rust-analyzer/crates/ide-completion/src/patterns.rs
2022-05-07 13:46:43 +02:00

492 lines
19 KiB
Rust

//! Patterns telling us certain facts about current syntax element, they are used in completion context
//!
//! Most logic in this module first expands the token below the cursor to a maximum node that acts similar to the token itself.
//! This means we for example expand a NameRef token to its outermost Path node, as semantically these act in the same location
//! and the completions usually query for path specific things on the Path context instead. This simplifies some location handling.
use hir::Semantics;
use ide_db::RootDatabase;
use syntax::{
algo::non_trivia_sibling,
ast::{self, HasLoopBody, HasName},
match_ast, AstNode, Direction, SyntaxElement,
SyntaxKind::*,
SyntaxNode, SyntaxToken, TextRange, TextSize,
};
#[cfg(test)]
use crate::tests::check_pattern_is_applicable;
/// Immediate previous node to what we are completing.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub(crate) enum ImmediatePrevSibling {
IfExpr,
TraitDefName,
ImplDefType,
Visibility,
Attribute,
}
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum TypeAnnotation {
Let(Option<ast::Pat>),
FnParam(Option<ast::Pat>),
RetType(Option<ast::Expr>),
Const(Option<ast::Expr>),
}
/// Direct parent "thing" of what we are currently completing.
///
/// This may contain nodes of the fake file as well as the original, comments on the variants specify
/// from which file the nodes are.
#[derive(Clone, Debug, PartialEq, Eq)]
pub(crate) enum ImmediateLocation {
Impl,
Trait,
TupleField,
RefExpr,
IdentPat,
StmtList,
ItemList,
TypeBound,
/// Original file ast node
TypeAnnotation(TypeAnnotation),
// Only set from a type arg
/// Original file ast node
GenericArgList(ast::GenericArgList),
/// The record expr of the field name we are completing
///
/// Original file ast node
RecordExpr(ast::RecordExpr),
/// The record expr of the functional update syntax we are completing
///
/// Original file ast node
RecordExprUpdate(ast::RecordExpr),
/// The record pat of the field name we are completing
///
/// Original file ast node
// FIXME: This should be moved to pattern_ctx
RecordPat(ast::RecordPat),
}
pub(crate) fn determine_prev_sibling(name_like: &ast::NameLike) -> Option<ImmediatePrevSibling> {
let node = match name_like {
ast::NameLike::NameRef(name_ref) => maximize_name_ref(name_ref),
ast::NameLike::Name(n) => n.syntax().clone(),
ast::NameLike::Lifetime(lt) => lt.syntax().clone(),
};
let node = match node.parent().and_then(ast::MacroCall::cast) {
// When a path is being typed after the name of a trait/type of an impl it is being
// parsed as a macro, so when the trait/impl has a block following it an we are between the
// name and block the macro will attach the block to itself so maximizing fails to take
// that into account
// FIXME path expr and statement have a similar problem with attrs
Some(call)
if call.excl_token().is_none()
&& call.token_tree().map_or(false, |t| t.l_curly_token().is_some())
&& call.semicolon_token().is_none() =>
{
call.syntax().clone()
}
_ => node,
};
let prev_sibling = non_trivia_sibling(node.into(), Direction::Prev)?.into_node()?;
if prev_sibling.kind() == ERROR {
let prev_sibling = prev_sibling.first_child()?;
let res = match_ast! {
match prev_sibling {
// vis followed by random ident will always error the parser
ast::Visibility(_) => ImmediatePrevSibling::Visibility,
_ => return None,
}
};
return Some(res);
}
let res = match_ast! {
match prev_sibling {
ast::ExprStmt(it) => {
let node = it.expr().filter(|_| it.semicolon_token().is_none())?.syntax().clone();
match_ast! {
match node {
ast::IfExpr(_) => ImmediatePrevSibling::IfExpr,
_ => return None,
}
}
},
ast::Trait(it) => if it.assoc_item_list().is_none() {
ImmediatePrevSibling::TraitDefName
} else {
return None
},
ast::Impl(it) => if it.assoc_item_list().is_none()
&& (it.for_token().is_none() || it.self_ty().is_some()) {
ImmediatePrevSibling::ImplDefType
} else {
return None
},
ast::Attr(_) => ImmediatePrevSibling::Attribute,
_ => return None,
}
};
Some(res)
}
pub(crate) fn determine_location(
sema: &Semantics<RootDatabase>,
original_file: &SyntaxNode,
offset: TextSize,
name_like: &ast::NameLike,
) -> Option<ImmediateLocation> {
let node = match name_like {
ast::NameLike::NameRef(name_ref) => {
if ast::RecordExprField::for_field_name(name_ref).is_some() {
return sema
.find_node_at_offset_with_macros(original_file, offset)
.map(ImmediateLocation::RecordExpr);
}
if ast::RecordPatField::for_field_name_ref(name_ref).is_some() {
return sema
.find_node_at_offset_with_macros(original_file, offset)
.map(ImmediateLocation::RecordPat);
}
maximize_name_ref(name_ref)
}
ast::NameLike::Name(name) => {
if ast::RecordPatField::for_field_name(name).is_some() {
return sema
.find_node_at_offset_with_macros(original_file, offset)
.map(ImmediateLocation::RecordPat);
}
name.syntax().clone()
}
ast::NameLike::Lifetime(lt) => lt.syntax().clone(),
};
match_ast! {
match node {
ast::TypeBoundList(_it) => return Some(ImmediateLocation::TypeBound),
_ => (),
}
};
let parent = match node.parent() {
Some(parent) => match ast::MacroCall::cast(parent.clone()) {
// When a path is being typed in an (Assoc)ItemList the parser will always emit a macro_call.
// This is usually fine as the node expansion code above already accounts for that with
// the ancestors call, but there is one exception to this which is that when an attribute
// precedes it the code above will not walk the Path to the parent MacroCall as their ranges differ.
// FIXME path expr and statement have a similar problem
Some(call)
if call.excl_token().is_none()
&& call.token_tree().is_none()
&& call.semicolon_token().is_none() =>
{
call.syntax().parent()?
}
_ => parent,
},
// SourceFile
None => {
return match node.kind() {
MACRO_ITEMS | SOURCE_FILE => Some(ImmediateLocation::ItemList),
_ => None,
}
}
};
let res = match_ast! {
match parent {
ast::IdentPat(_) => ImmediateLocation::IdentPat,
ast::StmtList(_) => ImmediateLocation::StmtList,
ast::SourceFile(_) => ImmediateLocation::ItemList,
ast::ItemList(_) => ImmediateLocation::ItemList,
ast::RefExpr(_) => ImmediateLocation::RefExpr,
ast::RecordExprFieldList(_) => sema
.find_node_at_offset_with_macros(original_file, offset)
.map(ImmediateLocation::RecordExprUpdate)?,
ast::TupleField(_) => ImmediateLocation::TupleField,
ast::TupleFieldList(_) => ImmediateLocation::TupleField,
ast::TypeBound(_) => ImmediateLocation::TypeBound,
ast::TypeBoundList(_) => ImmediateLocation::TypeBound,
ast::AssocItemList(it) => match it.syntax().parent().map(|it| it.kind()) {
Some(IMPL) => ImmediateLocation::Impl,
Some(TRAIT) => ImmediateLocation::Trait,
_ => return None,
},
ast::GenericArgList(_) => sema
.find_node_at_offset_with_macros(original_file, offset)
.map(ImmediateLocation::GenericArgList)?,
ast::Const(it) => {
if !it.ty().map_or(false, |x| x.syntax().text_range().contains(offset)) {
return None;
}
let name = find_in_original_file(it.name(), original_file)?;
let original = ast::Const::cast(name.syntax().parent()?)?;
ImmediateLocation::TypeAnnotation(TypeAnnotation::Const(original.body()))
},
ast::RetType(it) => {
if it.thin_arrow_token().is_none() {
return None;
}
if !it.ty().map_or(false, |x| x.syntax().text_range().contains(offset)) {
return None;
}
let parent = match ast::Fn::cast(parent.parent()?) {
Some(x) => x.param_list(),
None => ast::ClosureExpr::cast(parent.parent()?)?.param_list(),
};
let parent = find_in_original_file(parent, original_file)?.syntax().parent()?;
ImmediateLocation::TypeAnnotation(TypeAnnotation::RetType(match_ast! {
match parent {
ast::ClosureExpr(it) => {
it.body()
},
ast::Fn(it) => {
it.body().map(ast::Expr::BlockExpr)
},
_ => return None,
}
}))
},
ast::Param(it) => {
if it.colon_token().is_none() {
return None;
}
if !it.ty().map_or(false, |x| x.syntax().text_range().contains(offset)) {
return None;
}
ImmediateLocation::TypeAnnotation(TypeAnnotation::FnParam(find_in_original_file(it.pat(), original_file)))
},
ast::LetStmt(it) => {
if it.colon_token().is_none() {
return None;
}
if !it.ty().map_or(false, |x| x.syntax().text_range().contains(offset)) {
return None;
}
ImmediateLocation::TypeAnnotation(TypeAnnotation::Let(find_in_original_file(it.pat(), original_file)))
},
_ => return None,
}
};
fn find_in_original_file<N: AstNode>(x: Option<N>, original_file: &SyntaxNode) -> Option<N> {
x.map(|e| e.syntax().text_range()).and_then(|r| find_node_with_range(original_file, r))
}
Some(res)
}
/// Maximize a nameref to its enclosing path if its the last segment of said path.
/// That is, when completing a [`NameRef`] we actually handle it as the path it is part of when determining
/// its location.
fn maximize_name_ref(name_ref: &ast::NameRef) -> SyntaxNode {
if let Some(segment) = name_ref.syntax().parent().and_then(ast::PathSegment::cast) {
let p = segment.parent_path();
if p.parent_path().is_none() {
// Get rid of PathExpr, PathType, etc...
let path = p
.syntax()
.ancestors()
.take_while(|it| it.text_range() == p.syntax().text_range())
.last();
if let Some(it) = path {
return it;
}
}
}
name_ref.syntax().clone()
}
fn find_node_with_range<N: AstNode>(syntax: &SyntaxNode, range: TextRange) -> Option<N> {
let range = syntax.text_range().intersect(range)?;
syntax.covering_element(range).ancestors().find_map(N::cast)
}
pub(crate) fn previous_token(element: SyntaxElement) -> Option<SyntaxToken> {
element.into_token().and_then(previous_non_trivia_token)
}
pub(crate) fn is_in_token_of_for_loop(element: SyntaxElement) -> bool {
// oh my ...
(|| {
let syntax_token = element.into_token()?;
let range = syntax_token.text_range();
let for_expr = syntax_token.ancestors().find_map(ast::ForExpr::cast)?;
// check if the current token is the `in` token of a for loop
if let Some(token) = for_expr.in_token() {
return Some(syntax_token == token);
}
let pat = for_expr.pat()?;
if range.end() < pat.syntax().text_range().end() {
// if we are inside or before the pattern we can't be at the `in` token position
return None;
}
let next_sibl = next_non_trivia_sibling(pat.syntax().clone().into())?;
Some(match next_sibl {
// the loop body is some node, if our token is at the start we are at the `in` position,
// otherwise we could be in a recovered expression, we don't wanna ruin completions there
syntax::NodeOrToken::Node(n) => n.text_range().start() == range.start(),
// the loop body consists of a single token, if we are this we are certainly at the `in` token position
syntax::NodeOrToken::Token(t) => t == syntax_token,
})
})()
.unwrap_or(false)
}
#[test]
fn test_for_is_prev2() {
check_pattern_is_applicable(r"fn __() { for i i$0 }", is_in_token_of_for_loop);
}
pub(crate) fn is_in_loop_body(node: &SyntaxNode) -> bool {
node.ancestors()
.take_while(|it| it.kind() != FN && it.kind() != CLOSURE_EXPR)
.find_map(|it| {
let loop_body = match_ast! {
match it {
ast::ForExpr(it) => it.loop_body(),
ast::WhileExpr(it) => it.loop_body(),
ast::LoopExpr(it) => it.loop_body(),
_ => None,
}
};
loop_body.filter(|it| it.syntax().text_range().contains_range(node.text_range()))
})
.is_some()
}
fn previous_non_trivia_token(token: SyntaxToken) -> Option<SyntaxToken> {
let mut token = token.prev_token();
while let Some(inner) = token {
if !inner.kind().is_trivia() {
return Some(inner);
} else {
token = inner.prev_token();
}
}
None
}
fn next_non_trivia_sibling(ele: SyntaxElement) -> Option<SyntaxElement> {
let mut e = ele.next_sibling_or_token();
while let Some(inner) = e {
if !inner.kind().is_trivia() {
return Some(inner);
} else {
e = inner.next_sibling_or_token();
}
}
None
}
#[cfg(test)]
mod tests {
use syntax::algo::find_node_at_offset;
use crate::tests::position;
use super::*;
fn check_location(code: &str, loc: impl Into<Option<ImmediateLocation>>) {
let (db, pos) = position(code);
let sema = Semantics::new(&db);
let original_file = sema.parse(pos.file_id);
let name_like = find_node_at_offset(original_file.syntax(), pos.offset).unwrap();
assert_eq!(
determine_location(&sema, original_file.syntax(), pos.offset, &name_like),
loc.into()
);
}
fn check_prev_sibling(code: &str, sibling: impl Into<Option<ImmediatePrevSibling>>) {
check_pattern_is_applicable(code, |e| {
let name = &e.parent().and_then(ast::NameLike::cast).expect("Expected a namelike");
assert_eq!(determine_prev_sibling(name), sibling.into());
true
});
}
#[test]
fn test_trait_loc() {
check_location(r"trait A { f$0 }", ImmediateLocation::Trait);
check_location(r"trait A { #[attr] f$0 }", ImmediateLocation::Trait);
check_location(r"trait A { f$0 fn f() {} }", ImmediateLocation::Trait);
check_location(r"trait A { fn f() {} f$0 }", ImmediateLocation::Trait);
check_location(r"trait A$0 {}", None);
check_location(r"trait A { fn f$0 }", None);
}
#[test]
fn test_impl_loc() {
check_location(r"impl A { f$0 }", ImmediateLocation::Impl);
check_location(r"impl A { #[attr] f$0 }", ImmediateLocation::Impl);
check_location(r"impl A { f$0 fn f() {} }", ImmediateLocation::Impl);
check_location(r"impl A { fn f() {} f$0 }", ImmediateLocation::Impl);
check_location(r"impl A$0 {}", None);
check_location(r"impl A { fn f$0 }", None);
}
#[test]
fn test_block_expr_loc() {
check_location(r"fn my_fn() { let a = 2; f$0 }", ImmediateLocation::StmtList);
check_location(r"fn my_fn() { f$0 f }", ImmediateLocation::StmtList);
}
#[test]
fn test_ident_pat_loc() {
check_location(r"fn my_fn(m$0) {}", ImmediateLocation::IdentPat);
check_location(r"fn my_fn() { let m$0 }", ImmediateLocation::IdentPat);
check_location(r"fn my_fn(&m$0) {}", ImmediateLocation::IdentPat);
check_location(r"fn my_fn() { let &m$0 }", ImmediateLocation::IdentPat);
}
#[test]
fn test_ref_expr_loc() {
check_location(r"fn my_fn() { let x = &m$0 foo; }", ImmediateLocation::RefExpr);
}
#[test]
fn test_item_list_loc() {
check_location(r"i$0", ImmediateLocation::ItemList);
check_location(r"#[attr] i$0", ImmediateLocation::ItemList);
check_location(r"fn f() {} i$0", ImmediateLocation::ItemList);
check_location(r"mod foo { f$0 }", ImmediateLocation::ItemList);
check_location(r"mod foo { #[attr] f$0 }", ImmediateLocation::ItemList);
check_location(r"mod foo { fn f() {} f$0 }", ImmediateLocation::ItemList);
check_location(r"mod foo$0 {}", None);
}
#[test]
fn test_impl_prev_sibling() {
check_prev_sibling(r"impl A w$0 ", ImmediatePrevSibling::ImplDefType);
check_prev_sibling(r"impl A w$0 {}", ImmediatePrevSibling::ImplDefType);
check_prev_sibling(r"impl A for A w$0 ", ImmediatePrevSibling::ImplDefType);
check_prev_sibling(r"impl A for A w$0 {}", ImmediatePrevSibling::ImplDefType);
check_prev_sibling(r"impl A for w$0 {}", None);
check_prev_sibling(r"impl A for w$0", None);
}
#[test]
fn test_trait_prev_sibling() {
check_prev_sibling(r"trait A w$0 ", ImmediatePrevSibling::TraitDefName);
check_prev_sibling(r"trait A w$0 {}", ImmediatePrevSibling::TraitDefName);
}
#[test]
fn test_if_expr_prev_sibling() {
check_prev_sibling(r"fn foo() { if true {} w$0", ImmediatePrevSibling::IfExpr);
check_prev_sibling(r"fn foo() { if true {}; w$0", None);
}
#[test]
fn test_vis_prev_sibling() {
check_prev_sibling(r"pub w$0", ImmediatePrevSibling::Visibility);
}
#[test]
fn test_attr_prev_sibling() {
check_prev_sibling(r"#[attr] w$0", ImmediatePrevSibling::Attribute);
}
}