slint/sixtyfps_compiler/expression_tree.rs
Simon Hausmann 071ab9fda1 Prepare for use of percentages as widths in layouts
Delay the conversion of percentage to the float to code generation type
by inserting the multiplication into the syntax tree. That way we will
be able to detect plain uses of percetages and interpret them
differently.
2020-10-16 15:38:35 +02:00

824 lines
30 KiB
Rust

/* LICENSE BEGIN
This file is part of the SixtyFPS Project -- https://sixtyfps.io
Copyright (c) 2020 Olivier Goffart <olivier.goffart@sixtyfps.io>
Copyright (c) 2020 Simon Hausmann <simon.hausmann@sixtyfps.io>
SPDX-License-Identifier: GPL-3.0-only
This file is also available under commercial licensing terms.
Please contact info@sixtyfps.io for more information.
LICENSE END */
use crate::diagnostics::{BuildDiagnostics, Spanned, SpannedWithSourceFile};
use crate::object_tree::*;
use crate::parser::SyntaxNodeWithSourceFile;
use crate::typeregister::{BuiltinElement, EnumerationValue, Type};
use core::cell::RefCell;
use std::collections::HashMap;
use std::hash::Hash;
use std::rc::{Rc, Weak};
/// Reference to a property or signal of a given name within an element.
#[derive(Debug, Clone)]
pub struct NamedReference {
pub element: Weak<RefCell<Element>>,
pub name: String,
}
impl NamedReference {
pub fn new(element: &ElementRc, name: &str) -> Self {
Self { element: Rc::downgrade(element), name: name.to_owned() }
}
}
impl Eq for NamedReference {}
impl PartialEq for NamedReference {
fn eq(&self, other: &Self) -> bool {
self.name == other.name && Weak::ptr_eq(&self.element, &other.element)
}
}
impl Hash for NamedReference {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.name.hash(state);
self.element.as_ptr().hash(state);
}
}
#[derive(Debug, Clone)]
/// A function built into the run-time
pub enum BuiltinFunction {
GetWindowScaleFactor,
Debug,
SetFocusItem,
}
impl BuiltinFunction {
pub fn ty(&self) -> Type {
match self {
BuiltinFunction::GetWindowScaleFactor => {
Type::Function { return_type: Box::new(Type::Float32), args: vec![] }
}
BuiltinFunction::Debug => {
Type::Function { return_type: Box::new(Type::Void), args: vec![Type::String] }
}
BuiltinFunction::SetFocusItem => Type::Function {
return_type: Box::new(Type::Void),
args: vec![Type::ElementReference],
},
}
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum OperatorClass {
ComparisonOp,
LogicalOp,
ArithmeticOp,
}
/// the class of for this (binary) operation
pub fn operator_class(op: char) -> OperatorClass {
match op {
'=' | '!' | '<' | '>' | '≤' | '≥' => OperatorClass::ComparisonOp,
'&' | '|' => OperatorClass::LogicalOp,
'+' | '-' | '/' | '*' => OperatorClass::ArithmeticOp,
_ => panic!("Invalid operator {:?}", op),
}
}
macro_rules! declare_units {
($( $(#[$m:meta])* $ident:ident = $string:literal -> $ty:ident $(* $factor:expr)? ,)*) => {
/// The units that can be used after numbers in the language
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Unit {
$($(#[$m])* $ident,)*
}
impl std::fmt::Display for Unit {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
$(Self::$ident => write!(f, $string), )*
}
}
}
impl std::str::FromStr for Unit {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
$($string => Ok(Self::$ident), )*
_ => Err(())
}
}
}
impl Unit {
pub fn ty(self) -> Type {
match self {
$(Self::$ident => Type::$ty, )*
}
}
pub fn normalize(self, x: f64) -> f64 {
match self {
$(Self::$ident => x $(* $factor as f64)?, )*
}
}
}
};
}
declare_units! {
/// No unit was given
None = "" -> Float32,
///
Percent = "%" -> Percent,
// Lengths or Coord
/// Physical pixels
Phx = "phx" -> Length,
/// Logical pixels
Px = "px" -> LogicalLength,
/// Centimeters
Cm = "cm" -> LogicalLength * 37.8,
/// Milimeters
Mm = "mm" -> LogicalLength * 3.78,
/// inches
In = "in" -> LogicalLength * 96,
/// Points
Pt = "pt" -> LogicalLength * 96/72,
// durations
/// Seconds
S = "s" -> Duration * 1000,
/// Milliseconds
Ms = "ms" -> Duration,
}
impl Default for Unit {
fn default() -> Self {
Self::None
}
}
/// The Expression is hold by properties, so it should not hold any strong references to node from the object_tree
#[derive(Debug, Clone)]
pub enum Expression {
/// Something went wrong (and an error will be reported)
Invalid,
/// We haven't done the lookup yet
Uncompiled(SyntaxNodeWithSourceFile),
/// Special expression that can be the value of a two way binding
TwoWayBinding(NamedReference),
/// A string literal. The .0 is the content of the string, without the quotes
StringLiteral(String),
/// Number
NumberLiteral(f64, Unit),
///
BoolLiteral(bool),
/// Reference to the signal <name> in the <element>
///
/// Note: if we are to separate expression and statement, we probably do not need to have signal reference within expressions
SignalReference(NamedReference),
/// Reference to the signal <name> in the <element>
PropertyReference(NamedReference),
/// Reference to a function built into the run-time, implemented natively
BuiltinFunctionReference(BuiltinFunction),
/// A MemberFunction expression exists only for a short time, for example for `item.focus()` to be translated to
/// a regular FunctionCall expression where the base becomes the first argument.
MemberFunction {
base: Box<Expression>,
base_node: SyntaxNodeWithSourceFile,
member: Box<Expression>,
},
/// A reference to a specific element. This isn't possible to create in .60 syntax itself, but intermediate passes may generate this
/// type of expression.
ElementReference(Weak<RefCell<Element>>),
/// Reference to the index variable of a repeater
///
/// Example: `idx` in `for xxx[idx] in ...`. The element is the reference to the
/// element that is repeated
RepeaterIndexReference {
element: Weak<RefCell<Element>>,
},
/// Reference to the model variable of a repeater
///
/// Example: `xxx` in `for xxx[idx] in ...`. The element is the reference to the
/// element that is repeated
RepeaterModelReference {
element: Weak<RefCell<Element>>,
},
/// Reference the parameter at the given index of the current function.
FunctionParameterReference {
index: usize,
ty: Type,
},
/// Should be directly within a CodeBlock expression, and store the value of the expression in a local variable
StoreLocalVariable {
name: String,
value: Box<Expression>,
},
/// a reference to the local variable with the given name. The type system should ensure that a variable has been stored
/// with this name and this type before in one of the statement of an enclosing codeblock
ReadLocalVariable {
name: String,
ty: Type,
},
/// Access to a field of the given name within a object.
ObjectAccess {
/// This expression should have Type::Object type
base: Box<Expression>,
name: String,
},
/// Cast an expression to the given type
Cast {
from: Box<Expression>,
to: Type,
},
/// a code block with different expression
CodeBlock(Vec<Expression>),
/// A function call
FunctionCall {
function: Box<Expression>,
arguments: Vec<Expression>,
},
/// A SelfAssignment or an Assignment. When op is '=' this is a signel assignment.
SelfAssignment {
lhs: Box<Expression>,
rhs: Box<Expression>,
/// '+', '-', '/', '*', or '='
op: char,
},
BinaryExpression {
lhs: Box<Expression>,
rhs: Box<Expression>,
/// '+', '-', '/', '*', '=', '!', '<', '>', '≤', '≥', '&', '|'
op: char,
},
UnaryOp {
sub: Box<Expression>,
/// '+', '-', '!'
op: char,
},
ResourceReference {
absolute_source_path: String,
},
Condition {
condition: Box<Expression>,
true_expr: Box<Expression>,
false_expr: Box<Expression>,
},
Array {
element_ty: Type,
values: Vec<Expression>,
},
Object {
ty: Type,
values: HashMap<String, Expression>,
},
PathElements {
elements: Path,
},
EasingCurve(EasingCurve),
EnumerationValue(EnumerationValue),
}
impl Default for Expression {
fn default() -> Self {
Expression::Invalid
}
}
impl Expression {
/// Return the type of this property
pub fn ty(&self) -> Type {
match self {
Expression::Invalid => Type::Invalid,
Expression::Uncompiled(_) => Type::Invalid,
Expression::StringLiteral(_) => Type::String,
Expression::NumberLiteral(_, unit) => unit.ty(),
Expression::BoolLiteral(_) => Type::Bool,
Expression::TwoWayBinding(NamedReference { element, name }) => {
element.upgrade().unwrap().borrow().lookup_property(name)
}
Expression::SignalReference(NamedReference { element, name }) => {
element.upgrade().unwrap().borrow().lookup_property(name)
}
Expression::PropertyReference(NamedReference { element, name }) => {
element.upgrade().unwrap().borrow().lookup_property(name)
}
Expression::BuiltinFunctionReference(funcref) => funcref.ty(),
Expression::MemberFunction { member, .. } => member.ty(),
Expression::ElementReference(_) => Type::ElementReference,
Expression::RepeaterIndexReference { .. } => Type::Int32,
Expression::RepeaterModelReference { element } => {
if let Expression::Cast { from, .. } = element
.upgrade()
.unwrap()
.borrow()
.repeated
.as_ref()
.map_or(&Expression::Invalid, |e| &e.model)
{
match from.ty() {
Type::Float32 | Type::Int32 => Type::Int32,
Type::Array(elem) => *elem,
_ => Type::Invalid,
}
} else {
Type::Invalid
}
}
Expression::FunctionParameterReference { ty, .. } => ty.clone(),
Expression::ObjectAccess { base, name } => match base.ty() {
Type::Object(o) => o.get(name.as_str()).unwrap_or(&Type::Invalid).clone(),
Type::Component(c) => c.root_element.borrow().lookup_property(name.as_str()),
_ => Type::Invalid,
},
Expression::Cast { to, .. } => to.clone(),
Expression::CodeBlock(sub) => sub.last().map_or(Type::Void, |e| e.ty()),
Expression::FunctionCall { function, .. } => function.ty(),
Expression::SelfAssignment { .. } => Type::Void,
Expression::ResourceReference { .. } => Type::Resource,
Expression::Condition { condition: _, true_expr, false_expr } => {
let true_type = true_expr.ty();
let false_type = false_expr.ty();
if true_type == false_type {
true_type
} else {
Type::Invalid
}
}
Expression::BinaryExpression { op, lhs, rhs } => {
if operator_class(*op) == OperatorClass::ArithmeticOp {
macro_rules! unit_operations {
($($unit:ident)*) => {
match (*op, lhs.ty(), rhs.ty()) {
$(
('+', Type::$unit, Type::$unit) => Type::$unit,
('-', Type::$unit, Type::$unit) => Type::$unit,
('*', Type::$unit, _) => Type::$unit,
('*', _, Type::$unit) => Type::$unit,
('/', Type::$unit, Type::$unit) => Type::Float32,
('/', Type::$unit, _) => Type::$unit,
)*
_ => Type::Float32,
}
}
}
unit_operations!(Duration Length LogicalLength)
} else {
Type::Bool
}
}
Expression::UnaryOp { sub, .. } => sub.ty(),
Expression::Array { element_ty, .. } => Type::Array(Box::new(element_ty.clone())),
Expression::Object { ty, .. } => ty.clone(),
Expression::PathElements { .. } => Type::PathElements,
Expression::StoreLocalVariable { .. } => Type::Void,
Expression::ReadLocalVariable { ty, .. } => ty.clone(),
Expression::EasingCurve(_) => Type::Easing,
Expression::EnumerationValue(value) => Type::Enumeration(value.enumeration.clone()),
}
}
/// Call the visitor for each sub-expression. (note: this function does not recurse)
pub fn visit(&self, mut visitor: impl FnMut(&Self)) {
match self {
Expression::Invalid => {}
Expression::Uncompiled(_) => {}
Expression::TwoWayBinding(_) => {}
Expression::StringLiteral(_) => {}
Expression::NumberLiteral(_, _) => {}
Expression::BoolLiteral(_) => {}
Expression::SignalReference { .. } => {}
Expression::PropertyReference { .. } => {}
Expression::FunctionParameterReference { .. } => {}
Expression::BuiltinFunctionReference { .. } => {}
Expression::MemberFunction { base, member, .. } => {
visitor(&**base);
visitor(&**member);
}
Expression::ElementReference(_) => {}
Expression::ObjectAccess { base, .. } => visitor(&**base),
Expression::RepeaterIndexReference { .. } => {}
Expression::RepeaterModelReference { .. } => {}
Expression::Cast { from, .. } => visitor(&**from),
Expression::CodeBlock(sub) => {
sub.iter().for_each(visitor);
}
Expression::FunctionCall { function, arguments } => {
visitor(&**function);
arguments.iter().for_each(visitor);
}
Expression::SelfAssignment { lhs, rhs, .. } => {
visitor(&**lhs);
visitor(&**rhs);
}
Expression::ResourceReference { .. } => {}
Expression::Condition { condition, true_expr, false_expr } => {
visitor(&**condition);
visitor(&**true_expr);
visitor(&**false_expr);
}
Expression::BinaryExpression { lhs, rhs, .. } => {
visitor(&**lhs);
visitor(&**rhs);
}
Expression::UnaryOp { sub, .. } => visitor(&**sub),
Expression::Array { values, .. } => {
for x in values {
visitor(x);
}
}
Expression::Object { values, .. } => {
for (_, x) in values {
visitor(x);
}
}
Expression::PathElements { elements } => {
if let Path::Elements(elements) = elements {
for element in elements {
element.bindings.values().for_each(|binding| visitor(binding))
}
}
}
Expression::StoreLocalVariable { value, .. } => visitor(&**value),
Expression::ReadLocalVariable { .. } => {}
Expression::EasingCurve(_) => {}
Expression::EnumerationValue(_) => {}
}
}
pub fn visit_mut(&mut self, mut visitor: impl FnMut(&mut Self)) {
match self {
Expression::Invalid => {}
Expression::Uncompiled(_) => {}
Expression::TwoWayBinding(_) => {}
Expression::StringLiteral(_) => {}
Expression::NumberLiteral(_, _) => {}
Expression::BoolLiteral(_) => {}
Expression::SignalReference { .. } => {}
Expression::PropertyReference { .. } => {}
Expression::FunctionParameterReference { .. } => {}
Expression::BuiltinFunctionReference { .. } => {}
Expression::MemberFunction { base, member, .. } => {
visitor(&mut **base);
visitor(&mut **member);
}
Expression::ElementReference(_) => {}
Expression::ObjectAccess { base, .. } => visitor(&mut **base),
Expression::RepeaterIndexReference { .. } => {}
Expression::RepeaterModelReference { .. } => {}
Expression::Cast { from, .. } => visitor(&mut **from),
Expression::CodeBlock(sub) => {
sub.iter_mut().for_each(visitor);
}
Expression::FunctionCall { function, arguments } => {
visitor(&mut **function);
arguments.iter_mut().for_each(visitor);
}
Expression::SelfAssignment { lhs, rhs, .. } => {
visitor(&mut **lhs);
visitor(&mut **rhs);
}
Expression::ResourceReference { .. } => {}
Expression::Condition { condition, true_expr, false_expr } => {
visitor(&mut **condition);
visitor(&mut **true_expr);
visitor(&mut **false_expr);
}
Expression::BinaryExpression { lhs, rhs, .. } => {
visitor(&mut **lhs);
visitor(&mut **rhs);
}
Expression::UnaryOp { sub, .. } => visitor(&mut **sub),
Expression::Array { values, .. } => {
for x in values {
visitor(x);
}
}
Expression::Object { values, .. } => {
for (_, x) in values {
visitor(x);
}
}
Expression::PathElements { elements } => {
if let Path::Elements(elements) = elements {
for element in elements {
element.bindings.values_mut().for_each(|binding| visitor(binding))
}
}
}
Expression::StoreLocalVariable { value, .. } => visitor(&mut **value),
Expression::ReadLocalVariable { .. } => {}
Expression::EasingCurve(_) => {}
Expression::EnumerationValue(_) => {}
}
}
pub fn is_constant(&self) -> bool {
match self {
Expression::Invalid => true,
Expression::Uncompiled(_) => false,
Expression::TwoWayBinding(_) => false,
Expression::StringLiteral(_) => true,
Expression::NumberLiteral(_, _) => true,
Expression::BoolLiteral(_) => true,
Expression::SignalReference { .. } => false,
Expression::PropertyReference { .. } => false,
Expression::BuiltinFunctionReference { .. } => false,
Expression::MemberFunction { .. } => false,
Expression::ElementReference(_) => false,
Expression::RepeaterIndexReference { .. } => false,
Expression::RepeaterModelReference { .. } => false,
Expression::FunctionParameterReference { .. } => false,
Expression::ObjectAccess { base, .. } => base.is_constant(),
Expression::Cast { from, to } => {
from.is_constant() && !matches!(to, Type::Length | Type::LogicalLength)
}
Expression::CodeBlock(sub) => sub.len() == 1 && sub.first().unwrap().is_constant(),
Expression::FunctionCall { .. } => false,
Expression::SelfAssignment { .. } => false,
Expression::ResourceReference { .. } => true,
Expression::Condition { .. } => false,
Expression::BinaryExpression { lhs, rhs, .. } => lhs.is_constant() && rhs.is_constant(),
Expression::UnaryOp { sub, .. } => sub.is_constant(),
Expression::Array { values, .. } => values.iter().all(Expression::is_constant),
Expression::Object { values, .. } => values.iter().all(|(_, v)| v.is_constant()),
Expression::PathElements { elements } => {
if let Path::Elements(elements) = elements {
elements
.iter()
.all(|element| element.bindings.values().all(|v| v.is_constant()))
} else {
true
}
}
Expression::StoreLocalVariable { .. } => false,
Expression::ReadLocalVariable { .. } => false,
Expression::EasingCurve(_) => true,
Expression::EnumerationValue(_) => true,
}
}
/// Create a conversion node if needed, or throw an error if the type is not matching
pub fn maybe_convert_to(
self,
target_type: Type,
node: &impl SpannedWithSourceFile,
diag: &mut BuildDiagnostics,
) -> Expression {
let ty = self.ty();
if ty == target_type {
self
} else if ty.can_convert(&target_type) {
let from = match (ty, &target_type) {
(Type::Length, Type::LogicalLength) => Expression::BinaryExpression {
lhs: Box::new(self),
rhs: Box::new(Expression::FunctionCall {
function: Box::new(Expression::BuiltinFunctionReference(
BuiltinFunction::GetWindowScaleFactor,
)),
arguments: vec![],
}),
op: '/',
},
(Type::LogicalLength, Type::Length) => Expression::BinaryExpression {
lhs: Box::new(self),
rhs: Box::new(Expression::FunctionCall {
function: Box::new(Expression::BuiltinFunctionReference(
BuiltinFunction::GetWindowScaleFactor,
)),
arguments: vec![],
}),
op: '*',
},
(Type::Percent, Type::Float32) => Expression::BinaryExpression {
lhs: Box::new(self),
rhs: Box::new(Expression::NumberLiteral(0.01, Unit::None)),
op: '*',
},
(Type::Object(ref a), Type::Object(b)) => {
if let Expression::Object { mut values, .. } = self {
let mut new_values = HashMap::new();
for (k, ty) in b {
let (k, e) = values.remove_entry(k).map_or_else(
|| (k.clone(), Expression::default_value_for_type(ty)),
|(k, e)| (k, e.maybe_convert_to(ty.clone(), node, diag)),
);
new_values.insert(k, e);
}
return Expression::Object { values: new_values, ty: target_type };
}
let var_name = "tmpobj";
let mut new_values = HashMap::new();
for (k, ty) in b {
let e = if a.contains_key(k) {
Expression::ObjectAccess {
base: Box::new(Expression::ReadLocalVariable {
name: var_name.into(),
ty: Type::Object(a.clone()),
}),
name: k.clone(),
}
.maybe_convert_to(ty.clone(), node, diag)
} else {
Expression::default_value_for_type(ty)
};
new_values.insert(k.clone(), e);
}
return Expression::CodeBlock(vec![
Expression::StoreLocalVariable {
name: var_name.into(),
value: Box::new(self),
},
Expression::Object { values: new_values, ty: target_type },
]);
}
_ => self,
};
Expression::Cast { from: Box::new(from), to: target_type }
} else if ty == Type::Invalid || target_type == Type::Invalid {
self
} else if matches!((&ty, &target_type, &self), (Type::Array(a), Type::Array(b), Expression::Array{..})
if a.can_convert(b) || **a == Type::Invalid)
{
// Special case for converting array literals
match (self, target_type) {
(Expression::Array { values, .. }, Type::Array(target_type)) => Expression::Array {
values: values
.into_iter()
.map(|e| e.maybe_convert_to((*target_type).clone(), node, diag))
.collect(),
element_ty: *target_type,
},
_ => unreachable!(),
}
} else {
let mut message = format!("Cannot convert {} to {}", ty, target_type);
// Explicit error message for unit cnversion
if let Some(from_unit) = ty.default_unit() {
if matches!(&target_type, Type::Int32 | Type::Float32 | Type::String) {
message = format!(
"{}. Divide by 1{} to convert to a plain number.",
message, from_unit
);
}
} else if let Some(to_unit) = target_type.default_unit() {
if matches!(ty, Type::Int32 | Type::Float32) {
message = format!(
"{}. Use an unit, or multiply by 1{} to convert explicitly.",
message, to_unit
);
}
}
diag.push_error(message, node);
self
}
}
/// Return the default value for the given type
pub fn default_value_for_type(ty: &Type) -> Expression {
match ty {
Type::Invalid
| Type::Component(_)
| Type::Builtin(_)
| Type::Native(_)
| Type::Signal { .. }
| Type::Function { .. }
| Type::Void
| Type::ElementReference => Expression::Invalid,
Type::Float32 => Expression::NumberLiteral(0., Unit::None),
Type::Int32 => Expression::NumberLiteral(0., Unit::None),
Type::String => Expression::StringLiteral(String::new()),
Type::Color => Expression::Cast {
from: Box::new(Expression::NumberLiteral(0., Unit::None)),
to: Type::Color,
},
Type::Duration => Expression::NumberLiteral(0., Unit::Ms),
Type::Length => Expression::NumberLiteral(0., Unit::Phx),
Type::LogicalLength => Expression::NumberLiteral(0., Unit::Px),
Type::Percent => Expression::NumberLiteral(100., Unit::Percent),
// FIXME: Is that correct?
Type::Resource => Expression::ResourceReference { absolute_source_path: String::new() },
Type::Bool => Expression::BoolLiteral(false),
Type::Model => Expression::Invalid,
Type::PathElements => Expression::PathElements { elements: Path::Elements(vec![]) },
Type::Array(element_ty) => {
Expression::Array { element_ty: (**element_ty).clone(), values: vec![] }
}
Type::Object(map) => Expression::Object {
ty: ty.clone(),
values: map
.into_iter()
.map(|(k, v)| (k.clone(), Expression::default_value_for_type(v)))
.collect(),
},
Type::Easing => Expression::EasingCurve(EasingCurve::default()),
Type::Enumeration(enumeration) => {
Expression::EnumerationValue(enumeration.clone().default_value())
}
Type::EnumerationValue(_) => Expression::Invalid,
}
}
/// Return true if the expression is a "lvalue" that can be used as the left hand side of a `=` or `+=` or similar
pub fn is_rw(&self) -> bool {
match self {
Expression::PropertyReference(_) => true,
Expression::ObjectAccess { base, .. } => base.is_rw(),
Expression::RepeaterModelReference { .. } => true,
_ => false,
}
}
}
#[derive(Default, Debug, Clone, derive_more::Deref, derive_more::DerefMut)]
pub struct ExpressionSpanned {
#[deref]
#[deref_mut]
pub expression: Expression,
pub span: Option<(crate::diagnostics::SourceFile, crate::diagnostics::Span)>,
}
impl std::convert::From<Expression> for ExpressionSpanned {
fn from(expression: Expression) -> Self {
Self { expression, span: None }
}
}
impl ExpressionSpanned {
pub fn new_uncompiled(node: SyntaxNodeWithSourceFile) -> Self {
let span = node.source_file().map(|f| (f.clone(), node.span()));
Self { expression: Expression::Uncompiled(node.into()), span }
}
}
impl SpannedWithSourceFile for ExpressionSpanned {
fn source_file(&self) -> Option<&crate::diagnostics::SourceFile> {
self.span.as_ref().map(|x| &x.0)
}
}
impl Spanned for ExpressionSpanned {
fn span(&self) -> crate::diagnostics::Span {
self.span.as_ref().map(|x| x.1.clone()).unwrap_or_default()
}
}
pub type PathEvents = Vec<lyon::path::Event<lyon::math::Point, lyon::math::Point>>;
#[derive(Debug, Clone)]
pub enum Path {
Elements(Vec<PathElement>),
Events(PathEvents),
}
#[derive(Debug, Clone)]
pub struct PathElement {
pub element_type: Rc<BuiltinElement>,
pub bindings: HashMap<String, ExpressionSpanned>,
}
#[derive(Clone, Debug)]
pub enum EasingCurve {
Linear,
CubicBezier(f32, f32, f32, f32),
// CubicBesizerNonConst([Box<Expression>; 4]),
// Custom(Box<dyn Fn(f32)->f32>),
}
impl Default for EasingCurve {
fn default() -> Self {
Self::Linear
}
}