slint/sixtyfps_runtime/interpreter/api.rs
Simon Hausmann 2904ee71e0 Move ValueType into the public Rust interpreter API
That way we can use it to expose the list of public properties
2021-03-30 10:38:02 +02:00

814 lines
31 KiB
Rust

/* LICENSE BEGIN
This file is part of the SixtyFPS Project -- https://sixtyfps.io
Copyright (c) 2020 Olivier Goffart <olivier.goffart@sixtyfps.io>
Copyright (c) 2020 Simon Hausmann <simon.hausmann@sixtyfps.io>
SPDX-License-Identifier: GPL-3.0-only
This file is also available under commercial licensing terms.
Please contact info@sixtyfps.io for more information.
LICENSE END */
use core::convert::TryInto;
use sixtyfps_corelib::{Brush, ImageReference, PathData, SharedString, SharedVector};
use std::collections::HashMap;
use std::iter::FromIterator;
use std::path::{Path, PathBuf};
use std::rc::Rc;
#[doc(inline)]
pub use sixtyfps_compilerlib::diagnostics::{Diagnostic, DiagnosticLevel};
/// This enum represents the different public variants of the [`Value`] enum, without
/// the contained values.
#[repr(i8)]
pub enum ValueType {
/// The variant that expresses the non-type. This is the default.
Void,
/// An `int` or a `float` (this is also used for unit based type such as `length` or `angle`)
Number,
/// Correspond to the `string` type in .60
String,
/// Correspond to the `bool` type in .60
Bool,
/// An Array in the .60 language.
Array,
/// A more complex model which is not created by the interpreter itself (Value::Array can also be used for model)
Model,
/// An object
Struct,
/// Correspond to `brush` or `color` type in .60. For color, this is then a [`Brush::SolidColor`]
Brush,
/// The type is not a public type but something internal.
Other = -1,
}
/// This is a dynamically typed value used in the SixtyFPS interpreter.
/// It can hold a value of different types, and you should use the
/// [`From`] or [`TryInto`] traits to access the value.
///
/// ```
/// # use sixtyfps_interpreter::*;
/// use core::convert::TryInto;
/// // create a value containing an integer
/// let v = Value::from(100u32);
/// assert_eq!(v.try_into(), Ok(100u32));
/// ```
#[derive(Clone)]
#[non_exhaustive]
#[repr(C)]
pub enum Value {
/// There is nothing in this value. That's the default.
/// For example, a function that do not return a result would return a Value::Void
Void,
/// An `int` or a `float` (this is also used for unit based type such as `length` or `angle`)
Number(f64),
/// Correspond to the `string` type in .60
String(SharedString),
/// Correspond to the `bool` type in .60
Bool(bool),
/// Correspond to the `image` type in .60
Image(ImageReference),
/// An Array in the .60 language.
Array(SharedVector<Value>),
/// A more complex model which is not created by the interpreter itself (Value::Array can also be used for model)
Model(Rc<dyn sixtyfps_corelib::model::Model<Data = Value>>),
/// An object
Struct(Struct),
/// Correspond to `brush` or `color` type in .60. For color, this is then a [`Brush::SolidColor`]
Brush(Brush),
#[doc(hidden)]
/// The elements of a path
PathElements(PathData),
#[doc(hidden)]
/// An easing curve
EasingCurve(sixtyfps_corelib::animations::EasingCurve),
#[doc(hidden)]
/// An enumation, like `TextHorizontalAlignment::align_center`, represented by `("TextHorizontalAlignment", "align_center")`.
/// FIXME: consider representing that with a number?
EnumerationValue(String, String),
}
impl Value {
/// Returns the type variant that this value holds without the containing value.
pub fn value_type(&self) -> ValueType {
match self {
Value::Void => ValueType::Void,
Value::Number(_) => ValueType::Number,
Value::String(_) => ValueType::String,
Value::Bool(_) => ValueType::Bool,
Value::Array(_) => ValueType::Array,
Value::Model(_) => ValueType::Model,
Value::Struct(_) => ValueType::Struct,
Value::Brush(_) => ValueType::Brush,
_ => ValueType::Other,
}
}
}
impl Default for Value {
fn default() -> Self {
Value::Void
}
}
impl PartialEq for Value {
fn eq(&self, other: &Self) -> bool {
match self {
Value::Void => matches!(other, Value::Void),
Value::Number(lhs) => matches!(other, Value::Number(rhs) if lhs == rhs),
Value::String(lhs) => matches!(other, Value::String(rhs) if lhs == rhs),
Value::Bool(lhs) => matches!(other, Value::Bool(rhs) if lhs == rhs),
Value::Image(lhs) => matches!(other, Value::Image(rhs) if lhs == rhs),
Value::Array(lhs) => matches!(other, Value::Array(rhs) if lhs == rhs),
Value::Model(lhs) => matches!(other, Value::Model(rhs) if Rc::ptr_eq(lhs, rhs)),
Value::Struct(lhs) => matches!(other, Value::Struct(rhs) if lhs == rhs),
Value::Brush(lhs) => matches!(other, Value::Brush(rhs) if lhs == rhs),
Value::PathElements(lhs) => matches!(other, Value::PathElements(rhs) if lhs == rhs),
Value::EasingCurve(lhs) => matches!(other, Value::EasingCurve(rhs) if lhs == rhs),
Value::EnumerationValue(lhs_name, lhs_value) => {
matches!(other, Value::EnumerationValue(rhs_name, rhs_value) if lhs_name == rhs_name && lhs_value == rhs_value)
}
}
}
}
impl std::fmt::Debug for Value {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Value::Void => write!(f, "Value::Void"),
Value::Number(n) => write!(f, "Value::Number({:?})", n),
Value::String(s) => write!(f, "Value::String({:?})", s),
Value::Bool(b) => write!(f, "Value::Bool({:?})", b),
Value::Image(i) => write!(f, "Value::Image({:?})", i),
Value::Array(a) => write!(f, "Value::Array({:?})", a),
Value::Model(_) => write!(f, "Value::Model(<model object>)"),
Value::Struct(s) => write!(f, "Value::Struct({:?})", s),
Value::Brush(b) => write!(f, "Value::Brush({:?})", b),
Value::PathElements(e) => write!(f, "Value::PathElements({:?})", e),
Value::EasingCurve(c) => write!(f, "Value::EasingCurve({:?})", c),
Value::EnumerationValue(n, v) => write!(f, "Value::EnumerationValue({:?}, {:?})", n, v),
}
}
}
/// Helper macro to implement the From / TryInto for Value
///
/// For example
/// `declare_value_conversion!(Number => [u32, u64, i32, i64, f32, f64] );`
/// means that `Value::Number` can be converted to / from each of the said rust types
///
/// For `Value::Object` mapping to a rust `struct`, one can use [`declare_value_struct_conversion!`]
/// And for `Value::EnumerationValue` which maps to a rust `enum`, one can use [`declare_value_struct_conversion!`]
macro_rules! declare_value_conversion {
( $value:ident => [$($ty:ty),*] ) => {
$(
impl From<$ty> for Value {
fn from(v: $ty) -> Self {
Value::$value(v as _)
}
}
impl TryInto<$ty> for Value {
type Error = Value;
fn try_into(self) -> Result<$ty, Value> {
match self {
//Self::$value(x) => x.try_into().map_err(|_|()),
Self::$value(x) => Ok(x as _),
_ => Err(self)
}
}
}
)*
};
}
declare_value_conversion!(Number => [u32, u64, i32, i64, f32, f64, usize, isize] );
declare_value_conversion!(String => [SharedString] );
declare_value_conversion!(Bool => [bool] );
declare_value_conversion!(Image => [ImageReference] );
declare_value_conversion!(Struct => [Struct] );
declare_value_conversion!(Brush => [Brush] );
declare_value_conversion!(PathElements => [PathData]);
declare_value_conversion!(EasingCurve => [sixtyfps_corelib::animations::EasingCurve]);
/// Implement From / TryInto for Value that convert a `struct` to/from `Value::Object`
macro_rules! declare_value_struct_conversion {
(struct $name:path { $($field:ident),* $(,)? }) => {
impl From<$name> for Value {
fn from($name { $($field),* }: $name) -> Self {
let mut struct_ = Struct::default();
$(struct_.set_field(stringify!($field).into(), $field.into());)*
Value::Struct(struct_)
}
}
impl TryInto<$name> for Value {
type Error = ();
fn try_into(self) -> Result<$name, ()> {
match self {
Self::Struct(x) => {
type Ty = $name;
Ok(Ty {
$($field: x.get_field(stringify!($field)).ok_or(())?.clone().try_into().map_err(|_|())?),*
})
}
_ => Err(()),
}
}
}
};
}
declare_value_struct_conversion!(struct sixtyfps_corelib::model::StandardListViewItem { text });
declare_value_struct_conversion!(struct sixtyfps_corelib::properties::StateInfo { current_state, previous_state, change_time });
declare_value_struct_conversion!(struct sixtyfps_corelib::input::KeyboardModifiers { control, alt, shift, meta });
declare_value_struct_conversion!(struct sixtyfps_corelib::input::KeyEvent { event_type, text, modifiers });
/// Implement From / TryInto for Value that convert an `enum` to/from `Value::EnumerationValue`
///
/// The `enum` must derive `Display` and `FromStr`
/// (can be done with `strum_macros::EnumString`, `strum_macros::Display` derive macro)
macro_rules! declare_value_enum_conversion {
($ty:ty, $n:ident) => {
impl From<$ty> for Value {
fn from(v: $ty) -> Self {
Value::EnumerationValue(stringify!($n).to_owned(), v.to_string())
}
}
impl TryInto<$ty> for Value {
type Error = ();
fn try_into(self) -> Result<$ty, ()> {
use std::str::FromStr;
match self {
Self::EnumerationValue(enumeration, value) => {
if enumeration != stringify!($n) {
return Err(());
}
<$ty>::from_str(value.as_str()).map_err(|_| ())
}
_ => Err(()),
}
}
}
};
}
declare_value_enum_conversion!(
sixtyfps_corelib::items::TextHorizontalAlignment,
TextHorizontalAlignment
);
declare_value_enum_conversion!(
sixtyfps_corelib::items::TextVerticalAlignment,
TextVerticalAlignment
);
declare_value_enum_conversion!(sixtyfps_corelib::items::TextOverflow, TextOverflow);
declare_value_enum_conversion!(sixtyfps_corelib::items::TextWrap, TextWrap);
declare_value_enum_conversion!(sixtyfps_corelib::layout::LayoutAlignment, LayoutAlignment);
declare_value_enum_conversion!(sixtyfps_corelib::items::ImageFit, ImageFit);
declare_value_enum_conversion!(sixtyfps_corelib::input::KeyEventType, KeyEventType);
declare_value_enum_conversion!(sixtyfps_corelib::items::EventResult, EventResult);
declare_value_enum_conversion!(sixtyfps_corelib::items::FillRule, FillRule);
impl From<sixtyfps_corelib::animations::Instant> for Value {
fn from(value: sixtyfps_corelib::animations::Instant) -> Self {
Value::Number(value.0 as _)
}
}
impl TryInto<sixtyfps_corelib::animations::Instant> for Value {
type Error = ();
fn try_into(self) -> Result<sixtyfps_corelib::animations::Instant, ()> {
match self {
Value::Number(x) => Ok(sixtyfps_corelib::animations::Instant(x as _)),
_ => Err(()),
}
}
}
impl From<()> for Value {
#[inline]
fn from(_: ()) -> Self {
Value::Void
}
}
impl TryInto<()> for Value {
type Error = ();
#[inline]
fn try_into(self) -> Result<(), ()> {
Ok(())
}
}
impl From<sixtyfps_corelib::Color> for Value {
#[inline]
fn from(c: sixtyfps_corelib::Color) -> Self {
Value::Brush(Brush::SolidColor(c))
}
}
impl TryInto<sixtyfps_corelib::Color> for Value {
type Error = Value;
#[inline]
fn try_into(self) -> Result<sixtyfps_corelib::Color, Value> {
match self {
Value::Brush(Brush::SolidColor(c)) => Ok(c),
_ => Err(self),
}
}
}
/// This type represents a runtime instance of structure in `.60`.
///
/// This can either be an instance of a name structure introduced
/// with the `struct` keyword in the .60 file, or an annonymous struct
/// writen with the `{ key: value, }` notation.
///
/// It can be constructed with the [`FromIterator`] trait, and converted
/// into or from a [`Value`] with the [`From`] and [`TryInto`] trait
///
///
/// ```
/// # use sixtyfps_interpreter::*;
/// use core::convert::TryInto;
/// // Construct a value from a key/value iterator
/// let value : Value = [("foo".into(), 45u32.into()), ("bar".into(), true.into())]
/// .iter().cloned().collect::<Struct>().into();
///
/// // get the properties of a `{ foo: 45, bar: true }`
/// let s : Struct = value.try_into().unwrap();
/// assert_eq!(s.get_field("foo").cloned().unwrap().try_into(), Ok(45u32));
/// ```
#[derive(Clone, PartialEq, Debug, Default)]
pub struct Struct(HashMap<String, Value>);
impl Struct {
/// Get the value for a given struct field
pub fn get_field(&self, name: &str) -> Option<&Value> {
self.0.get(name)
}
/// Set the value of a given struct field
pub fn set_field(&mut self, name: String, value: Value) {
self.0.insert(name, value);
}
/// Iterate over all the fields in this struct
pub fn iter(&self) -> impl Iterator<Item = (&str, &Value)> {
self.0.iter().map(|(a, b)| (a.as_str(), b))
}
}
impl FromIterator<(String, Value)> for Struct {
fn from_iter<T: IntoIterator<Item = (String, Value)>>(iter: T) -> Self {
Self(iter.into_iter().collect())
}
}
/// FIXME: use SharedArray instead?
impl From<Vec<Value>> for Value {
fn from(a: Vec<Value>) -> Self {
Value::Array(a.into_iter().collect())
}
}
impl TryInto<Vec<Value>> for Value {
type Error = Value;
fn try_into(self) -> Result<Vec<Value>, Value> {
if let Value::Array(a) = self {
Ok(a.into_iter().collect())
} else {
Err(self)
}
}
}
/// ComponentCompiler is the entry point to the SixtyFPS interpreter that can be used
/// to load .60 files or compile them on-the-fly from a string.
pub struct ComponentCompiler {
config: sixtyfps_compilerlib::CompilerConfiguration,
diagnostics: Vec<Diagnostic>,
}
impl ComponentCompiler {
/// Returns a new ComponentCompiler
pub fn new() -> Self {
Self {
config: sixtyfps_compilerlib::CompilerConfiguration::new(
sixtyfps_compilerlib::generator::OutputFormat::Interpreter,
),
diagnostics: vec![],
}
}
/// Sets the include paths used for looking up `.60` imports to the specified vector of paths.
pub fn set_include_paths(&mut self, include_paths: Vec<std::path::PathBuf>) {
self.config.include_paths = include_paths;
}
/// Returns the include paths the component compiler is currently configured with.
pub fn include_paths(&self) -> &Vec<std::path::PathBuf> {
&self.config.include_paths
}
/// Sets the style to be used for widgets.
pub fn set_style(&mut self, style: String) {
self.config.style = Some(style);
}
/// Returns the widget style the compiler is currently using when compiling .60 files.
pub fn style(&self) -> Option<&String> {
self.config.style.as_ref()
}
/// Sets the callback that will be invoked when loading imported .60 files. The specified
/// `file_loader_callback` parameter will be called with a canonical file path as argument
/// and is expected to return a future that, when resolved, provides the source code of the
/// .60 file to be imported as a string.
pub fn set_file_loader(
&mut self,
file_loader_fallback: impl Fn(
&Path,
)
-> core::pin::Pin<Box<dyn core::future::Future<Output = std::io::Result<String>>>>
+ 'static,
) {
self.config.open_import_fallback =
Some(Rc::new(move |path| file_loader_fallback(Path::new(path.as_str()))));
}
/// Returns the diagnostics that were produced in the last call to [[Self::build_from_path]] or [[Self::build_from_source]].
pub fn diagnostics(&self) -> &Vec<Diagnostic> {
&self.diagnostics
}
/// Compile a .60 file into a ComponentDefinition
///
/// Returns the compiled `ComponentDefinition` if there were no errors.
///
/// Any diagnostics produced during the compilation, such as warnigns or errors, are collected
/// in this ComponentCompiler and can be retrieved after the call using the [[Self::diagnostics()]]
/// function. The [`print_diagnostics`] function can be used to display the diagnostics
/// to the users.
///
/// Diagnostics from previous calls are cleared when calling this function.
///
/// This function is `async` but in practice, this is only asynchronious if
/// [`Self::set_file_loader`] was called and its future is actually asynchronious.
/// If that is not used, then it is fine to use a very simple executor, such as the one
/// provided by the `spin_on` crate
pub async fn build_from_path<P: AsRef<Path>>(
&mut self,
path: P,
) -> Option<ComponentDefinition> {
let path = path.as_ref();
let source = match sixtyfps_compilerlib::diagnostics::load_from_path(path) {
Ok(s) => s,
Err(d) => {
self.diagnostics = vec![d];
return None;
}
};
// We create here a 'static guard. That's alright because we make sure
// in this module that we only use erased component
let guard = unsafe { generativity::Guard::new(generativity::Id::new()) };
let (c, diag) =
crate::dynamic_component::load(source, path.into(), self.config.clone(), guard).await;
self.diagnostics = diag.into_iter().collect();
c.ok().map(|inner| ComponentDefinition { inner })
}
/// Compile some .60 code into a ComponentDefinition
///
/// The `path` argument will be used for diagnostics and to compute relative
/// paths while importing.
///
/// Any diagnostics produced during the compilation, such as warnings or errors, are collected
/// in this ComponentCompiler and can be retrieved after the call using the [[Self::diagnostics()]]
/// function. The [`print_diagnostics`] function can be used to display the diagnostics
/// to the users.
///
/// Diagnostics from previous calls are cleared when calling this function.
///
/// This function is `async` but in practice, this is only asynchronious if
/// [`Self::set_file_loader`] is set and its future is actually asynchronious.
/// If that is not used, then it is fine to use a very simple executor, such as the one
/// provided by the `spin_on` crate
pub async fn build_from_source(
&mut self,
source_code: String,
path: PathBuf,
) -> Option<ComponentDefinition> {
// We create here a 'static guard. That's alright because we make sure
// in this module that we only use erased component
let guard = unsafe { generativity::Guard::new(generativity::Id::new()) };
let (c, diag) =
crate::dynamic_component::load(source_code, path, self.config.clone(), guard).await;
self.diagnostics = diag.into_iter().collect();
c.ok().map(|inner| ComponentDefinition { inner })
}
}
/// ComponentDefinition is a representation of a compiled component from .60 markup.
///
/// It can be constructed from a .60 file using the [`ComponentCompiler::build_from_path`] or [`ComponentCompiler::build_from_source`] functions.
/// And then it can be instantiated with the [`Self::create`] function.
///
/// The ComponentDefinition acts as a factory to create new instances. When you've finished
/// creating the instances it is safe to drop the ComponentDefinition.
#[derive(Clone)]
pub struct ComponentDefinition {
inner: Rc<crate::dynamic_component::ComponentDescription<'static>>,
}
impl ComponentDefinition {
/// Creates a new instance of the component and returns a shared handle to it.
pub fn create(&self) -> ComponentInstance {
ComponentInstance {
inner: self.inner.clone().create(
#[cfg(target_arch = "wasm32")]
"canvas".into(),
),
}
}
/// Instantiate the component for wasm using the given canvas id
#[cfg(target_arch = "wasm32")]
pub fn create_with_canvas_id(&self, canvas_id: &str) -> ComponentInstance {
ComponentInstance { inner: self.inner.clone().create(canvas_id.into()) }
}
/// List of publicly declared properties or callback.
///
/// This is internal because it exposes the `Type` from compilerlib.
/// In the future this should probably return an iterator instead.
#[doc(hidden)]
pub fn properties(&self) -> HashMap<String, sixtyfps_compilerlib::langtype::Type> {
self.inner.properties()
}
/// The name of this Component as written in the .60 file
pub fn name(&self) -> &str {
self.inner.id()
}
}
/// Print the diagnostics to stderr
///
/// The diagnostics are printed in the same style as rustc errors
///
/// This function is available when the `display-diagnostics` is enabled.
#[cfg(feature = "display-diagnostics")]
pub fn print_diagnostics(diagnostics: &[Diagnostic]) {
let mut build_diagnostics = sixtyfps_compilerlib::diagnostics::BuildDiagnostics::default();
for d in diagnostics {
build_diagnostics.push_compiler_error(d.clone())
}
build_diagnostics.print();
}
/// This represent an instance of a dynamic component
///
/// You can create an instance with the [`ComponentDefinition::create`] function.
///
/// Properties and callback can be accessed using the associated functions.
///
/// An instance can be put on screen with the [`ComponentInstance::run`] function.
#[repr(C)]
pub struct ComponentInstance {
inner: vtable::VRc<
sixtyfps_corelib::component::ComponentVTable,
crate::dynamic_component::ErasedComponentBox,
>,
}
impl ComponentInstance {
/// Return the [`ComponentDefinition`] that was used to create this instance.
pub fn definition(&self) -> ComponentDefinition {
// We create here a 'static guard. That's alright because we make sure
// in this module that we only use erased component
let guard = unsafe { generativity::Guard::new(generativity::Id::new()) };
ComponentDefinition { inner: self.inner.unerase(guard).description() }
}
/// Return the value for a public property of this component.
///
/// ## Examples
///
/// ```
/// use sixtyfps_interpreter::{ComponentDefinition, ComponentCompiler, Value, SharedString};
/// let code = r#"
/// MyWin := Window {
/// property <int> my_property: 42;
/// }
/// "#;
/// let mut compiler = ComponentCompiler::new();
/// let definition = spin_on::spin_on(
/// compiler.build_from_source(code.into(), Default::default()));
/// assert!(compiler.diagnostics().is_empty(), "{:?}", compiler.diagnostics());
/// let instance = definition.unwrap().create();
/// assert_eq!(instance.get_property("my_property").unwrap(), Value::from(42));
/// ```
pub fn get_property(&self, name: &str) -> Result<Value, GetPropertyError> {
generativity::make_guard!(guard);
let comp = self.inner.unerase(guard);
comp.description()
.get_property(comp.borrow(), name)
.map_err(|()| GetPropertyError::NoSuchProperty)
}
/// Set the value for a public property of this component
pub fn set_property(&self, name: &str, value: Value) -> Result<(), SetPropertyError> {
generativity::make_guard!(guard);
let comp = self.inner.unerase(guard);
comp.description()
.set_property(comp.borrow(), name, value)
.map_err(|()| todo!("set_property don't return the right error type"))
}
/// Set a handler for the callback with the given name. A callback with that
/// name must be defined in the document otherwise an error will be returned.
///
/// Note: Since the [`ComponentInstance`] holds the handler, the handler itself should not
/// contain a strong reference to the instance. So if you need to capture the instance,
/// you should use [`Self::as_weak`] to create a weak reference.
///
/// ## Examples
///
/// ```
/// use sixtyfps_interpreter::{ComponentDefinition, ComponentCompiler, Value, SharedString};
/// use core::convert::TryInto;
/// let code = r#"
/// MyWin := Window {
/// callback foo(int) -> int;
/// property <int> my_prop: 12;
/// }
/// "#;
/// let definition = spin_on::spin_on(
/// ComponentCompiler::new().build_from_source(code.into(), Default::default()));
/// let instance = definition.unwrap().create();
///
/// let instance_weak = instance.as_weak();
/// instance.set_callback("foo", move |args: &[Value]| -> Value {
/// let arg: u32 = args[0].clone().try_into().unwrap();
/// let my_prop = instance_weak.unwrap().get_property("my_prop").unwrap();
/// let my_prop : u32 = my_prop.try_into().unwrap();
/// Value::from(arg + my_prop)
/// }).unwrap();
///
/// let res = instance.invoke_callback("foo", &[Value::from(500)]).unwrap();
/// assert_eq!(res, Value::from(500+12));
/// ```
pub fn set_callback(
&self,
name: &str,
callback: impl Fn(&[Value]) -> Value + 'static,
) -> Result<(), SetCallbackError> {
generativity::make_guard!(guard);
let comp = self.inner.unerase(guard);
comp.description()
.set_callback_handler(comp.borrow(), name, Box::new(callback))
.map_err(|()| SetCallbackError::NoSuchCallback)
}
/// Call the given callback with the arguments
///
/// ## Examples
/// See the documentation of [`Self::set_callback`] for an example
pub fn invoke_callback(&self, name: &str, args: &[Value]) -> Result<Value, CallCallbackError> {
generativity::make_guard!(guard);
let comp = self.inner.unerase(guard);
Ok(comp.description().invoke_callback(comp.borrow(), name, &args).map_err(|()| todo!())?)
}
/// Marks the window of this component to be shown on the screen. This registers
/// the window with the windowing system. In order to react to events from the windowing system,
/// such as draw requests or mouse/touch input, it is still necessary to spin the event loop,
/// using [`crate::run_event_loop`].
pub fn show(&self) {
generativity::make_guard!(guard);
let comp = self.inner.unerase(guard);
comp.window().show();
}
/// Marks the window of this component to be hidden on the screen. This de-registers
/// the window from the windowing system and it will not receive any further events.
pub fn hide(&self) {
generativity::make_guard!(guard);
let comp = self.inner.unerase(guard);
comp.window().hide();
}
/// This is a convenience function that first calls [`Self::show`], followed by [`crate::run_event_loop()`]
/// and [`Self::hide`].
pub fn run(&self) {
self.show();
sixtyfps_rendering_backend_default::backend().run_event_loop();
self.hide();
}
/// Clone this `ComponentInstance`.
///
/// A `ComponentInstance` is in fact a handle to a reference counted instance.
/// This function is semanticallt the same as the one from `Clone::clone`, but
/// Clone is not implemented because of the danger of circular reference:
/// If you want to use this instance in a callback, you should capture a weak
/// reference given by [`Self::as_weak`].
pub fn clone_strong(&self) -> Self {
Self { inner: self.inner.clone() }
}
/// Create a weak pointer to this component
pub fn as_weak(&self) -> WeakComponentInstance {
WeakComponentInstance { inner: vtable::VRc::downgrade(&self.inner) }
}
}
/// A Weak references to a dynamic SixtyFPS components.
#[derive(Clone)]
pub struct WeakComponentInstance {
inner: vtable::VWeak<
sixtyfps_corelib::component::ComponentVTable,
crate::dynamic_component::ErasedComponentBox,
>,
}
impl WeakComponentInstance {
/// Returns a new strongly referenced component if some other instance still
/// holds a strong reference. Otherwise, returns None.
pub fn upgrade(&self) -> Option<ComponentInstance> {
self.inner.upgrade().map(|inner| ComponentInstance { inner })
}
/// Convenience function that returns a new stronlyg referenced component if
/// some other instance still holds a strong reference. Otherwise, this function
/// panics.
pub fn unwrap(&self) -> ComponentInstance {
self.upgrade().unwrap()
}
}
/// Error returned by [`ComponentInstance::get_property`]
#[derive(Debug, Clone, Copy, PartialEq, Eq, thiserror::Error)]
pub enum GetPropertyError {
/// There is no property with the given name
#[error("no such property")]
NoSuchProperty,
}
/// Error returned by [`ComponentInstance::set_property`]
#[derive(Debug, Clone, Copy, PartialEq, Eq, thiserror::Error)]
pub enum SetPropertyError {
/// There is no property with the given name
#[error("no such property")]
NoSuchProperty,
/// The property exist but does not have a type matching the dynamic value
#[error("wrong type")]
WrongType,
}
/// Error returned by [`ComponentInstance::set_callback`]
#[derive(Debug, Clone, Copy, PartialEq, Eq, thiserror::Error)]
pub enum SetCallbackError {
/// There is no callback with the given name
#[error("no such callback")]
NoSuchCallback,
}
/// Error returned by [`ComponentInstance::invoke_callback`]
#[derive(Debug, Clone, Copy, PartialEq, Eq, thiserror::Error)]
pub enum CallCallbackError {
/// There is no callback with the given name
#[error("no such callback")]
NoSuchCallback,
}
/// Enters the main event loop. This is necessary in order to receive
/// events from the windowing system in order to render to the screen
/// and react to user input.
pub fn run_event_loop() {
sixtyfps_rendering_backend_default::backend().run_event_loop();
}
/// This module constains a few function use by tests
pub mod testing {
/// Wrapper around [`sixtyfps_corelib::tests::sixtyfps_send_mouse_click`]
pub fn send_mouse_click(comp: &super::ComponentInstance, x: f32, y: f32) {
sixtyfps_corelib::tests::sixtyfps_send_mouse_click(
&vtable::VRc::into_dyn(comp.inner.clone()),
x,
y,
&comp.inner.window(),
);
}
/// Wrapper around [`sixtyfps_corelib::tests::send_keyboard_string_sequence`]
pub fn send_keyboard_string_sequence(
comp: &super::ComponentInstance,
string: sixtyfps_corelib::SharedString,
) {
sixtyfps_corelib::tests::send_keyboard_string_sequence(
&string,
Default::default(),
&comp.inner.window(),
);
}
}
#[cfg(feature = "ffi")]
#[allow(missing_docs)]
#[path = "ffi.rs"]
pub(crate) mod ffi;