slint/sixtyfps_compiler/generator.rs
Olivier Goffart dd3fa1c221 Make the BindingMap hold RefCell of the BindingExpression
This will allow later to be able to operate on the binding despite the
element is borrowed.

Since the Binding itself is in a RefCell, the analysis don't need to
be anymore.
To do this change, a small change in the binding_analysis logic was required
which means that we will now detect binding loop if a binding was causing
two binding loop. (before, only one binding loop was detected)
2021-11-11 11:14:59 +01:00

402 lines
14 KiB
Rust

/* LICENSE BEGIN
This file is part of the SixtyFPS Project -- https://sixtyfps.io
Copyright (c) 2021 Olivier Goffart <olivier.goffart@sixtyfps.io>
Copyright (c) 2021 Simon Hausmann <simon.hausmann@sixtyfps.io>
SPDX-License-Identifier: GPL-3.0-only
This file is also available under commercial licensing terms.
Please contact info@sixtyfps.io for more information.
LICENSE END */
/*!
The module responsible for the code generation.
There is one sub module for every language
*/
use std::collections::{HashSet, VecDeque};
use std::rc::{Rc, Weak};
use crate::diagnostics::BuildDiagnostics;
use crate::expression_tree::{BindingExpression, Expression};
use crate::langtype::Type;
use crate::namedreference::NamedReference;
use crate::object_tree::{Component, Document, ElementRc};
#[cfg(feature = "cpp")]
mod cpp;
#[cfg(feature = "rust")]
pub mod rust;
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum OutputFormat {
#[cfg(feature = "cpp")]
Cpp,
#[cfg(feature = "rust")]
Rust,
Interpreter,
}
impl OutputFormat {
pub fn guess_from_extension(path: &std::path::Path) -> Option<Self> {
match path.extension().and_then(|ext| ext.to_str()) {
#[cfg(feature = "cpp")]
Some("cpp") | Some("cxx") | Some("h") | Some("hpp") => Some(Self::Cpp),
#[cfg(feature = "rust")]
Some("rs") => Some(Self::Rust),
_ => None,
}
}
}
impl std::str::FromStr for OutputFormat {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
#[cfg(feature = "cpp")]
"cpp" => Ok(Self::Cpp),
#[cfg(feature = "rust")]
"rust" => Ok(Self::Rust),
_ => Err(format!("Unknown outpout format {}", s)),
}
}
}
pub fn generate(
format: OutputFormat,
destination: &mut impl std::io::Write,
doc: &Document,
diag: &mut BuildDiagnostics,
) -> std::io::Result<()> {
#![allow(unused_variables)]
#![allow(unreachable_code)]
if matches!(doc.root_component.root_element.borrow().base_type, Type::Invalid | Type::Void) {
// empty document, nothing to generate
return Ok(());
}
match format {
#[cfg(feature = "cpp")]
OutputFormat::Cpp => {
if let Some(output) = cpp::generate(doc, diag) {
write!(destination, "{}", output)?;
}
}
#[cfg(feature = "rust")]
OutputFormat::Rust => {
if let Some(output) = rust::generate(doc, diag) {
write!(destination, "{}", output)?;
}
}
OutputFormat::Interpreter => {
return Err(std::io::Error::new(
std::io::ErrorKind::Other,
"Unsupported output format: The interpreter is not a valid output format yet.",
)); // Perhaps byte code in the future?
}
}
Ok(())
}
/// A reference to this trait is passed to the [`build_item_tree`] function.
/// It can be used to build the array for the item tree.
pub trait ItemTreeBuilder {
/// Some state that contains the code on how to access some particular component
type SubComponentState: Clone;
fn push_repeated_item(
&mut self,
item: &crate::object_tree::ElementRc,
repeater_count: u32,
parent_index: u32,
component_state: &Self::SubComponentState,
);
fn push_native_item(
&mut self,
item: &ElementRc,
children_offset: u32,
parent_index: u32,
component_state: &Self::SubComponentState,
);
/// Called when a component is entered, this allow to change the component_state.
/// The returned SubComponentState will be used for all the items within that component
fn enter_component(
&mut self,
item: &ElementRc,
sub_component: &Rc<Component>,
children_offset: u32,
component_state: &Self::SubComponentState,
) -> Self::SubComponentState;
/// Called before the children of a component are entered.
fn enter_component_children(
&mut self,
item: &ElementRc,
repeater_count: u32,
component_state: &Self::SubComponentState,
sub_component_state: &Self::SubComponentState,
);
}
/// Visit each item in order in which they should appear in the children tree array.
pub fn build_item_tree<T: ItemTreeBuilder>(
root_component: &Rc<Component>,
initial_state: &T::SubComponentState,
builder: &mut T,
) {
if let Some(sub_component) = root_component.root_element.borrow().sub_component() {
assert!(root_component.root_element.borrow().children.is_empty());
let sub_compo_state =
builder.enter_component(&root_component.root_element, &sub_component, 1, initial_state);
builder.enter_component_children(
&root_component.root_element,
0,
initial_state,
&sub_compo_state,
);
build_item_tree::<T>(sub_component, &sub_compo_state, builder);
} else {
let mut repeater_count = 0;
visit_item(initial_state, &root_component.root_element, 1, &mut repeater_count, 0, builder);
visit_children(
initial_state,
&root_component.root_element.borrow().children,
&root_component,
&root_component.root_element,
0,
0,
1,
1,
&mut repeater_count,
builder,
);
}
// Size of the element's children and grand-children including
// sub-component children, needed to allocate the correct amount of
// index spaces for sub-components.
fn item_sub_tree_size(e: &ElementRc) -> usize {
let e = if let Some(sub_component) = e.borrow().sub_component() {
sub_component.root_element.clone()
} else {
e.clone()
};
let mut count = e.borrow().children.len();
for i in &e.borrow().children {
count += item_sub_tree_size(i);
}
count
}
fn visit_children<T: ItemTreeBuilder>(
state: &T::SubComponentState,
children: &Vec<ElementRc>,
component: &Rc<Component>,
parent_item: &ElementRc,
parent_index: u32,
relative_parent_index: u32,
children_offset: u32,
relative_children_offset: u32,
repeater_count: &mut u32,
builder: &mut T,
) {
debug_assert_eq!(
relative_parent_index,
parent_item.borrow().item_index.get().map(|x| *x as u32).unwrap_or(parent_index)
);
// Suppose we have this:
// ```
// Button := Rectangle { /* some repeater here*/ }
// StandardButton := Button { /* no children */ }
// App := Dialog { StandardButton { /* no children */ }}
// ```
// The inlining pass ensures that *if* `StandardButton` had children, `Button` would be inlined, but that's not the case here.
//
// We are in the stage of visiting the Dialog's children and we'll end up visiting the Button's Rectangle because visit_item()
// on the StandardButton - a Dialog's child - follows all the way to the Rectangle as native item. We've also determine that
// StandardButton is a sub-component and we'll call visit_children() on it. Now we are here. However as `StandardButton` has no children,
// and therefore we would never recurse into `Button`'s children and thus miss the repeater. That is what this condition attempts to
// detect and chain the children visitation.
if children.is_empty() {
if let Some(nested_subcomponent) = parent_item.borrow().sub_component() {
let sub_component_state = builder.enter_component(
parent_item,
nested_subcomponent,
children_offset,
state,
);
visit_children(
&sub_component_state,
&nested_subcomponent.root_element.borrow().children,
&nested_subcomponent,
&nested_subcomponent.root_element,
parent_index,
relative_parent_index,
children_offset,
relative_children_offset,
repeater_count,
builder,
);
return;
}
}
let mut offset = children_offset + children.len() as u32;
let mut sub_component_states = VecDeque::new();
for child in children.iter() {
if let Some(sub_component) = child.borrow().sub_component() {
let sub_component_state =
builder.enter_component(child, &sub_component, offset, state);
visit_item(
&sub_component_state,
&sub_component.root_element,
offset,
repeater_count,
parent_index,
builder,
);
sub_component_states.push_back(sub_component_state);
} else {
visit_item(state, child, offset, repeater_count, parent_index, builder);
}
offset += item_sub_tree_size(child) as u32;
}
let mut offset = children_offset + children.len() as u32;
let mut relative_offset = relative_children_offset + children.len() as u32;
let mut index = children_offset;
let mut relative_index = relative_children_offset;
for e in children.iter() {
if let Some(sub_component) = e.borrow().sub_component() {
let sub_tree_state = sub_component_states.pop_front().unwrap();
builder.enter_component_children(e, *repeater_count, state, &sub_tree_state);
visit_children(
&sub_tree_state,
&sub_component.root_element.borrow().children,
sub_component,
&sub_component.root_element,
index,
0,
offset,
1,
repeater_count,
builder,
);
} else {
visit_children(
state,
&e.borrow().children,
component,
e,
index,
relative_index,
offset,
relative_offset,
repeater_count,
builder,
);
}
index += 1;
relative_index += 1;
let size = item_sub_tree_size(e) as u32;
offset += size;
relative_offset += size;
}
}
fn visit_item<T: ItemTreeBuilder>(
component_state: &T::SubComponentState,
item: &ElementRc,
children_offset: u32,
repeater_count: &mut u32,
parent_index: u32,
builder: &mut T,
) {
if item.borrow().repeated.is_some() {
builder.push_repeated_item(item, *repeater_count, parent_index, component_state);
*repeater_count += 1;
return;
} else {
let mut item = item.clone();
let mut component_state = component_state.clone();
while let Some((base, state)) = {
let base = item.borrow().sub_component().map(|c| {
(
c.root_element.clone(),
builder.enter_component(&item, &c, children_offset, &component_state),
)
});
base
} {
item = base;
component_state = state;
}
builder.push_native_item(&item, children_offset, parent_index, &component_state)
}
}
}
/// Will call the `handle_property` callback for every property that needs to be initialized.
/// This function makes sure to call them in order so that if constant binding need to access
/// constant properties, these are already initialized
pub fn handle_property_bindings_init(
component: &Rc<Component>,
mut handle_property: impl FnMut(&ElementRc, &str, &BindingExpression),
) {
fn handle_property_inner(
component: &Weak<Component>,
elem: &ElementRc,
prop_name: &str,
binding_expression: &BindingExpression,
handle_property: &mut impl FnMut(&ElementRc, &str, &BindingExpression),
processed: &mut HashSet<NamedReference>,
) {
let nr = NamedReference::new(elem, prop_name);
if processed.contains(&nr) {
return;
}
processed.insert(nr);
if binding_expression.analysis.as_ref().map_or(false, |a| a.is_const) {
// We must first handle all dependent properties in case it is a constant property
binding_expression.expression.visit_recursive(&mut |e| {
if let Expression::PropertyReference(nr) = e {
let elem = nr.element();
if Weak::ptr_eq(&elem.borrow().enclosing_component, component) {
if let Some(be) = elem.borrow().bindings.get(nr.name()) {
handle_property_inner(
component,
&elem,
nr.name(),
&be.borrow(),
handle_property,
processed,
);
}
}
}
})
}
handle_property(elem, prop_name, binding_expression);
}
let mut processed = HashSet::new();
crate::object_tree::recurse_elem(&component.root_element, &(), &mut |elem: &ElementRc, ()| {
for (prop_name, binding_expression) in &elem.borrow().bindings {
handle_property_inner(
&Rc::downgrade(component),
elem,
prop_name,
&binding_expression.borrow(),
&mut handle_property,
&mut processed,
);
}
});
}