slint/internal/compiler/passes/const_propagation.rs
Olivier Goffart 9111dbfbce Don't optimize const state property
state info properties are special and cannot simply be inlined or set
(because we need to record the time it was changed and stuff)
So disable the optimization for now.

In fact, what could be done is to remove the state entirely if the state property
is constant. But that change is a bit more involved

This patch does:
 - Don't inline const state property
 - Don't generate a call to .set in the generated code
 - Also allowed to debug the expression with a context from the generator
   (added T generic parameter to the pretty printer)

Fix panic reported in https://github.com/slint-ui/slint/issues/1327#issuecomment-1151244049
2022-06-27 16:25:57 +02:00

167 lines
6.9 KiB
Rust

// Copyright © SixtyFPS GmbH <info@slint-ui.com>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial
//! Try to simplify property bindings by propagating constant expressions
use crate::expression_tree::*;
use crate::langtype::Type;
use crate::object_tree::*;
pub fn const_propagation(component: &Component) {
visit_all_expressions(component, |expr, ty| {
if matches!(ty(), Type::Callback { .. }) {
return;
}
simplify_expression(expr);
});
}
/// Returns false if the expression still contains a reference to an element
fn simplify_expression(expr: &mut Expression) -> bool {
match expr {
Expression::PropertyReference(nr) => {
if nr.is_constant()
&& !matches!(nr.ty(), Type::Struct { name: Some(name), .. } if name.ends_with("::StateInfo"))
{
// Inline the constant value
if let Some(result) = extract_constant_property_reference(nr) {
*expr = result;
return true;
}
}
false
}
Expression::BinaryExpression { lhs, op, rhs } => {
let mut can_inline = simplify_expression(lhs);
can_inline &= simplify_expression(rhs);
let new = match (*op, &mut **lhs, &mut **rhs) {
('+', Expression::StringLiteral(a), Expression::StringLiteral(b)) => {
Some(Expression::StringLiteral(format!("{}{}", a, b)))
}
('+', Expression::NumberLiteral(a, un1), Expression::NumberLiteral(b, un2))
if un1 == un2 =>
{
Some(Expression::NumberLiteral(*a + *b, *un1))
}
('-', Expression::NumberLiteral(a, un1), Expression::NumberLiteral(b, un2))
if un1 == un2 =>
{
Some(Expression::NumberLiteral(*a - *b, *un1))
}
('*', Expression::NumberLiteral(a, un1), Expression::NumberLiteral(b, un2))
if *un1 == Unit::None || *un2 == Unit::None =>
{
let preserved_unit = if *un1 == Unit::None { *un2 } else { *un1 };
Some(Expression::NumberLiteral(*a * *b, preserved_unit))
}
(
'/',
Expression::NumberLiteral(a, un1),
Expression::NumberLiteral(b, Unit::None),
) => Some(Expression::NumberLiteral(*a / *b, *un1)),
// TODO: take care of * and / when both numbers have units
('=' | '!', Expression::NumberLiteral(a, _), Expression::NumberLiteral(b, _)) => {
Some(Expression::BoolLiteral((a == b) == (*op == '=')))
}
('=' | '!', Expression::StringLiteral(a), Expression::StringLiteral(b)) => {
Some(Expression::BoolLiteral((a == b) == (*op == '=')))
}
('=' | '!', Expression::EnumerationValue(a), Expression::EnumerationValue(b)) => {
Some(Expression::BoolLiteral((a == b) == (*op == '=')))
}
// TODO: more types and more comparison operators
('&', Expression::BoolLiteral(false), _) => {
can_inline = true;
Some(Expression::BoolLiteral(false))
}
('&', _, Expression::BoolLiteral(false)) => {
can_inline = true;
Some(Expression::BoolLiteral(false))
}
('&', Expression::BoolLiteral(true), e) => Some(std::mem::take(e)),
('&', e, Expression::BoolLiteral(true)) => Some(std::mem::take(e)),
('|', Expression::BoolLiteral(true), _) => {
can_inline = true;
Some(Expression::BoolLiteral(true))
}
('|', _, Expression::BoolLiteral(true)) => {
can_inline = true;
Some(Expression::BoolLiteral(true))
}
('|', Expression::BoolLiteral(false), e) => Some(std::mem::take(e)),
('|', e, Expression::BoolLiteral(false)) => Some(std::mem::take(e)),
_ => None,
};
if let Some(new) = new {
*expr = new;
}
can_inline
}
Expression::Cast { from, to } => {
let can_inline = simplify_expression(from);
let new = if from.ty() == *to {
Some(std::mem::take(&mut **from))
} else {
match (&**from, to) {
(Expression::NumberLiteral(x, Unit::None), Type::String) => {
Some(Expression::StringLiteral((*x).to_string()))
}
_ => None,
}
};
if let Some(new) = new {
*expr = new;
}
can_inline
}
Expression::CallbackReference { .. } => false,
Expression::ElementReference { .. } => false,
// FIXME
Expression::LayoutCacheAccess { .. } => false,
Expression::SolveLayout { .. } => false,
Expression::ComputeLayoutInfo { .. } => false,
_ => {
let mut result = true;
expr.visit_mut(|expr| result &= simplify_expression(expr));
result
}
}
}
/// Will extract the property binding from the given named reference
/// and propagate constant expression within it. If that's possible,
/// return the new expression
fn extract_constant_property_reference(nr: &NamedReference) -> Option<Expression> {
debug_assert!(nr.is_constant());
// find the binding.
let mut element = nr.element();
let mut expression = loop {
if let Some(binding) = element.borrow().bindings.get(nr.name()) {
let binding = binding.borrow();
if !binding.two_way_bindings.is_empty() {
// TODO: In practice, we should still find out what the real binding is
// and solve that.
return None;
}
if !matches!(binding.expression, Expression::Invalid) {
break binding.expression.clone();
}
};
if let Some(decl) = element.clone().borrow().property_declarations.get(nr.name()) {
if let Some(alias) = &decl.is_alias {
return extract_constant_property_reference(alias);
}
} else if let Type::Component(c) = &element.clone().borrow().base_type {
element = c.root_element.clone();
continue;
}
// There is no binding for this property, return the default value
return Some(Expression::default_value_for_type(&nr.ty()));
};
if !(simplify_expression(&mut expression)) {
return None;
}
Some(expression)
}