rust-analyzer/crates/ra_ide/src/display/function_signature.rs
2020-04-30 00:34:46 +08:00

314 lines
10 KiB
Rust

//! FIXME: write short doc here
use std::{
convert::From,
fmt::{self, Display},
};
use hir::{Docs, Documentation, HasSource, HirDisplay};
use ra_ide_db::RootDatabase;
use ra_syntax::ast::{self, AstNode, NameOwner, VisibilityOwner};
use stdx::SepBy;
use crate::display::{generic_parameters, where_predicates};
#[derive(Debug)]
pub enum CallableKind {
Function,
StructConstructor,
VariantConstructor,
Macro,
}
/// Contains information about a function signature
#[derive(Debug)]
pub struct FunctionSignature {
pub kind: CallableKind,
/// Optional visibility
pub visibility: Option<String>,
/// Qualifiers like `async`, `unsafe`, ...
pub qualifier: FunctionQualifier,
/// Name of the function
pub name: Option<String>,
/// Documentation for the function
pub doc: Option<Documentation>,
/// Generic parameters
pub generic_parameters: Vec<String>,
/// Parameters of the function
pub parameters: Vec<String>,
/// Parameter names of the function
pub parameter_names: Vec<String>,
/// Parameter types of the function
pub parameter_types: Vec<String>,
/// Optional return type
pub ret_type: Option<String>,
/// Where predicates
pub where_predicates: Vec<String>,
/// Self param presence
pub has_self_param: bool,
}
#[derive(Debug, Default)]
pub struct FunctionQualifier {
// `async` and `const` are mutually exclusive. Do we need to enforcing it here?
pub is_async: bool,
pub is_const: bool,
pub is_unsafe: bool,
/// The string `extern ".."`
pub extern_abi: Option<String>,
}
impl FunctionSignature {
pub(crate) fn with_doc_opt(mut self, doc: Option<Documentation>) -> Self {
self.doc = doc;
self
}
pub(crate) fn from_hir(db: &RootDatabase, function: hir::Function) -> Self {
let doc = function.docs(db);
let ast_node = function.source(db).value;
FunctionSignature::from(&ast_node).with_doc_opt(doc)
}
pub(crate) fn from_struct(db: &RootDatabase, st: hir::Struct) -> Option<Self> {
let node: ast::StructDef = st.source(db).value;
if let ast::StructKind::Record(_) = node.kind() {
return None;
};
let mut params = vec![];
let mut parameter_types = vec![];
for field in st.fields(db).into_iter() {
let ty = field.signature_ty(db);
let raw_param = format!("{}", ty.display(db));
if let Some(param_type) = raw_param.split(':').nth(1) {
parameter_types.push(param_type[1..].to_string());
} else {
// useful when you have tuple struct
parameter_types.push(raw_param.clone());
}
params.push(raw_param);
}
Some(
FunctionSignature {
kind: CallableKind::StructConstructor,
visibility: node.visibility().map(|n| n.syntax().text().to_string()),
// Do we need `const`?
qualifier: Default::default(),
name: node.name().map(|n| n.text().to_string()),
ret_type: node.name().map(|n| n.text().to_string()),
parameters: params,
parameter_names: vec![],
parameter_types,
generic_parameters: generic_parameters(&node),
where_predicates: where_predicates(&node),
doc: None,
has_self_param: false,
}
.with_doc_opt(st.docs(db)),
)
}
pub(crate) fn from_enum_variant(db: &RootDatabase, variant: hir::EnumVariant) -> Option<Self> {
let node: ast::EnumVariant = variant.source(db).value;
match node.kind() {
ast::StructKind::Record(_) | ast::StructKind::Unit => return None,
_ => (),
};
let parent_name = variant.parent_enum(db).name(db).to_string();
let name = format!("{}::{}", parent_name, variant.name(db));
let mut params = vec![];
let mut parameter_types = vec![];
for field in variant.fields(db).into_iter() {
let ty = field.signature_ty(db);
let raw_param = format!("{}", ty.display(db));
if let Some(param_type) = raw_param.split(':').nth(1) {
parameter_types.push(param_type[1..].to_string());
} else {
// The unwrap_or_else is useful when you have tuple
parameter_types.push(raw_param);
}
let name = field.name(db);
params.push(format!("{}: {}", name, ty.display(db)));
}
Some(
FunctionSignature {
kind: CallableKind::VariantConstructor,
visibility: None,
// Do we need `const`?
qualifier: Default::default(),
name: Some(name),
ret_type: None,
parameters: params,
parameter_names: vec![],
parameter_types,
generic_parameters: vec![],
where_predicates: vec![],
doc: None,
has_self_param: false,
}
.with_doc_opt(variant.docs(db)),
)
}
pub(crate) fn from_macro(db: &RootDatabase, macro_def: hir::MacroDef) -> Option<Self> {
let node: ast::MacroCall = macro_def.source(db).value;
let params = vec![];
Some(
FunctionSignature {
kind: CallableKind::Macro,
visibility: None,
qualifier: Default::default(),
name: node.name().map(|n| n.text().to_string()),
ret_type: None,
parameters: params,
parameter_names: vec![],
parameter_types: vec![],
generic_parameters: vec![],
where_predicates: vec![],
doc: None,
has_self_param: false,
}
.with_doc_opt(macro_def.docs(db)),
)
}
}
impl From<&'_ ast::FnDef> for FunctionSignature {
fn from(node: &ast::FnDef) -> FunctionSignature {
fn param_list(node: &ast::FnDef) -> (bool, Vec<String>, Vec<String>) {
let mut res = vec![];
let mut res_types = vec![];
let mut has_self_param = false;
if let Some(param_list) = node.param_list() {
if let Some(self_param) = param_list.self_param() {
has_self_param = true;
let raw_param = self_param.syntax().text().to_string();
res_types.push(
raw_param.split(':').nth(1).unwrap_or_else(|| " Self")[1..].to_string(),
);
res.push(raw_param);
}
res.extend(param_list.params().map(|param| param.syntax().text().to_string()));
res_types.extend(param_list.params().map(|param| {
param.syntax().text().to_string().split(':').nth(1).unwrap()[1..].to_string()
}));
}
(has_self_param, res, res_types)
}
fn param_name_list(node: &ast::FnDef) -> Vec<String> {
let mut res = vec![];
if let Some(param_list) = node.param_list() {
if let Some(self_param) = param_list.self_param() {
res.push(self_param.syntax().text().to_string())
}
res.extend(
param_list
.params()
.map(|param| {
Some(
param
.pat()?
.syntax()
.descendants()
.find_map(ast::Name::cast)?
.text()
.to_string(),
)
})
.map(|param| param.unwrap_or_default()),
);
}
res
}
let (has_self_param, parameters, parameter_types) = param_list(node);
FunctionSignature {
kind: CallableKind::Function,
visibility: node.visibility().map(|n| n.syntax().text().to_string()),
qualifier: FunctionQualifier {
is_async: node.async_token().is_some(),
is_const: node.const_token().is_some(),
is_unsafe: node.unsafe_token().is_some(),
extern_abi: node.abi().map(|n| n.to_string()),
},
name: node.name().map(|n| n.text().to_string()),
ret_type: node
.ret_type()
.and_then(|r| r.type_ref())
.map(|n| n.syntax().text().to_string()),
parameters,
parameter_names: param_name_list(node),
parameter_types,
generic_parameters: generic_parameters(node),
where_predicates: where_predicates(node),
// docs are processed separately
doc: None,
has_self_param,
}
}
}
impl Display for FunctionSignature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(t) = &self.visibility {
write!(f, "{} ", t)?;
}
if self.qualifier.is_async {
write!(f, "async ")?;
}
if self.qualifier.is_const {
write!(f, "const ")?;
}
if self.qualifier.is_unsafe {
write!(f, "unsafe ")?;
}
if let Some(extern_abi) = &self.qualifier.extern_abi {
// Keyword `extern` is included in the string.
write!(f, "{} ", extern_abi)?;
}
if let Some(name) = &self.name {
match self.kind {
CallableKind::Function => write!(f, "fn {}", name)?,
CallableKind::StructConstructor => write!(f, "struct {}", name)?,
CallableKind::VariantConstructor => write!(f, "{}", name)?,
CallableKind::Macro => write!(f, "{}!", name)?,
}
}
if !self.generic_parameters.is_empty() {
write!(f, "{}", self.generic_parameters.iter().sep_by(", ").surround_with("<", ">"))?;
}
write!(f, "{}", self.parameters.iter().sep_by(", ").surround_with("(", ")"))?;
if let Some(t) = &self.ret_type {
write!(f, " -> {}", t)?;
}
if !self.where_predicates.is_empty() {
write!(f, "\nwhere {}", self.where_predicates.iter().sep_by(",\n "))?;
}
Ok(())
}
}