pat(target, &mut f);
f(value);
}
}
}
/// Walks the immediate children expressions and calls `f` for each child expression but does
/// not walk expressions within patterns.
///
/// Note that this does not walk const blocks.
pub fn walk_child_exprs_without_pats(&self, expr_id: ExprId, mut f: impl FnMut(ExprId)) {
let expr = &self[expr_id];
match expr {
Expr::Continue { .. }
| Expr::Const(_)
| Expr::Missing
| Expr::Path(_)
| Expr::OffsetOf(_)
| Expr::Literal(_)
| Expr::Underscore => {}
Expr::InlineAsm(it) => it.operands.iter().for_each(|(_, op)| match op {
AsmOperand::In { expr, .. }
| AsmOperand::Out { expr: Some(expr), .. }
| AsmOperand::InOut { expr, .. }
| AsmOperand::Const(expr)
| AsmOperand::Label(expr) => f(*expr),
AsmOperand::SplitInOut { in_expr, out_expr, .. } => {
f(*in_expr);
if let Some(out_expr) = out_expr {
f(*out_expr);
}
}
AsmOperand::Out { expr: None, .. } | AsmOperand::Sym(_) => (),
}),
Expr::If { condition, then_branch, else_branch } => {
f(*condition);
f(*then_branch);
if let &Some(else_branch) = else_branch {
f(else_branch);
}
}
Expr::Let { expr, .. } => {
f(*expr);
}
Expr::Block { statements, tail, .. }
| Expr::Unsafe { statements, tail, .. }
| Expr::Async { statements, tail, .. } => {
for stmt in statements.iter() {
match stmt {
Statement::Let { initializer, else_branch, .. } => {
if let &Some(expr) = initializer {
f(expr);
}
if let &Some(expr) = else_branch {
f(expr);
}
}
Statement::Expr { expr: expression, .. } => f(*expression),
Statement::Item(_) => (),
}
}
if let &Some(expr) = tail {
f(expr);
}
}
Expr::Loop { body, .. } => f(*body),
Expr::Call { callee, args, .. } => {
f(*callee);
args.iter().copied().for_each(f);
}
Expr::MethodCall { receiver, args, .. } => {
f(*receiver);
args.iter().copied().for_each(f);
}
Expr::Match { expr, arms } => {
f(*expr);
arms.iter().map(|arm| arm.expr).for_each(f);
}
Expr::Break { expr, .. }
| Expr::Return { expr }
| Expr::Yield { expr }
| Expr::Yeet { expr } => {
if let &Some(expr) = expr {
f(expr);
}
}
Expr::Become { expr } => f(*expr),
Expr::RecordLit { fields, spread, .. } => {
for field in fields.iter() {
f(field.expr);
}
if let &Some(expr) = spread {
f(expr);
}
}
Expr::Closure { body, .. } => {
f(*body);
}
Expr::BinaryOp { lhs, rhs, .. } => {
f(*lhs);
f(*rhs);
}
Expr::Range { lhs, rhs, .. } => {
if let &Some(lhs) = rhs {
f(lhs);
}
if let &Some(rhs) = lhs {
f(rhs);
}
}
Expr::Index { base, index, .. } => {
f(*base);
f(*index);
}
Expr::Field { expr, .. }
| Expr::Await { expr }
| Expr::Cast { expr, .. }
| Expr::Ref { expr, .. }
| Expr::UnaryOp { expr, .. }
| Expr::Box { expr } => {
f(*expr);
}
Expr::Tuple { exprs, .. } => exprs.iter().copied().for_each(f),
Expr::Array(a) => match a {
Array::ElementList { elements, .. } => elements.iter().copied().for_each(f),
Array::Repeat { initializer, repeat } => {
f(*initializer);
f(*repeat)
}
},
&Expr::Assignment { target: _, value } => f(value),
}
}
pub fn walk_exprs_in_pat(&self, pat_id: PatId, f: &mut impl FnMut(ExprId)) {
self.walk_pats(pat_id, &mut |pat| {
if let Pat::Expr(expr) | Pat::ConstBlock(expr) = self[pat] {
f(expr);
}
});
}
#[inline]
#[track_caller]
fn assert_expr_only(&self) -> &ExpressionOnlyStore {
self.expr_only.as_ref().expect("should have `ExpressionStore::expr_only`")
}
fn binding_hygiene(&self, binding: BindingId) -> HygieneId {
self.assert_expr_only().bindings[binding].hygiene
}
pub fn expr_path_hygiene(&self, expr: ExprId) -> HygieneId {
self.assert_expr_only().ident_hygiene.get(&expr.into()).copied().unwrap_or(HygieneId::ROOT)
}
pub fn pat_path_hygiene(&self, pat: PatId) -> HygieneId {
self.assert_expr_only().ident_hygiene.get(&pat.into()).copied().unwrap_or(HygieneId::ROOT)
}
pub fn expr_or_pat_path_hygiene(&self, id: ExprOrPatId) -> HygieneId {
match id {
ExprOrPatId::ExprId(id) => self.expr_path_hygiene(id),
ExprOrPatId::PatId(id) => self.pat_path_hygiene(id),
}
}
#[inline]
pub fn exprs(&self) -> impl Iterator<Item = (ExprId, &Expr)> {
match &self.expr_only {
Some(it) => it.exprs.iter(),
None => const { &Arena::new() }.iter(),
}
}
#[inline]
pub fn pats(&self) -> impl Iterator<Item = (PatId, &Pat)> {
match &self.expr_only {
Some(it) => it.pats.iter(),
None => const { &Arena::new() }.iter(),
}
}
#[inline]
pub fn bindings(&self) -> impl Iterator<Item = (BindingId, &Binding)> {
match &self.expr_only {
Some(it) => it.bindings.iter(),
None => const { &Arena::new() }.iter(),
}
}
}
impl Index<ExprId> for ExpressionStore {
type Output = Expr;
#[inline]
fn index(&self, expr: ExprId) -> &Expr {
&self.assert_expr_only().exprs[expr]
}
}
impl Index<PatId> for ExpressionStore {
type Output = Pat;
#[inline]
fn index(&self, pat: PatId) -> &Pat {
&self.assert_expr_only().pats[pat]
}
}
impl Index<LabelId> for ExpressionStore {
type Output = Label;
#[inline]
fn index(&self, label: LabelId) -> &Label {
&self.assert_expr_only().labels[label]
}
}
impl Index<BindingId> for ExpressionStore {
type Output = Binding;
#[inline]
fn index(&self, b: BindingId) -> &Binding {
&self.assert_expr_only().bindings[b]
}
}
impl Index<TypeRefId> for ExpressionStore {
type Output = TypeRef;
#[inline]
fn index(&self, b: TypeRefId) -> &TypeRef {
&self.types[b]
}
}
impl Index<LifetimeRefId> for ExpressionStore {
type Output = LifetimeRef;
#[inline]
fn index(&self, b: LifetimeRefId) -> &LifetimeRef {
&self.lifetimes[b]
}
}
impl Index<PathId> for ExpressionStore {
type Output = Path;
#[inline]
fn index(&self, index: PathId) -> &Self::Output {
let TypeRef::Path(path) = &self[index.type_ref()] else {
unreachable!("`PathId` always points to `TypeRef::Path`");
};
path
}
}
// FIXME: Change `node_` prefix to something more reasonable.
// Perhaps `expr_syntax` and `expr_id`?
impl ExpressionStoreSourceMap {
pub fn expr_or_pat_syntax(&self, id: ExprOrPatId) -> Result<ExprOrPatSource, SyntheticSyntax> {
match id {
ExprOrPatId::ExprId(id) => self.expr_syntax(id),
ExprOrPatId::PatId(id) => self.pat_syntax(id),
}
}
#[inline]
fn expr_or_synthetic(&self) -> Result<&ExpressionOnlySourceMap, SyntheticSyntax> {
self.expr_only.as_deref().ok_or(SyntheticSyntax)
}
#[inline]
fn expr_only(&self) -> Option<&ExpressionOnlySourceMap> {
self.expr_only.as_deref()
}
#[inline]
#[track_caller]
fn assert_expr_only(&self) -> &ExpressionOnlySourceMap {
self.expr_only.as_ref().expect("should have `ExpressionStoreSourceMap::expr_only`")
}
pub fn expr_syntax(&self, expr: ExprId) -> Result<ExprOrPatSource, SyntheticSyntax> {
self.expr_or_synthetic()?.expr_map_back.get(expr).cloned().ok_or(SyntheticSyntax)
}
pub fn node_expr(&self, node: InFile<&ast::Expr>) -> Option<ExprOrPatId> {
let src = node.map(AstPtr::new);
self.expr_only()?.expr_map.get(&src).cloned()
}
pub fn node_macro_file(&self, node: InFile<&ast::MacroCall>) -> Option<MacroCallId> {
let src = node.map(AstPtr::new);
self.expr_only()?.expansions.get(&src).cloned()
}
pub fn macro_calls(&self) -> impl Iterator<Item = (InFile<MacroCallPtr>, MacroCallId)> + '_ {
self.expr_only().into_iter().flat_map(|it| it.expansions.iter().map(|(&a, &b)| (a, b)))
}
pub fn pat_syntax(&self, pat: PatId) -> Result<ExprOrPatSource, SyntheticSyntax> {
self.expr_or_synthetic()?.pat_map_back.get(pat).cloned().ok_or(SyntheticSyntax)
}
pub fn node_pat(&self, node: InFile<&ast::Pat>) -> Option<ExprOrPatId> {
self.expr_only()?.pat_map.get(&node.map(AstPtr::new)).cloned()
}
pub fn type_syntax(&self, id: TypeRefId) -> Result<TypeSource, SyntheticSyntax> {
self.types_map_back.get(id).cloned().ok_or(SyntheticSyntax)
}
pub fn node_type(&self, node: InFile<&ast::Type>) -> Option<TypeRefId> {
self.types_map.get(&node.map(AstPtr::new)).cloned()
}
pub fn label_syntax(&self, label: LabelId) -> LabelSource {
self.assert_expr_only().label_map_back[label]
}
pub fn patterns_for_binding(&self, binding: BindingId) -> &[PatId] {
self.assert_expr_only().binding_definitions.get(binding).map_or(&[], Deref::deref)
}
pub fn node_label(&self, node: InFile<&ast::Label>) -> Option<LabelId> {
let src = node.map(AstPtr::new);
self.expr_only()?.label_map.get(&src).cloned()
}
pub fn field_syntax(&self, expr: ExprId) -> FieldSource {
self.assert_expr_only().field_map_back[&expr]
}
pub fn pat_field_syntax(&self, pat: PatId) -> PatFieldSource {
self.assert_expr_only().pat_field_map_back[&pat]
}
pub fn macro_expansion_expr(&self, node: InFile<&ast::MacroExpr>) -> Option<ExprOrPatId> {
let src = node.map(AstPtr::new).map(AstPtr::upcast::<ast::MacroExpr>).map(AstPtr::upcast);
self.expr_only()?.expr_map.get(&src).copied()
}
pub fn expansions(&self) -> impl Iterator<Item = (&InFile<MacroCallPtr>, &MacroCallId)> {
self.expr_only().into_iter().flat_map(|it| it.expansions.iter())
}
pub fn expansion(&self, node: InFile<&ast::MacroCall>) -> Option<MacroCallId> {
self.expr_only()?.expansions.get(&node.map(AstPtr::new)).copied()
}
pub fn implicit_format_args(
&self,
node: InFile<&ast::FormatArgsExpr>,
) -> Option<(HygieneId, &[(syntax::TextRange, Name)])> {
let expr_only = self.expr_only()?;
let src = node.map(AstPtr::new).map(AstPtr::upcast::<ast::Expr>);
let (hygiene, names) = expr_only
.template_map
.as_ref()?
.format_args_to_captures
.get(&expr_only.expr_map.get(&src)?.as_expr()?)?;
Some((*hygiene, &**names))
}
pub fn format_args_implicit_capture(
&self,
capture_expr: ExprId,
) -> Option<InFile<(ExprPtr, TextRange)>> {
self.expr_only()?
.template_map
.as_ref()?
.implicit_capture_to_source
.get(&capture_expr)
.copied()
}
pub fn asm_template_args(
&self,
node: InFile<&ast::AsmExpr>,
) -> Option<(ExprId, &[Vec<(syntax::TextRange, usize)>])> {
let expr_only = self.expr_only()?;
let src = node.map(AstPtr::new).map(AstPtr::upcast::<ast::Expr>);
let expr = expr_only.expr_map.get(&src)?.as_expr()?;
Some(expr).zip(
expr_only.template_map.as_ref()?.asm_to_captures.get(&expr).map(std::ops::Deref::deref),
)
}
/// Get a reference to the source map's diagnostics.
pub fn diagnostics(&self) -> &[ExpressionStoreDiagnostics] {
self.expr_only().map(|it| &*it.diagnostics).unwrap_or_default()
}
}