This is relatively straight-forward via a pass in the compiler to
collect the resources to embed and then use include_bytes! (once per
resource).
What's really annoying is that the rust resource enum can't store a
&'static [u8] because cbindgen doesn't represent that, probably because
the slice representation isn't guaranteed to stay as it is. So instead
this, for now, uses raw pointers.
The Image's source property used to be a string. Now it is a Resource
enum, which can either be None or an absolute file path to the image on
disk. This also replaces the internal Image type.
The compiler internally resolves the img bang expression to a resource
reference, which shall remain just an absolute path. For now the target
generator passes that through, but in the future the target generator
may choose a target specific way of embedding the data and thus
generating a different Resource type in the final code (through
compile_expression in the cpp and rust generator).
The C++ binding is a bit messy as cbindgen doesn't really support
exporting enums that can be constructed on the C++ side. So instead we
use cbindgen to merely export the type internally and only use the tag
from it then. The public API is then a custom Resource type that is
meant to be binary compatible.
By setting RUSTFLAGS in the Cargo config we run into the situation that
when doing a host build, all rust files are compiled with the flags,
including build.rs. When cross-compiling, build.rs is not build with the
RUSTFLAGS specified. That makes kind of sense, but it also means that
all the build scripts are always recompiled when switching between a
target and a host build - and that applies to *all* packages, including
dependencies.
So short of a better solution, this patch removes the need to set
RUSTFLAGS. It was used to extract the system library dependencies for
the static library we'd create. Instead we're now building two shared
libraries and are linking against them. They contain the rust library
twice, so that's not really a desirable final state either, but
productivity wins right now :-)
It might make sense to go back to creating *one* shared library through
a dedicated crate and -- since 'pub extern "C"' functions are not
transitively exported, it may require re-exporting them by hand or using
some clever build trick perhaps.
Based on Olivier's suggestion, the text rendering primitive is created
by painting the text onto a temporary HTML canvas
element and binding that to a texture.
The GL bindings were missing one feature on the web side, the ability to
set texture image data from an HTML canvas element.
We're going to need that soon.
The bump to a newer version also came with some odd (but sensible)
source incompatibilities.
This is not working because spawning cargo for each tests is too slow,
and cannot even re-use the same target directory because it would block
on the cargo lock file. and rebuild all the dependences because of
different flags
* Remove the dependency to the rust frontend and library from the test
driver. Tests are compiled and run as standalone programs.
* Add diagnostics for the initial cargo run for the dependencies.
Collect all tests are build time in build.rs and generate Rust code that
uses #[test] annotated functions. This gives nice reporting and the
ability to run individual tests.