mirror of
https://github.com/slint-ui/slint.git
synced 2025-10-01 22:31:14 +00:00

These are two different concept, and it is confusing to keep them in the same enum We want to support component without any base element, and Void is already used for global component, so do this refactoring before
168 lines
6.9 KiB
Rust
168 lines
6.9 KiB
Rust
// Copyright © SixtyFPS GmbH <info@slint-ui.com>
|
|
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial
|
|
|
|
//! Try to simplify property bindings by propagating constant expressions
|
|
|
|
use crate::expression_tree::*;
|
|
use crate::langtype::ElementType;
|
|
use crate::langtype::Type;
|
|
use crate::object_tree::*;
|
|
|
|
pub fn const_propagation(component: &Component) {
|
|
visit_all_expressions(component, |expr, ty| {
|
|
if matches!(ty(), Type::Callback { .. }) {
|
|
return;
|
|
}
|
|
simplify_expression(expr);
|
|
});
|
|
}
|
|
|
|
/// Returns false if the expression still contains a reference to an element
|
|
fn simplify_expression(expr: &mut Expression) -> bool {
|
|
match expr {
|
|
Expression::PropertyReference(nr) => {
|
|
if nr.is_constant()
|
|
&& !matches!(nr.ty(), Type::Struct { name: Some(name), .. } if name.ends_with("::StateInfo"))
|
|
{
|
|
// Inline the constant value
|
|
if let Some(result) = extract_constant_property_reference(nr) {
|
|
*expr = result;
|
|
return true;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
Expression::BinaryExpression { lhs, op, rhs } => {
|
|
let mut can_inline = simplify_expression(lhs);
|
|
can_inline &= simplify_expression(rhs);
|
|
|
|
let new = match (*op, &mut **lhs, &mut **rhs) {
|
|
('+', Expression::StringLiteral(a), Expression::StringLiteral(b)) => {
|
|
Some(Expression::StringLiteral(format!("{}{}", a, b)))
|
|
}
|
|
('+', Expression::NumberLiteral(a, un1), Expression::NumberLiteral(b, un2))
|
|
if un1 == un2 =>
|
|
{
|
|
Some(Expression::NumberLiteral(*a + *b, *un1))
|
|
}
|
|
('-', Expression::NumberLiteral(a, un1), Expression::NumberLiteral(b, un2))
|
|
if un1 == un2 =>
|
|
{
|
|
Some(Expression::NumberLiteral(*a - *b, *un1))
|
|
}
|
|
('*', Expression::NumberLiteral(a, un1), Expression::NumberLiteral(b, un2))
|
|
if *un1 == Unit::None || *un2 == Unit::None =>
|
|
{
|
|
let preserved_unit = if *un1 == Unit::None { *un2 } else { *un1 };
|
|
Some(Expression::NumberLiteral(*a * *b, preserved_unit))
|
|
}
|
|
(
|
|
'/',
|
|
Expression::NumberLiteral(a, un1),
|
|
Expression::NumberLiteral(b, Unit::None),
|
|
) => Some(Expression::NumberLiteral(*a / *b, *un1)),
|
|
// TODO: take care of * and / when both numbers have units
|
|
('=' | '!', Expression::NumberLiteral(a, _), Expression::NumberLiteral(b, _)) => {
|
|
Some(Expression::BoolLiteral((a == b) == (*op == '=')))
|
|
}
|
|
('=' | '!', Expression::StringLiteral(a), Expression::StringLiteral(b)) => {
|
|
Some(Expression::BoolLiteral((a == b) == (*op == '=')))
|
|
}
|
|
('=' | '!', Expression::EnumerationValue(a), Expression::EnumerationValue(b)) => {
|
|
Some(Expression::BoolLiteral((a == b) == (*op == '=')))
|
|
}
|
|
// TODO: more types and more comparison operators
|
|
('&', Expression::BoolLiteral(false), _) => {
|
|
can_inline = true;
|
|
Some(Expression::BoolLiteral(false))
|
|
}
|
|
('&', _, Expression::BoolLiteral(false)) => {
|
|
can_inline = true;
|
|
Some(Expression::BoolLiteral(false))
|
|
}
|
|
('&', Expression::BoolLiteral(true), e) => Some(std::mem::take(e)),
|
|
('&', e, Expression::BoolLiteral(true)) => Some(std::mem::take(e)),
|
|
('|', Expression::BoolLiteral(true), _) => {
|
|
can_inline = true;
|
|
Some(Expression::BoolLiteral(true))
|
|
}
|
|
('|', _, Expression::BoolLiteral(true)) => {
|
|
can_inline = true;
|
|
Some(Expression::BoolLiteral(true))
|
|
}
|
|
('|', Expression::BoolLiteral(false), e) => Some(std::mem::take(e)),
|
|
('|', e, Expression::BoolLiteral(false)) => Some(std::mem::take(e)),
|
|
_ => None,
|
|
};
|
|
if let Some(new) = new {
|
|
*expr = new;
|
|
}
|
|
can_inline
|
|
}
|
|
Expression::Cast { from, to } => {
|
|
let can_inline = simplify_expression(from);
|
|
let new = if from.ty() == *to {
|
|
Some(std::mem::take(&mut **from))
|
|
} else {
|
|
match (&**from, to) {
|
|
(Expression::NumberLiteral(x, Unit::None), Type::String) => {
|
|
Some(Expression::StringLiteral((*x).to_string()))
|
|
}
|
|
_ => None,
|
|
}
|
|
};
|
|
if let Some(new) = new {
|
|
*expr = new;
|
|
}
|
|
can_inline
|
|
}
|
|
Expression::CallbackReference { .. } => false,
|
|
Expression::ElementReference { .. } => false,
|
|
// FIXME
|
|
Expression::LayoutCacheAccess { .. } => false,
|
|
Expression::SolveLayout { .. } => false,
|
|
Expression::ComputeLayoutInfo { .. } => false,
|
|
_ => {
|
|
let mut result = true;
|
|
expr.visit_mut(|expr| result &= simplify_expression(expr));
|
|
result
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Will extract the property binding from the given named reference
|
|
/// and propagate constant expression within it. If that's possible,
|
|
/// return the new expression
|
|
fn extract_constant_property_reference(nr: &NamedReference) -> Option<Expression> {
|
|
debug_assert!(nr.is_constant());
|
|
// find the binding.
|
|
let mut element = nr.element();
|
|
let mut expression = loop {
|
|
if let Some(binding) = element.borrow().bindings.get(nr.name()) {
|
|
let binding = binding.borrow();
|
|
if !binding.two_way_bindings.is_empty() {
|
|
// TODO: In practice, we should still find out what the real binding is
|
|
// and solve that.
|
|
return None;
|
|
}
|
|
if !matches!(binding.expression, Expression::Invalid) {
|
|
break binding.expression.clone();
|
|
}
|
|
};
|
|
if let Some(decl) = element.clone().borrow().property_declarations.get(nr.name()) {
|
|
if let Some(alias) = &decl.is_alias {
|
|
return extract_constant_property_reference(alias);
|
|
}
|
|
} else if let ElementType::Component(c) = &element.clone().borrow().base_type {
|
|
element = c.root_element.clone();
|
|
continue;
|
|
}
|
|
|
|
// There is no binding for this property, return the default value
|
|
return Some(Expression::default_value_for_type(&nr.ty()));
|
|
};
|
|
if !(simplify_expression(&mut expression)) {
|
|
return None;
|
|
}
|
|
Some(expression)
|
|
}
|