mirror of
https://github.com/slint-ui/slint.git
synced 2025-09-29 13:24:48 +00:00
1200 lines
46 KiB
Rust
1200 lines
46 KiB
Rust
/* LICENSE BEGIN
|
|
This file is part of the SixtyFPS Project -- https://sixtyfps.io
|
|
Copyright (c) 2020 Olivier Goffart <olivier.goffart@sixtyfps.io>
|
|
Copyright (c) 2020 Simon Hausmann <simon.hausmann@sixtyfps.io>
|
|
|
|
SPDX-License-Identifier: GPL-3.0-only
|
|
This file is also available under commercial licensing terms.
|
|
Please contact info@sixtyfps.io for more information.
|
|
LICENSE END */
|
|
#![warn(missing_docs)]
|
|
/*!
|
|
Graphics Abstractions.
|
|
|
|
This module contains the abstractions and convenience types to allow the runtime
|
|
library to instruct different graphics backends to render the tree of items.
|
|
|
|
The entry trait is [GraphicsBackend].
|
|
|
|
The run-time library also makes use of [RenderingCache] to store the rendering primitives
|
|
created by the backend in a type-erased manner.
|
|
*/
|
|
extern crate alloc;
|
|
use crate::input::{KeyEvent, KeyboardModifiers, MouseEvent, MouseEventType};
|
|
use crate::items::ItemRef;
|
|
use crate::properties::{InterpolatedPropertyValue, Property};
|
|
#[cfg(feature = "rtti")]
|
|
use crate::rtti::{BuiltinItem, FieldInfo, PropertyInfo, ValueType};
|
|
use crate::SharedArray;
|
|
use crate::Signal;
|
|
|
|
use cgmath::Matrix4;
|
|
use const_field_offset::FieldOffsets;
|
|
use core::pin::Pin;
|
|
use sixtyfps_corelib_macros::*;
|
|
use std::cell::RefCell;
|
|
use std::rc::Rc;
|
|
|
|
/// 2D Rectangle
|
|
pub type Rect = euclid::default::Rect<f32>;
|
|
/// 2D Point
|
|
pub type Point = euclid::default::Point2D<f32>;
|
|
/// 2D Size
|
|
pub type Size = euclid::default::Size2D<f32>;
|
|
|
|
/// ARGBColor stores the red, green, blue and alpha components of a color
|
|
/// with the precision of the generic parameter T. For example if T is f32,
|
|
/// the values are normalized between 0 and 1. If T is u8, they values range
|
|
/// is 0 to 255.
|
|
/// This is merely a helper class for use with [`Color`].
|
|
#[derive(Copy, Clone, PartialEq, Debug, Default)]
|
|
pub struct ARGBColor<T> {
|
|
/// The alpha component.
|
|
pub alpha: T,
|
|
/// The red channel.
|
|
pub red: T,
|
|
/// The green channel.
|
|
pub green: T,
|
|
/// The blue channel.
|
|
pub blue: T,
|
|
}
|
|
|
|
/// Color represents a color in the SixtyFPS run-time, represented using 8-bit channels for
|
|
/// red, green, blue and the alpha (opacity).
|
|
/// It can be conveniently constructed and destructured using the to_ and from_ (a)rgb helper functions:
|
|
/// ```
|
|
/// # fn do_something_with_red_and_green(_:f32, _:f32) {}
|
|
/// # fn do_something_with_red(_:u8) {}
|
|
/// # use sixtyfps_corelib::graphics::{Color, ARGBColor};
|
|
/// # let some_color = Color::from_rgb_u8(0, 0, 0);
|
|
/// let col = some_color.to_argb_f32();
|
|
/// do_something_with_red_and_green(col.red, col.green);
|
|
///
|
|
/// let ARGBColor { red, blue, green, .. } = some_color.to_argb_u8();
|
|
/// do_something_with_red(red);
|
|
///
|
|
/// let new_col = Color::from(ARGBColor{ red: 0.5, green: 0.65, blue: 0.32, alpha: 1.});
|
|
/// ```
|
|
#[derive(Copy, Clone, PartialEq, Debug, Default)]
|
|
#[repr(C)]
|
|
pub struct Color {
|
|
red: u8,
|
|
green: u8,
|
|
blue: u8,
|
|
alpha: u8,
|
|
}
|
|
|
|
impl From<ARGBColor<u8>> for Color {
|
|
fn from(col: ARGBColor<u8>) -> Self {
|
|
Self { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
|
|
}
|
|
}
|
|
|
|
impl From<Color> for ARGBColor<u8> {
|
|
fn from(col: Color) -> Self {
|
|
ARGBColor { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
|
|
}
|
|
}
|
|
|
|
impl From<ARGBColor<u8>> for ARGBColor<f32> {
|
|
fn from(col: ARGBColor<u8>) -> Self {
|
|
Self {
|
|
red: (col.red as f32) / 255.0,
|
|
green: (col.green as f32) / 255.0,
|
|
blue: (col.blue as f32) / 255.0,
|
|
alpha: (col.alpha as f32) / 255.0,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<Color> for ARGBColor<f32> {
|
|
fn from(col: Color) -> Self {
|
|
let u8col: ARGBColor<u8> = col.into();
|
|
u8col.into()
|
|
}
|
|
}
|
|
|
|
impl From<ARGBColor<f32>> for Color {
|
|
fn from(col: ARGBColor<f32>) -> Self {
|
|
Self {
|
|
red: (col.red * 255.) as u8,
|
|
green: (col.green * 255.) as u8,
|
|
blue: (col.blue * 255.) as u8,
|
|
alpha: (col.alpha * 255.) as u8,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Color {
|
|
/// Construct a color from an integer encoded as `0xAARRGGBB`
|
|
pub const fn from_argb_encoded(encoded: u32) -> Color {
|
|
Self {
|
|
red: (encoded >> 16) as u8,
|
|
green: (encoded >> 8) as u8,
|
|
blue: encoded as u8,
|
|
alpha: (encoded >> 24) as u8,
|
|
}
|
|
}
|
|
|
|
/// Returns `(alpha, red, green, blue)` encoded as u32
|
|
pub fn as_argb_encoded(&self) -> u32 {
|
|
((self.red as u32) << 16)
|
|
| ((self.green as u32) << 8)
|
|
| (self.blue as u32)
|
|
| ((self.alpha as u32) << 24)
|
|
}
|
|
|
|
/// Construct a color from the alpha, red, green and blue color channel parameters.
|
|
pub fn from_argb_u8(alpha: u8, red: u8, green: u8, blue: u8) -> Self {
|
|
Self { red, green, blue, alpha }
|
|
}
|
|
|
|
/// Construct a color from the red, green and blue color channel parameters. The alpha
|
|
/// channel will have the value 255.
|
|
pub fn from_rgb_u8(red: u8, green: u8, blue: u8) -> Self {
|
|
Self::from_argb_u8(255, red, green, blue)
|
|
}
|
|
|
|
/// Construct a color from the alpha, red, green and blue color channel parameters.
|
|
pub fn from_argb_f32(alpha: f32, red: f32, green: f32, blue: f32) -> Self {
|
|
ARGBColor { alpha, red, green, blue }.into()
|
|
}
|
|
|
|
/// Construct a color from the red, green and blue color channel parameters. The alpha
|
|
/// channel will have the value 255.
|
|
pub fn from_rgb_f32(red: f32, green: f32, blue: f32) -> Self {
|
|
Self::from_argb_f32(1.0, red, green, blue)
|
|
}
|
|
|
|
/// Converts this color to an ARGBColor struct for easy destructuring.
|
|
pub fn to_argb_u8(&self) -> ARGBColor<u8> {
|
|
ARGBColor::from(*self)
|
|
}
|
|
|
|
/// Converts this color to an ARGBColor struct for easy destructuring.
|
|
pub fn to_argb_f32(&self) -> ARGBColor<f32> {
|
|
ARGBColor::from(*self)
|
|
}
|
|
|
|
/// Returns the red channel of the color as u8 in the range 0..255.
|
|
pub fn red(self) -> u8 {
|
|
self.red
|
|
}
|
|
|
|
/// Returns the green channel of the color as u8 in the range 0..255.
|
|
pub fn green(self) -> u8 {
|
|
self.green
|
|
}
|
|
|
|
/// Returns the blue channel of the color as u8 in the range 0..255.
|
|
pub fn blue(self) -> u8 {
|
|
self.blue
|
|
}
|
|
|
|
/// Returns the alpha channel of the color as u8 in the range 0..255.
|
|
pub fn alpha(self) -> u8 {
|
|
self.alpha
|
|
}
|
|
}
|
|
|
|
impl InterpolatedPropertyValue for Color {
|
|
fn interpolate(self, target_value: Self, t: f32) -> Self {
|
|
Self {
|
|
red: self.red.interpolate(target_value.red, t),
|
|
green: self.green.interpolate(target_value.green, t),
|
|
blue: self.blue.interpolate(target_value.blue, t),
|
|
alpha: self.alpha.interpolate(target_value.alpha, t),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Display for Color {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
write!(f, "argb({}, {}, {}, {})", self.alpha, self.red, self.green, self.blue)
|
|
}
|
|
}
|
|
|
|
/// A resource is a reference to binary data, for example images. They can be accessible on the file
|
|
/// system or embedded in the resulting binary. Or they might be URLs to a web server and a downloaded
|
|
/// is necessary before they can be used.
|
|
#[derive(Clone, PartialEq, Debug)]
|
|
#[repr(u8)]
|
|
pub enum Resource {
|
|
/// A resource that does not represent any data.
|
|
None,
|
|
/// A resource that points to a file in the file system
|
|
AbsoluteFilePath(crate::SharedString),
|
|
/// A resource that is embedded in the program and accessible via pointer
|
|
/// The format is the same as in a file
|
|
EmbeddedData(super::slice::Slice<'static, u8>),
|
|
/// Raw ARGB
|
|
#[allow(missing_docs)]
|
|
EmbeddedRgbaImage { width: u32, height: u32, data: super::sharedarray::SharedArray<u8> },
|
|
}
|
|
|
|
impl Default for Resource {
|
|
fn default() -> Self {
|
|
Resource::None
|
|
}
|
|
}
|
|
|
|
/// The run-time library uses this enum to instruct the [GraphicsBackend] to render SixtyFPS
|
|
/// graphics items.
|
|
/// The different variants of this enum closely resemble the properties found in the `.60`
|
|
/// mark-up language for various items. More specifically this enum typically holds the
|
|
/// properties that usually require for the allocation and uploading of GPU side data, such
|
|
/// as vertex buffers or textures. Other properties such as colors not part of the enum but
|
|
/// are provided to the back-end using [RenderingVariable]. That means that certain variants
|
|
/// of this enum relate to a sequence of rendering variables.
|
|
///
|
|
/// Always absent here are the starting coordinates for the primitives. Those are provided
|
|
/// using a translation in the transform parameter of [Frame::render_primitive].
|
|
#[derive(PartialEq, Debug)]
|
|
#[repr(C)]
|
|
#[allow(missing_docs)]
|
|
pub enum HighLevelRenderingPrimitive {
|
|
/// There is nothing to draw.
|
|
///
|
|
/// Associated rendering variables: None.
|
|
NoContents,
|
|
/// Renders a rectangle with the specified `width` and `height`.
|
|
///
|
|
/// Expected rendering variables:
|
|
/// * [`RenderingVariable::Color`]: The fill color to use for the rectangle.
|
|
Rectangle { width: f32, height: f32 },
|
|
/// Renders a rectangle with the specified `width` and `height`, as well as a border
|
|
/// around it. The `border_width` specifies the width to use for the border, and the
|
|
/// `border_radius` can be used to render a rounded rectangle.
|
|
///
|
|
/// Expected rendering variables:
|
|
/// * [`RenderingVariable::Color`]: The color to fill the rectangle with.
|
|
/// * [`RenderingVariable::Color`]: The color to use for stroking the border of the rectangle.
|
|
BorderRectangle { width: f32, height: f32, border_width: f32, border_radius: f32 },
|
|
/// Renders a image referenced by the specified `source`.
|
|
///
|
|
/// Optional rendering variables:
|
|
/// * [`RenderingVariable::ScaledWidth`]: The image will be scaled to the specified width.
|
|
/// * [`RenderingVariable::ScaledHeight`]: The image will be scaled to the specified height.
|
|
Image { source: crate::Resource },
|
|
/// Renders the specified `text` with a font that matches the specified family (`font_family`) and the given
|
|
/// pixel size (`font_size`).
|
|
///
|
|
/// Expected rendering variables:
|
|
/// * [`RenderingVariable::Color`]: The color to use for rendering the glyphs.
|
|
/// * [`RenderingVariable::TextCursor`]: Draw a text cursor.
|
|
Text { text: crate::SharedString, font_family: crate::SharedString, font_size: f32 },
|
|
/// Renders a path specified by the `elements` parameter. The path will be scaled to fit into the given
|
|
/// `width` and `height`. If the `stroke_width` is greater than zero, then path will also be outlined.
|
|
///
|
|
/// Expected rendering variables:
|
|
/// * [`RenderingVariable::Color`]: The color to use for filling the path.
|
|
/// * [`RenderingVariable::Color`]: The color to use for the path outline, if a non-zero `stroke_width`
|
|
/// was specified.
|
|
Path { width: f32, height: f32, elements: crate::PathData, stroke_width: f32 },
|
|
}
|
|
|
|
impl Default for HighLevelRenderingPrimitive {
|
|
fn default() -> Self {
|
|
Self::NoContents
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
#[repr(C)]
|
|
/// This enum is used to affect various aspects of the rendering of [GraphicsBackend::LowLevelRenderingPrimitive]
|
|
/// without the need to re-create them. See the documentation of [HighLevelRenderingPrimitive]
|
|
/// about which variables are supported in which order.
|
|
pub enum RenderingVariable {
|
|
/// Translates the primitive by the given (x, y) vector.
|
|
Translate(f32, f32),
|
|
/// Apply the specified color. Depending on the order in the rendering variables array this may apply to different
|
|
/// aspects of the primitive, such as the fill or stroke.
|
|
Color(Color),
|
|
/// Scale the primitive by the specified width.
|
|
ScaledWidth(f32),
|
|
/// Scale the primitive by the specified height.
|
|
ScaledHeight(f32),
|
|
/// Draw a text cursor. The parameters provide the x coordiante and the width/height as (x, width, height) tuple.
|
|
TextCursor(f32, f32, f32),
|
|
/// Draw a text selection. The parameters provide the starting x coordinate, the width and the height. This variable
|
|
/// must be followed by two colors, foreground and background.
|
|
TextSelection(f32, f32, f32),
|
|
}
|
|
|
|
impl RenderingVariable {
|
|
/// Returns the color of this variable, or panics if the enum holds a different variant.
|
|
pub fn as_color(&self) -> &Color {
|
|
match self {
|
|
RenderingVariable::Color(c) => c,
|
|
_ => panic!("internal error: expected color but found something else"),
|
|
}
|
|
}
|
|
/// Returns the scaled width of this variable, or panics if the enum holds a different variant.
|
|
pub fn as_scaled_width(&self) -> f32 {
|
|
match self {
|
|
RenderingVariable::ScaledWidth(w) => *w,
|
|
_ => panic!("internal error: expected scaled width but found something else"),
|
|
}
|
|
}
|
|
/// Returns the scaled height of this variable, or panics if the enum holds a different variant.
|
|
pub fn as_scaled_height(&self) -> f32 {
|
|
match self {
|
|
RenderingVariable::ScaledHeight(h) => *h,
|
|
_ => panic!("internal error: expected scaled height but found something else"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Frame is used to render previously created [GraphicsBackend::LowLevelRenderingPrimitive] instances
|
|
/// to the back-buffer of the window.
|
|
pub trait Frame {
|
|
/// This associated type is usually provided through the [GraphicsBackend::LowLevelRenderingPrimitive] type.
|
|
type LowLevelRenderingPrimitive;
|
|
/// Renderings the provided primitive to the back-buffer, taking the provided transform and additional rendering
|
|
/// variables into account.
|
|
///
|
|
/// Arguments:
|
|
/// * `primitive`: The primitive to render.
|
|
/// * `transform`: The geometry of the primitive will be transformed by this 4x4 matrix. This can be used to apply
|
|
/// rotation, scaling, etc. without re-creating the low-level rendering primitive.
|
|
/// * `variables`: An array of [RenderingVariable] instances that are applied when rendering the primitive. These
|
|
/// variables typically translate to OpenGL uniforms and allow for affecting various aspects of the
|
|
/// rendering of the primitive without expensive buffer uploads to the GPU.
|
|
fn render_primitive(
|
|
&mut self,
|
|
primitive: &Self::LowLevelRenderingPrimitive,
|
|
transform: &Matrix4<f32>,
|
|
variables: SharedArray<RenderingVariable>,
|
|
);
|
|
}
|
|
|
|
/// RenderingPrimitivesBuilder is used to convert instances of [HighLevelRenderingPrimitive] to
|
|
/// the back-end specific [GraphicsBackend::LowLevelRenderingPrimitive], giving the backend a way
|
|
/// to determin the optimal representation for rendering later. For example this may involve uploading
|
|
/// textures for images to GPU memory, pre-rendering glyphs or allocating vertex buffers.
|
|
pub trait RenderingPrimitivesBuilder {
|
|
/// This associated type is usually provided through the [GraphicsBackend::LowLevelRenderingPrimitive] type.
|
|
type LowLevelRenderingPrimitive;
|
|
|
|
/// Lowers the high-level rendering primitive to a representation suitable for the graphics backend.
|
|
///
|
|
/// Arguments:
|
|
/// * `primitive`: The primitive to convert.
|
|
fn create(
|
|
&mut self,
|
|
primitive: HighLevelRenderingPrimitive,
|
|
) -> Self::LowLevelRenderingPrimitive;
|
|
}
|
|
|
|
/// GraphicsBackend is the trait that the the SixtyFPS run-time uses to convert [HighLevelRenderingPrimitive]
|
|
/// to an internal representation that is optimal for the backend, in order to render it later. The internal
|
|
/// representation is opaque but must be provided via the [GraphicsBackend::LowLevelRenderingPrimitive] associated type.
|
|
///
|
|
/// The backend operates in two modes:
|
|
/// 1. It can be used to create new rendering primitives, by calling [GraphicsBackend::new_rendering_primitives_builder]. This is
|
|
/// usually an expensive step, that involves uploading data to the GPU or performing other pre-calculations.
|
|
///
|
|
/// 1. A series of low-level rendering primitives can be rendered into a frame, that's started using [GraphicsBackend::new_frame].
|
|
/// The low-level rendering primitives are intended to be fast and ready for rendering.
|
|
pub trait GraphicsBackend: Sized {
|
|
/// This associated type is typically opaque and is produced by the [RenderingPrimitivesBuilder]. For example it may contain
|
|
/// handles that refer to data that was uploaded to the GPU.
|
|
type LowLevelRenderingPrimitive;
|
|
/// This associated type ties the Frame trait together with this trait's LowLevelRenderingPrimitive.
|
|
type Frame: Frame<LowLevelRenderingPrimitive = Self::LowLevelRenderingPrimitive>;
|
|
/// This associated type ties the RenderingPrimitivesBuilder trait with this trait's LowLevelRenderingPrimitive.
|
|
type RenderingPrimitivesBuilder: RenderingPrimitivesBuilder<
|
|
LowLevelRenderingPrimitive = Self::LowLevelRenderingPrimitive,
|
|
>;
|
|
|
|
/// Creates a new RenderingPrimitivesBuilder for the allocation of any GPU side data of different primitives. Call
|
|
/// [GraphicsBackend::finish_primitives] when done.
|
|
fn new_rendering_primitives_builder(&mut self) -> Self::RenderingPrimitivesBuilder;
|
|
/// When all low-level rendering primitives have been created needed to render your scene, then this method
|
|
/// needs to be called to complete the process.
|
|
///
|
|
/// Arguments:
|
|
/// * `builder`: The [RenderingPrimitivesBuilder] created by calling [GraphicsBackend::new_rendering_primitives_builder].
|
|
fn finish_primitives(&mut self, builder: Self::RenderingPrimitivesBuilder);
|
|
|
|
/// Begins the process of rendering a new frame into what is typically the window back-buffer. Call [GraphicsBackend::present_frame]
|
|
/// when all rendering primitives have been queued for rendering.
|
|
///
|
|
/// Arguments:
|
|
/// * `width`: The width of the window to render.
|
|
/// * `height`: The height of the window to render.
|
|
/// * `clear_color`: The color to clear the back-buffer with.
|
|
fn new_frame(&mut self, width: u32, height: u32, clear_color: &Color) -> Self::Frame;
|
|
/// When all rendering primitives have been queued for rendering with the [Frame] API, pass the frame instance to this function
|
|
/// and thereby complete the rendering. The backend then will present the contents on the screen inside the window, for example by
|
|
/// flushing the backing store or swapping OpenGL buffers.
|
|
///
|
|
/// Arguments:
|
|
/// * `frame`: The frame created by calling [GraphicsBackend::new_frame].
|
|
fn present_frame(&mut self, frame: Self::Frame);
|
|
|
|
/// Returns the window that the backend is associated with.
|
|
fn window(&self) -> &winit::window::Window;
|
|
}
|
|
|
|
/// Holds a GraphicBackend's rendering primitive as well as a PropertyTracker that allows lazily re-creating
|
|
/// the primitive if the properties needed to create it have changed.
|
|
pub struct TrackingRenderingPrimitive<Backend: GraphicsBackend> {
|
|
/// The rendering primitive that's being tracked.
|
|
pub primitive: Backend::LowLevelRenderingPrimitive,
|
|
/// The property tracker that should be used to evaluate whether the primitive needs to be re-created
|
|
/// or not.
|
|
pub dependency_tracker: core::pin::Pin<Box<crate::properties::PropertyTracker>>,
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend> TrackingRenderingPrimitive<Backend> {
|
|
/// Creates a new TrackingRenderingPrimitive by evaluating the provided update_fn once, storing the returned
|
|
/// rendering primitive and initializing the dependency tracker.
|
|
pub fn new(update_fn: impl FnOnce() -> Backend::LowLevelRenderingPrimitive) -> Self {
|
|
let dependency_tracker = Box::pin(crate::properties::PropertyTracker::default());
|
|
let primitive = dependency_tracker.as_ref().evaluate(update_fn);
|
|
Self { primitive, dependency_tracker }
|
|
}
|
|
}
|
|
|
|
/// The RenderingCache is used by the run-time library to avoid storing the
|
|
/// typed [GraphicsBackend::LowLevelRenderingPrimitive] instances created for
|
|
/// [Items][`crate::items`]. Instead it allows mapping them to a usize
|
|
/// handle, and it also allows tracking whenever any of the properties used to
|
|
/// create the primitive changed.
|
|
pub type RenderingCache<Backend> = vec_arena::Arena<TrackingRenderingPrimitive<Backend>>;
|
|
|
|
type WindowFactoryFn<Backend> =
|
|
dyn Fn(&crate::eventloop::EventLoop, winit::window::WindowBuilder) -> Backend;
|
|
|
|
struct MappedWindow<Backend: GraphicsBackend + 'static> {
|
|
backend: RefCell<Backend>,
|
|
rendering_cache: RefCell<RenderingCache<Backend>>,
|
|
}
|
|
|
|
enum GraphicsWindowBackendState<Backend: GraphicsBackend + 'static> {
|
|
Unmapped,
|
|
Mapped(MappedWindow<Backend>),
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend + 'static> GraphicsWindowBackendState<Backend> {
|
|
fn as_mapped(&self) -> &MappedWindow<Backend> {
|
|
match self {
|
|
GraphicsWindowBackendState::Unmapped => panic!(
|
|
"internal error: tried to access window functions that require a mapped window"
|
|
),
|
|
GraphicsWindowBackendState::Mapped(mw) => &mw,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(FieldOffsets)]
|
|
#[repr(C)]
|
|
#[pin]
|
|
struct WindowProperties {
|
|
scale_factor: Property<f32>,
|
|
width: Property<f32>,
|
|
height: Property<f32>,
|
|
}
|
|
|
|
impl Default for WindowProperties {
|
|
fn default() -> Self {
|
|
Self {
|
|
scale_factor: Property::new(1.0),
|
|
width: Property::new(800.),
|
|
height: Property::new(600.),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// GraphicsWindow is an implementation of the [GenericWindow][`crate::eventloop::GenericWindow`] trait. This is
|
|
/// typically instantiated by entry factory functions of the different graphics backends.
|
|
pub struct GraphicsWindow<Backend: GraphicsBackend + 'static> {
|
|
window_factory: Box<WindowFactoryFn<Backend>>,
|
|
map_state: RefCell<GraphicsWindowBackendState<Backend>>,
|
|
properties: Pin<Box<WindowProperties>>,
|
|
cursor_blinker: std::cell::RefCell<pin_weak::rc::PinWeak<TextCursorBlinker>>,
|
|
keyboard_modifiers: std::cell::Cell<KeyboardModifiers>,
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend + 'static> GraphicsWindow<Backend> {
|
|
/// Creates a new reference-counted instance.
|
|
///
|
|
/// Arguments:
|
|
/// * `graphics_backend_factory`: The factor function stored in the GraphicsWindow that's called when the state
|
|
/// of the window changes to mapped. The event loop and window builder parameters can be used to create a
|
|
/// backing window.
|
|
pub fn new(
|
|
graphics_backend_factory: impl Fn(&crate::eventloop::EventLoop, winit::window::WindowBuilder) -> Backend
|
|
+ 'static,
|
|
) -> Rc<Self> {
|
|
Rc::new(Self {
|
|
window_factory: Box::new(graphics_backend_factory),
|
|
map_state: RefCell::new(GraphicsWindowBackendState::Unmapped),
|
|
properties: Box::pin(WindowProperties::default()),
|
|
cursor_blinker: Default::default(),
|
|
keyboard_modifiers: Default::default(),
|
|
})
|
|
}
|
|
|
|
/// Returns the window id of the window if it is mapped, None otherwise.
|
|
pub fn id(&self) -> Option<winit::window::WindowId> {
|
|
Some(self.map_state.borrow().as_mapped().backend.borrow().window().id())
|
|
}
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend> Drop for GraphicsWindow<Backend> {
|
|
fn drop(&mut self) {
|
|
match &*self.map_state.borrow() {
|
|
GraphicsWindowBackendState::Unmapped => {}
|
|
GraphicsWindowBackendState::Mapped(mw) => {
|
|
crate::eventloop::unregister_window(mw.backend.borrow().window().id());
|
|
}
|
|
}
|
|
if let Some(existing_blinker) = self.cursor_blinker.borrow().upgrade() {
|
|
existing_blinker.stop();
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend> crate::eventloop::GenericWindow for GraphicsWindow<Backend> {
|
|
fn draw(self: Rc<Self>, component: crate::component::ComponentRefPin) {
|
|
{
|
|
let map_state = self.map_state.borrow();
|
|
let window = map_state.as_mapped();
|
|
let mut backend = window.backend.borrow_mut();
|
|
let mut rendering_primitives_builder = backend.new_rendering_primitives_builder();
|
|
|
|
// Generate cached rendering data once
|
|
crate::item_tree::visit_items(
|
|
component,
|
|
crate::item_tree::TraversalOrder::BackToFront,
|
|
|_, item, _| {
|
|
crate::item_rendering::update_item_rendering_data(
|
|
item,
|
|
&window.rendering_cache,
|
|
&mut rendering_primitives_builder,
|
|
&self,
|
|
);
|
|
crate::item_tree::ItemVisitorResult::Continue(())
|
|
},
|
|
(),
|
|
);
|
|
|
|
backend.finish_primitives(rendering_primitives_builder);
|
|
}
|
|
|
|
let map_state = self.map_state.borrow();
|
|
let window = map_state.as_mapped();
|
|
let mut backend = window.backend.borrow_mut();
|
|
let size = backend.window().inner_size();
|
|
let mut frame = backend.new_frame(
|
|
size.width,
|
|
size.height,
|
|
&ARGBColor { red: 255 as u8, green: 255, blue: 255, alpha: 255 }.into(),
|
|
);
|
|
crate::item_rendering::render_component_items(
|
|
component,
|
|
&mut frame,
|
|
&mut window.rendering_cache.borrow_mut(),
|
|
&self,
|
|
);
|
|
backend.present_frame(frame);
|
|
}
|
|
|
|
fn process_mouse_input(
|
|
self: Rc<Self>,
|
|
pos: winit::dpi::PhysicalPosition<f64>,
|
|
what: MouseEventType,
|
|
component: crate::component::ComponentRefPin,
|
|
) {
|
|
component.as_ref().input_event(
|
|
MouseEvent { pos: euclid::point2(pos.x as _, pos.y as _), what },
|
|
&crate::eventloop::ComponentWindow::new(self.clone()),
|
|
);
|
|
}
|
|
|
|
fn process_key_input(
|
|
self: Rc<Self>,
|
|
event: &KeyEvent,
|
|
component: core::pin::Pin<crate::component::ComponentRef>,
|
|
) {
|
|
crate::input::process_key_event(
|
|
component,
|
|
event,
|
|
&crate::eventloop::ComponentWindow::new(self.clone()),
|
|
)
|
|
}
|
|
|
|
fn with_platform_window(&self, callback: &dyn Fn(&winit::window::Window)) {
|
|
let map_state = self.map_state.borrow();
|
|
let window = map_state.as_mapped();
|
|
let backend = window.backend.borrow();
|
|
let handle = backend.window();
|
|
callback(handle);
|
|
}
|
|
|
|
fn map_window(
|
|
self: Rc<Self>,
|
|
event_loop: &crate::eventloop::EventLoop,
|
|
root_item: Pin<ItemRef>,
|
|
) {
|
|
if matches!(&*self.map_state.borrow(), GraphicsWindowBackendState::Mapped(..)) {
|
|
return;
|
|
}
|
|
|
|
let id = {
|
|
let window_builder = winit::window::WindowBuilder::new();
|
|
|
|
let backend = self.window_factory.as_ref()(&event_loop, window_builder);
|
|
|
|
let platform_window = backend.window();
|
|
let window_id = platform_window.id();
|
|
|
|
// Ideally we should be passing the initial requested size to the window builder, but those properties
|
|
// may be specified in logical pixels, relative to the scale factory, which we only know *after* mapping
|
|
// the window to the screen. So we first map the window then, propagate the scale factory and *then* the
|
|
// width/height properties should have the correct values calculated via their bindings that multiply with
|
|
// the scale factor.
|
|
// We could pass the logical requested size at window builder time, *if* we knew what the values are.
|
|
{
|
|
self.properties.as_ref().scale_factor.set(platform_window.scale_factor() as _);
|
|
let existing_size = platform_window.inner_size();
|
|
|
|
let mut new_size = existing_size;
|
|
|
|
if let Some(window_item) = ItemRef::downcast_pin(root_item) {
|
|
let width =
|
|
crate::items::Window::FIELD_OFFSETS.width.apply_pin(window_item).get();
|
|
if width > 0. {
|
|
new_size.width = width as _;
|
|
}
|
|
let height =
|
|
crate::items::Window::FIELD_OFFSETS.height.apply_pin(window_item).get();
|
|
if height > 0. {
|
|
new_size.height = height as _;
|
|
}
|
|
|
|
{
|
|
let window = self.clone();
|
|
window_item.as_ref().width.set_binding(move || {
|
|
WindowProperties::FIELD_OFFSETS
|
|
.width
|
|
.apply_pin(window.properties.as_ref())
|
|
.get()
|
|
});
|
|
}
|
|
{
|
|
let window = self.clone();
|
|
window_item.as_ref().height.set_binding(move || {
|
|
WindowProperties::FIELD_OFFSETS
|
|
.height
|
|
.apply_pin(window.properties.as_ref())
|
|
.get()
|
|
});
|
|
}
|
|
}
|
|
|
|
if new_size != existing_size {
|
|
platform_window.set_inner_size(new_size)
|
|
}
|
|
|
|
self.properties.as_ref().width.set(new_size.width as _);
|
|
self.properties.as_ref().height.set(new_size.height as _);
|
|
}
|
|
|
|
self.map_state.replace(GraphicsWindowBackendState::Mapped(MappedWindow {
|
|
backend: RefCell::new(backend),
|
|
rendering_cache: Default::default(),
|
|
}));
|
|
|
|
window_id
|
|
};
|
|
|
|
crate::eventloop::register_window(
|
|
id,
|
|
self.clone() as Rc<dyn crate::eventloop::GenericWindow>,
|
|
);
|
|
}
|
|
|
|
fn request_redraw(&self) {
|
|
match &*self.map_state.borrow() {
|
|
GraphicsWindowBackendState::Unmapped => {}
|
|
GraphicsWindowBackendState::Mapped(window) => {
|
|
window.backend.borrow().window().request_redraw()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn unmap_window(self: Rc<Self>) {
|
|
self.map_state.replace(GraphicsWindowBackendState::Unmapped);
|
|
if let Some(existing_blinker) = self.cursor_blinker.borrow().upgrade() {
|
|
existing_blinker.stop();
|
|
}
|
|
}
|
|
|
|
fn scale_factor(&self) -> f32 {
|
|
WindowProperties::FIELD_OFFSETS.scale_factor.apply_pin(self.properties.as_ref()).get()
|
|
}
|
|
|
|
fn set_scale_factor(&self, factor: f32) {
|
|
self.properties.as_ref().scale_factor.set(factor);
|
|
}
|
|
|
|
fn set_width(&self, width: f32) {
|
|
self.properties.as_ref().width.set(width);
|
|
}
|
|
|
|
fn set_height(&self, height: f32) {
|
|
self.properties.as_ref().height.set(height);
|
|
}
|
|
|
|
fn free_graphics_resources(
|
|
self: Rc<Self>,
|
|
component: core::pin::Pin<crate::component::ComponentRef>,
|
|
) {
|
|
match &*self.map_state.borrow() {
|
|
GraphicsWindowBackendState::Unmapped => {}
|
|
GraphicsWindowBackendState::Mapped(window) => {
|
|
crate::item_rendering::free_item_rendering_data(component, &window.rendering_cache)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn set_cursor_blink_binding(&self, prop: &crate::properties::Property<bool>) {
|
|
let existing_blinker = self.cursor_blinker.borrow().clone();
|
|
|
|
let blinker = existing_blinker.upgrade().unwrap_or_else(|| {
|
|
let new_blinker = TextCursorBlinker::new();
|
|
*self.cursor_blinker.borrow_mut() =
|
|
pin_weak::rc::PinWeak::downgrade(new_blinker.clone());
|
|
new_blinker
|
|
});
|
|
|
|
TextCursorBlinker::set_binding(blinker, prop);
|
|
}
|
|
|
|
/// Returns the currently active keyboard notifiers.
|
|
fn current_keyboard_modifiers(&self) -> KeyboardModifiers {
|
|
self.keyboard_modifiers.get()
|
|
}
|
|
/// Sets the currently active keyboard notifiers. This is used only for testing or directly
|
|
/// from the event loop implementation.
|
|
fn set_current_keyboard_modifiers(&self, state: KeyboardModifiers) {
|
|
self.keyboard_modifiers.set(state)
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(FieldOffsets, Default, BuiltinItem, Clone, Debug, PartialEq)]
|
|
#[pin]
|
|
/// PathLineTo describes the event of moving the cursor on the path to the specified location
|
|
/// along a straight line.
|
|
pub struct PathLineTo {
|
|
#[rtti_field]
|
|
/// The x coordinate where the line should go to.
|
|
pub x: f32,
|
|
#[rtti_field]
|
|
/// The y coordinate where the line should go to.
|
|
pub y: f32,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(FieldOffsets, Default, BuiltinItem, Clone, Debug, PartialEq)]
|
|
#[pin]
|
|
/// PathArcTo describes the event of moving the cursor on the path across an arc to the specified
|
|
/// x/y coordinates, with the specified x/y radius and additional properties.
|
|
pub struct PathArcTo {
|
|
#[rtti_field]
|
|
/// The x coordinate where the arc should end up.
|
|
pub x: f32,
|
|
#[rtti_field]
|
|
/// The y coordinate where the arc should end up.
|
|
pub y: f32,
|
|
#[rtti_field]
|
|
/// The radius on the x-axis of the arc.
|
|
pub radius_x: f32,
|
|
#[rtti_field]
|
|
/// The radius on the y-axis of the arc.
|
|
pub radius_y: f32,
|
|
#[rtti_field]
|
|
/// The rotation along the x-axis of the arc in degress.
|
|
pub x_rotation: f32,
|
|
#[rtti_field]
|
|
/// large_arc indicates whether to take the long or the shorter path to complete the arc.
|
|
pub large_arc: bool,
|
|
#[rtti_field]
|
|
/// sweep indicates the direction of the arc. If true, a clockwise direction is chosen,
|
|
/// otherwise counter-clockwise.
|
|
pub sweep: bool,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// PathElement describes a single element on a path, such as move-to, line-to, etc.
|
|
pub enum PathElement {
|
|
/// The LineTo variant describes a line.
|
|
LineTo(PathLineTo),
|
|
/// The PathArcTo variant describes an arc.
|
|
ArcTo(PathArcTo),
|
|
/// Indicates that the path should be closed now by connecting to the starting point.
|
|
Close,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// PathEvent is a low-level data structure describing the composition of a path. Typically it is
|
|
/// generated at compile time from a higher-level description, such as SVG commands.
|
|
pub enum PathEvent {
|
|
/// The beginning of the path.
|
|
Begin,
|
|
/// A straight line on the path.
|
|
Line,
|
|
/// A quadratic bezier curve on the path.
|
|
Quadratic,
|
|
/// A cubic bezier curve on the path.
|
|
Cubic,
|
|
/// The end of the path that remains open.
|
|
EndOpen,
|
|
/// The end of a path that is closed.
|
|
EndClosed,
|
|
}
|
|
|
|
struct ToLyonPathEventIterator<'a> {
|
|
events_it: std::slice::Iter<'a, PathEvent>,
|
|
coordinates_it: std::slice::Iter<'a, Point>,
|
|
first: Option<&'a Point>,
|
|
last: Option<&'a Point>,
|
|
}
|
|
|
|
impl<'a> Iterator for ToLyonPathEventIterator<'a> {
|
|
type Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>;
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
use lyon::path::Event;
|
|
|
|
self.events_it.next().map(|event| match event {
|
|
PathEvent::Begin => Event::Begin { at: self.coordinates_it.next().unwrap().clone() },
|
|
PathEvent::Line => Event::Line {
|
|
from: self.coordinates_it.next().unwrap().clone(),
|
|
to: self.coordinates_it.next().unwrap().clone(),
|
|
},
|
|
PathEvent::Quadratic => Event::Quadratic {
|
|
from: self.coordinates_it.next().unwrap().clone(),
|
|
ctrl: self.coordinates_it.next().unwrap().clone(),
|
|
to: self.coordinates_it.next().unwrap().clone(),
|
|
},
|
|
PathEvent::Cubic => Event::Cubic {
|
|
from: self.coordinates_it.next().unwrap().clone(),
|
|
ctrl1: self.coordinates_it.next().unwrap().clone(),
|
|
ctrl2: self.coordinates_it.next().unwrap().clone(),
|
|
to: self.coordinates_it.next().unwrap().clone(),
|
|
},
|
|
PathEvent::EndOpen => Event::End {
|
|
first: self.first.unwrap().clone(),
|
|
last: self.last.unwrap().clone(),
|
|
close: false,
|
|
},
|
|
PathEvent::EndClosed => Event::End {
|
|
first: self.first.unwrap().clone(),
|
|
last: self.last.unwrap().clone(),
|
|
close: true,
|
|
},
|
|
})
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.events_it.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<'a> ExactSizeIterator for ToLyonPathEventIterator<'a> {}
|
|
|
|
struct TransformedLyonPathIterator<EventIt> {
|
|
it: EventIt,
|
|
transform: lyon::math::Transform,
|
|
}
|
|
|
|
impl<EventIt: Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>>> Iterator
|
|
for TransformedLyonPathIterator<EventIt>
|
|
{
|
|
type Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>;
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
self.it.next().map(|ev| ev.transformed(&self.transform))
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.it.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<EventIt: Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>>>
|
|
ExactSizeIterator for TransformedLyonPathIterator<EventIt>
|
|
{
|
|
}
|
|
|
|
/// PathDataIterator is a data structure that acts as starting point for iterating
|
|
/// through the low-level events of a path. If the path was constructed from said
|
|
/// events, then it is a very thin abstraction. If the path was created from higher-level
|
|
/// elements, then an intermediate lyon path is required/built.
|
|
pub struct PathDataIterator<'a> {
|
|
it: LyonPathIteratorVariant<'a>,
|
|
transform: Option<lyon::math::Transform>,
|
|
}
|
|
|
|
enum LyonPathIteratorVariant<'a> {
|
|
FromPath(lyon::path::Path),
|
|
FromEvents(&'a crate::SharedArray<PathEvent>, &'a crate::SharedArray<Point>),
|
|
}
|
|
|
|
impl<'a> PathDataIterator<'a> {
|
|
/// Create a new iterator for path traversal.
|
|
pub fn iter(
|
|
&'a self,
|
|
) -> Box<dyn Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a>
|
|
{
|
|
match &self.it {
|
|
LyonPathIteratorVariant::FromPath(path) => self.apply_transform(path.iter()),
|
|
LyonPathIteratorVariant::FromEvents(events, coordinates) => {
|
|
Box::new(self.apply_transform(ToLyonPathEventIterator {
|
|
events_it: events.iter(),
|
|
coordinates_it: coordinates.iter(),
|
|
first: coordinates.first(),
|
|
last: coordinates.last(),
|
|
}))
|
|
}
|
|
}
|
|
}
|
|
|
|
fn fit(&mut self, width: f32, height: f32) {
|
|
if width > 0. || height > 0. {
|
|
let br = lyon::algorithms::aabb::bounding_rect(self.iter());
|
|
self.transform = Some(lyon::algorithms::fit::fit_rectangle(
|
|
&br,
|
|
&Rect::from_size(Size::new(width, height)),
|
|
lyon::algorithms::fit::FitStyle::Min,
|
|
));
|
|
}
|
|
}
|
|
|
|
fn apply_transform(
|
|
&'a self,
|
|
event_it: impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a,
|
|
) -> Box<dyn Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a>
|
|
{
|
|
match self.transform {
|
|
Some(transform) => Box::new(TransformedLyonPathIterator { it: event_it, transform }),
|
|
None => Box::new(event_it),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// PathData represents a path described by either high-level elements or low-level
|
|
/// events and coordinates.
|
|
pub enum PathData {
|
|
/// None is the variant when the path is empty.
|
|
None,
|
|
/// The Elements variant is used to make a Path from shared arrays of elements.
|
|
Elements(crate::SharedArray<PathElement>),
|
|
/// The Events variant describes the path as a series of low-level events and
|
|
/// associated coordinates.
|
|
Events(crate::SharedArray<PathEvent>, crate::SharedArray<Point>),
|
|
}
|
|
|
|
impl Default for PathData {
|
|
fn default() -> Self {
|
|
Self::None
|
|
}
|
|
}
|
|
|
|
impl PathData {
|
|
/// This function returns an iterator that allows traversing the path by means of lyon events.
|
|
pub fn iter(&self) -> PathDataIterator {
|
|
PathDataIterator {
|
|
it: match self {
|
|
PathData::None => LyonPathIteratorVariant::FromPath(lyon::path::Path::new()),
|
|
PathData::Elements(elements) => LyonPathIteratorVariant::FromPath(
|
|
PathData::build_path(elements.as_slice().iter()),
|
|
),
|
|
PathData::Events(events, coordinates) => {
|
|
LyonPathIteratorVariant::FromEvents(events, coordinates)
|
|
}
|
|
},
|
|
transform: None,
|
|
}
|
|
}
|
|
|
|
/// This function returns an iterator that allows traversing the path by means of lyon events.
|
|
pub fn iter_fitted(&self, width: f32, height: f32) -> PathDataIterator {
|
|
let mut it = self.iter();
|
|
it.fit(width, height);
|
|
it
|
|
}
|
|
|
|
fn build_path(element_it: std::slice::Iter<PathElement>) -> lyon::path::Path {
|
|
use lyon::geom::SvgArc;
|
|
use lyon::math::{Angle, Point, Vector};
|
|
use lyon::path::{
|
|
builder::{Build, FlatPathBuilder, SvgBuilder},
|
|
ArcFlags,
|
|
};
|
|
|
|
let mut path_builder = lyon::path::Path::builder().with_svg();
|
|
for element in element_it {
|
|
match element {
|
|
PathElement::LineTo(PathLineTo { x, y }) => {
|
|
path_builder.line_to(Point::new(*x, *y))
|
|
}
|
|
PathElement::ArcTo(PathArcTo {
|
|
x,
|
|
y,
|
|
radius_x,
|
|
radius_y,
|
|
x_rotation,
|
|
large_arc,
|
|
sweep,
|
|
}) => {
|
|
let radii = Vector::new(*radius_x, *radius_y);
|
|
let x_rotation = Angle::degrees(*x_rotation);
|
|
let flags = ArcFlags { large_arc: *large_arc, sweep: *sweep };
|
|
let to = Point::new(*x, *y);
|
|
|
|
let svg_arc = SvgArc {
|
|
from: path_builder.current_position(),
|
|
radii,
|
|
x_rotation,
|
|
flags,
|
|
to,
|
|
};
|
|
|
|
if svg_arc.is_straight_line() {
|
|
path_builder.line_to(to);
|
|
} else {
|
|
path_builder.arc_to(radii, x_rotation, flags, to)
|
|
}
|
|
}
|
|
PathElement::Close => path_builder.close(),
|
|
}
|
|
}
|
|
|
|
path_builder.build()
|
|
}
|
|
}
|
|
|
|
pub(crate) mod ffi {
|
|
#![allow(unsafe_code)]
|
|
|
|
use super::*;
|
|
|
|
#[allow(non_camel_case_types)]
|
|
type c_void = ();
|
|
|
|
/// Expand Rect so that cbindgen can see it. ( is in fact euclid::default::Rect<f32>)
|
|
#[cfg(cbindgen)]
|
|
#[repr(C)]
|
|
struct Rect {
|
|
x: f32,
|
|
y: f32,
|
|
width: f32,
|
|
height: f32,
|
|
}
|
|
|
|
/// Expand Point so that cbindgen can see it. ( is in fact euclid::default::PointD2<f32>)
|
|
#[cfg(cbindgen)]
|
|
#[repr(C)]
|
|
struct Point {
|
|
x: f32,
|
|
y: f32,
|
|
}
|
|
|
|
#[no_mangle]
|
|
/// This function is used for the low-level C++ interface to allocate the backing vector for a shared path element array.
|
|
pub unsafe extern "C" fn sixtyfps_new_path_elements(
|
|
out: *mut c_void,
|
|
first_element: *const PathElement,
|
|
count: usize,
|
|
) {
|
|
let arr = crate::SharedArray::from(std::slice::from_raw_parts(first_element, count));
|
|
core::ptr::write(out as *mut crate::SharedArray<PathElement>, arr.clone());
|
|
}
|
|
|
|
#[no_mangle]
|
|
/// This function is used for the low-level C++ interface to allocate the backing vector for a shared path event array.
|
|
pub unsafe extern "C" fn sixtyfps_new_path_events(
|
|
out_events: *mut c_void,
|
|
out_coordinates: *mut c_void,
|
|
first_event: *const PathEvent,
|
|
event_count: usize,
|
|
first_coordinate: *const Point,
|
|
coordinate_count: usize,
|
|
) {
|
|
let events = crate::SharedArray::from(std::slice::from_raw_parts(first_event, event_count));
|
|
core::ptr::write(out_events as *mut crate::SharedArray<PathEvent>, events.clone());
|
|
let coordinates = crate::SharedArray::from(std::slice::from_raw_parts(
|
|
first_coordinate,
|
|
coordinate_count,
|
|
));
|
|
core::ptr::write(out_coordinates as *mut crate::SharedArray<Point>, coordinates.clone());
|
|
}
|
|
}
|
|
|
|
/// The TextCursorBlinker takes care of providing a toggled boolean property
|
|
/// that can be used to animate a blinking cursor. It's typically stored in the
|
|
/// Window using a Weak and set_binding() can be used to set up a binding on a given
|
|
/// property that'll keep it up-to-date. That binding keeps a strong reference to the
|
|
/// blinker. If the underlying item that uses it goes away, the binding goes away and
|
|
/// so does the blinker.
|
|
#[derive(FieldOffsets)]
|
|
#[repr(C)]
|
|
#[pin]
|
|
struct TextCursorBlinker {
|
|
cursor_visible: Property<bool>,
|
|
cursor_blink_timer: crate::timers::Timer,
|
|
}
|
|
|
|
impl TextCursorBlinker {
|
|
fn new() -> Pin<Rc<Self>> {
|
|
Rc::pin(Self {
|
|
cursor_visible: Property::new(true),
|
|
cursor_blink_timer: Default::default(),
|
|
})
|
|
}
|
|
|
|
fn set_binding(instance: Pin<Rc<TextCursorBlinker>>, prop: &crate::properties::Property<bool>) {
|
|
instance.as_ref().cursor_visible.set(true);
|
|
// Re-start timer, in case.
|
|
Self::start(&instance);
|
|
prop.set_binding(move || {
|
|
TextCursorBlinker::FIELD_OFFSETS.cursor_visible.apply_pin(instance.as_ref()).get()
|
|
});
|
|
}
|
|
|
|
fn start(self: &Pin<Rc<Self>>) {
|
|
if self.cursor_blink_timer.running() {
|
|
self.cursor_blink_timer.restart();
|
|
} else {
|
|
let toggle_cursor = {
|
|
let weak_blinker = pin_weak::rc::PinWeak::downgrade(self.clone());
|
|
move || {
|
|
if let Some(blinker) = weak_blinker.upgrade() {
|
|
let visible = TextCursorBlinker::FIELD_OFFSETS
|
|
.cursor_visible
|
|
.apply_pin(blinker.as_ref())
|
|
.get();
|
|
blinker.cursor_visible.set(!visible);
|
|
}
|
|
}
|
|
};
|
|
self.cursor_blink_timer.start(
|
|
crate::timers::TimerMode::Repeated,
|
|
std::time::Duration::from_millis(500),
|
|
Box::new(toggle_cursor),
|
|
);
|
|
}
|
|
}
|
|
|
|
fn stop(&self) {
|
|
self.cursor_blink_timer.stop()
|
|
}
|
|
}
|