slint/sixtyfps_compiler/object_tree.rs
Olivier Goffart a987b225b5 Collect all used components before inlining
And do some passes before inlining

We will need the list of components before inlining in order to generate
them if we disable inlining

So we can do some passes on each component before they are inlining

I tried to put the flickable pass in that list, but it did not work
if the Flickable itself is the root of a component
2021-07-07 17:58:43 +02:00

1612 lines
60 KiB
Rust

/* LICENSE BEGIN
This file is part of the SixtyFPS Project -- https://sixtyfps.io
Copyright (c) 2021 Olivier Goffart <olivier.goffart@sixtyfps.io>
Copyright (c) 2021 Simon Hausmann <simon.hausmann@sixtyfps.io>
SPDX-License-Identifier: GPL-3.0-only
This file is also available under commercial licensing terms.
Please contact info@sixtyfps.io for more information.
LICENSE END */
/*!
This module contains the intermediate representation of the code in the form of an object tree
*/
use itertools::Either;
use crate::diagnostics::{BuildDiagnostics, SourceLocation, Spanned};
use crate::expression_tree::{self, BindingExpression, Expression, Unit};
use crate::langtype::PropertyLookupResult;
use crate::langtype::{BuiltinElement, NativeClass, Type};
use crate::layout::{LayoutConstraints, Orientation};
use crate::namedreference::NamedReference;
use crate::parser::{identifier_text, syntax_nodes, SyntaxKind, SyntaxNode};
use crate::typeloader::ImportedTypes;
use crate::typeregister::TypeRegister;
use std::cell::RefCell;
use std::collections::{BTreeMap, HashMap};
use std::rc::{Rc, Weak};
macro_rules! unwrap_or_continue {
($e:expr ; $diag:expr) => {
match $e {
Some(x) => x,
None => {
debug_assert!($diag.has_error()); // error should have been reported at parsing time
continue;
}
}
};
}
/// The full document (a complete file)
#[derive(Default, Debug)]
pub struct Document {
pub node: Option<syntax_nodes::Document>,
pub inner_components: Vec<Rc<Component>>,
pub inner_structs: Vec<Type>,
pub root_component: Rc<Component>,
pub local_registry: TypeRegister,
/// A list of paths to .ttf/.ttc files that are supposed to be registered on
/// startup for custom font use.
pub custom_fonts: Vec<String>,
exports: Exports,
}
impl Document {
pub fn from_node(
node: syntax_nodes::Document,
foreign_imports: Vec<ImportedTypes>,
diag: &mut BuildDiagnostics,
parent_registry: &Rc<RefCell<TypeRegister>>,
) -> Self {
debug_assert_eq!(node.kind(), SyntaxKind::Document);
let mut local_registry = TypeRegister::new(parent_registry);
let mut inner_components = vec![];
let mut inner_structs = vec![];
let mut process_component =
|n: syntax_nodes::Component,
diag: &mut BuildDiagnostics,
local_registry: &mut TypeRegister| {
let compo = Component::from_node(n, diag, local_registry);
local_registry.add(compo.clone());
inner_components.push(compo);
};
let mut process_struct =
|n: syntax_nodes::StructDeclaration,
diag: &mut BuildDiagnostics,
local_registry: &mut TypeRegister| {
let mut ty = type_struct_from_node(n.ObjectType(), diag, local_registry);
if let Type::Struct { name, .. } = &mut ty {
*name = identifier_text(&n.DeclaredIdentifier());
} else {
assert!(diag.has_error());
return;
}
local_registry.insert_type(ty.clone());
inner_structs.push(ty);
};
for n in node.children() {
match n.kind() {
SyntaxKind::Component => process_component(n.into(), diag, &mut local_registry),
SyntaxKind::StructDeclaration => {
process_struct(n.into(), diag, &mut local_registry)
}
SyntaxKind::ExportsList => {
for n in n.children() {
match n.kind() {
SyntaxKind::Component => {
process_component(n.into(), diag, &mut local_registry)
}
SyntaxKind::StructDeclaration => {
process_struct(n.into(), diag, &mut local_registry)
}
_ => {}
}
}
}
_ => {}
};
}
let exports = Exports::from_node(&node, &inner_components, &local_registry, diag);
let root_component = inner_components
.last()
.cloned()
.or_else(|| {
node.ImportSpecifier()
.last()
.and_then(|import| {
crate::typeloader::ImportedName::extract_imported_names(&import)
.and_then(|it| it.last())
})
.and_then(|import| match local_registry.lookup(&import.internal_name) {
Type::Component(c) => Some(c),
_ => None,
})
})
.unwrap_or_default();
let custom_fonts = foreign_imports
.into_iter()
.filter_map(|import| {
if import.file.ends_with(".ttc")
|| import.file.ends_with(".ttf")
|| import.file.ends_with(".otf")
{
Some(import.file)
} else {
diag.push_error(
format!("Unsupported foreign import {}", import.file),
&import.import_token,
);
None
}
})
.collect();
Document {
node: Some(node),
root_component,
inner_components,
inner_structs,
local_registry,
custom_fonts,
exports,
}
}
pub fn exports(&self) -> &Vec<(String, Type)> {
&self.exports.0
}
}
#[derive(Debug)]
pub struct PopupWindow {
pub component: Rc<Component>,
pub x: NamedReference,
pub y: NamedReference,
}
type ChildrenInsertionPoint = (ElementRc, syntax_nodes::ChildrenPlaceholder);
/// Used sub types for a root component
#[derive(Debug, Default)]
pub struct UsedSubTypes {
/// All the globals used by the component and its children.
pub globals: Vec<Rc<Component>>,
/// All the structs used by the component and its children.
pub structs: Vec<Type>,
/// All the sub components use by this components and its children,
/// and the amount of time it is used
pub sub_components: Vec<Rc<Component>>,
}
/// A component is a type in the language which can be instantiated,
/// Or is materialized for repeated expression.
#[derive(Default, Debug)]
pub struct Component {
// node: SyntaxNode,
pub id: String,
pub root_element: ElementRc,
/// The parent element within the parent component if this component represents a repeated element
pub parent_element: Weak<RefCell<Element>>,
/// List of elements that are not attached to the root anymore because they have been
/// optimized away, but their properties may still be in use
pub optimized_elements: RefCell<Vec<ElementRc>>,
/// Map of resources that should be embedded in the generated code, indexed by their absolute path on
/// disk on the build system and valued by a unique integer id, that can be used by the
/// generator for symbol generation.
pub embedded_file_resources: RefCell<HashMap<String, usize>>,
/// The layout constraints of the root item
pub root_constraints: RefCell<LayoutConstraints>,
/// When creating this component and inserting "children", append them to the children of
/// the element pointer to by this field.
pub child_insertion_point: RefCell<Option<ChildrenInsertionPoint>>,
/// Code to be inserted into the constructor
pub setup_code: RefCell<Vec<Expression>>,
/// The list of used extra types used (recursively) by this root component.
/// (This only make sense on the root component)
pub used_types: RefCell<UsedSubTypes>,
pub popup_windows: RefCell<Vec<PopupWindow>>,
}
impl Component {
pub fn from_node(
node: syntax_nodes::Component,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> Rc<Self> {
let mut child_insertion_point = None;
let c = Component {
id: identifier_text(&node.DeclaredIdentifier()).unwrap_or_default(),
root_element: Element::from_node(
node.Element(),
"root".into(),
Type::Invalid,
&mut child_insertion_point,
diag,
tr,
),
child_insertion_point: RefCell::new(child_insertion_point),
..Default::default()
};
let c = Rc::new(c);
let weak = Rc::downgrade(&c);
recurse_elem(&c.root_element, &(), &mut |e, _| {
e.borrow_mut().enclosing_component = weak.clone()
});
c
}
/// This component is a global component introduced with the "global" keyword
pub fn is_global(&self) -> bool {
match &self.root_element.borrow().base_type {
Type::Void => true,
Type::Builtin(c) => c.is_global,
_ => false,
}
}
}
#[derive(Clone, Debug, Default)]
pub struct PropertyDeclaration {
pub property_type: Type,
pub node: Option<Either<syntax_nodes::PropertyDeclaration, syntax_nodes::CallbackDeclaration>>,
/// Tells if getter and setter will be added to expose in the native language API
pub expose_in_public_api: bool,
/// Public API property exposed as an alias: it shouldn't be generated but instead forward to the alias.
pub is_alias: Option<NamedReference>,
}
impl PropertyDeclaration {
// For diagnostics: return a node pointing to the type
pub fn type_node(&self) -> Option<SyntaxNode> {
self.node.as_ref().map(|x| -> crate::parser::SyntaxNode {
x.as_ref().either(
|x| x.Type().map_or_else(|| x.clone().into(), |x| x.into()),
|x| x.clone().into(),
)
})
}
}
impl From<Type> for PropertyDeclaration {
fn from(ty: Type) -> Self {
PropertyDeclaration { property_type: ty, ..Self::default() }
}
}
#[derive(Debug, Clone)]
pub struct TransitionPropertyAnimation {
/// The state id as computed in lower_state
pub state_id: i32,
/// false for 'to', true for 'out'
pub is_out: bool,
/// The content of the `animation` object
pub animation: ElementRc,
}
impl TransitionPropertyAnimation {
/// Return an expression which returns a boolean which is true if the transition is active.
/// The state argument is an expression referencing the state property of type StateInfo
pub fn condition(&self, state: Expression) -> Expression {
Expression::BinaryExpression {
lhs: Box::new(Expression::StructFieldAccess {
base: Box::new(state),
name: (if self.is_out { "previous_state" } else { "current_state" }).into(),
}),
rhs: Box::new(Expression::NumberLiteral(self.state_id as _, Unit::None)),
op: '=',
}
}
}
#[derive(Debug, Clone)]
pub enum PropertyAnimation {
Static(ElementRc),
Transition { state_ref: Expression, animations: Vec<TransitionPropertyAnimation> },
}
/// An Element is an instantiation of a Component
#[derive(Default)]
pub struct Element {
/// The id as named in the original .60 file.
///
/// Note that it can only be used for lookup before inlining.
/// After inlining there can be duplicated id in the component.
/// The id are then re-assigned unique id in the assign_id pass
pub id: String,
//pub base: QualifiedTypeName,
pub base_type: crate::langtype::Type,
/// Currently contains also the callbacks. FIXME: should that be changed?
pub bindings: BTreeMap<String, BindingExpression>,
pub property_analysis: RefCell<HashMap<String, PropertyAnalysis>>,
pub children: Vec<ElementRc>,
/// The component which contains this element.
pub enclosing_component: Weak<Component>,
pub property_declarations: BTreeMap<String, PropertyDeclaration>,
/// Main owner for a reference to a property.
pub named_references: crate::namedreference::NamedReferenceContainer,
pub property_animations: HashMap<String, PropertyAnimation>,
/// Tis element is part of a `for <xxx> in <model>:
pub repeated: Option<RepeatedElementInfo>,
pub states: Vec<State>,
pub transitions: Vec<Transition>,
/// true when this item's geometry is handled by a layout
pub child_of_layout: bool,
/// The property pointing to the layout info. `(horizontal, vertical)`
pub layout_info_prop: Option<(NamedReference, NamedReference)>,
/// true if this Element is the fake Flickable viewport
pub is_flickable_viewport: bool,
/// This is the component-local index of this item in the item tree array.
/// It is generated after the last pass and before the generators run.
pub item_index: once_cell::unsync::OnceCell<usize>,
/// The AST node, if available
pub node: Option<syntax_nodes::Element>,
}
impl Spanned for Element {
fn span(&self) -> crate::diagnostics::Span {
self.node.as_ref().map(|n| n.span()).unwrap_or_default()
}
fn source_file(&self) -> Option<&crate::diagnostics::SourceFile> {
self.node.as_ref().map(|n| &n.source_file)
}
}
impl core::fmt::Debug for Element {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
pretty_print(f, self, 0)
}
}
pub fn pretty_print(
f: &mut impl std::fmt::Write,
e: &Element,
indentation: usize,
) -> std::fmt::Result {
if let Some(repeated) = &e.repeated {
write!(f, "for {}[{}] in ", repeated.model_data_id, repeated.index_id)?;
expression_tree::pretty_print(f, &repeated.model)?;
write!(f, ":")?;
}
writeln!(f, "{} := {} {{", e.id, e.base_type)?;
let mut indentation = indentation + 1;
macro_rules! indent {
() => {
for _ in 0..indentation {
write!(f, " ")?
}
};
}
for (name, ty) in &e.property_declarations {
indent!();
if let Some(alias) = &ty.is_alias {
writeln!(f, "alias<{}> {} <=> {:?};", ty.property_type, name, alias)?
} else {
writeln!(f, "property<{}> {};", ty.property_type, name)?
}
}
for (name, expr) in &e.bindings {
indent!();
write!(f, "{}: ", name)?;
expression_tree::pretty_print(f, &expr.expression)?;
writeln!(f, ";")?;
//writeln!(f, "; /*{}*/", expr.priority)?;
}
for (name, anim) in &e.property_animations {
indent!();
writeln!(f, "animate {} {:?}", name, anim)?;
}
if !e.states.is_empty() {
indent!();
writeln!(f, "states {:?}", e.states)?;
}
if !e.transitions.is_empty() {
indent!();
writeln!(f, "transitions {:?} ", e.transitions)?;
}
for c in &e.children {
indent!();
pretty_print(f, &c.borrow(), indentation)?
}
/*if let Type::Component(base) = &e.base_type {
pretty_print(f, &c.borrow(), indentation)?
}*/
indentation -= 1;
indent!();
writeln!(f, "}}")
}
#[derive(Clone, Default, Debug)]
pub struct PropertyAnalysis {
/// true if somewhere in the code, there is an expression that changes this property with an assignment
pub is_set: bool,
/// true if somewhere in the code, an expression is reading this property
/// Note: currently this is only set in the binding analysis pass
pub is_read: bool,
}
impl PropertyAnalysis {
/// Merge analysis from base element for e.g. inlining
pub fn merge(&mut self, other: &PropertyAnalysis) {
self.is_set |= other.is_set;
}
}
#[derive(Debug, Clone)]
pub struct ListViewInfo {
pub viewport_y: NamedReference,
pub viewport_height: NamedReference,
pub viewport_width: NamedReference,
pub listview_height: NamedReference,
pub listview_width: NamedReference,
}
#[derive(Debug, Clone)]
/// If the parent element is a repeated element, this has information about the models
pub struct RepeatedElementInfo {
pub model: Expression,
pub model_data_id: String,
pub index_id: String,
/// A conditional element is just a for whose model is a boolean expression
///
/// When this is true, the model is of type boolean instead of Model
pub is_conditional_element: bool,
/// When the for is the delegate of a ListView
pub is_listview: Option<ListViewInfo>,
}
pub type ElementRc = Rc<RefCell<Element>>;
impl Element {
pub fn from_node(
node: syntax_nodes::Element,
id: String,
parent_type: Type,
component_child_insertion_point: &mut Option<ChildrenInsertionPoint>,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> ElementRc {
let base_type = if let Some(base_node) = node.QualifiedName() {
let base = QualifiedTypeName::from_node(base_node.clone());
let base_string = base.to_string();
match parent_type.lookup_type_for_child_element(&base_string, tr) {
Ok(Type::Component(c)) if c.is_global() => {
diag.push_error(
"Cannot create an instance of a global component".into(),
&base_node,
);
Type::Invalid
}
Ok(ty @ Type::Component(_)) | Ok(ty @ Type::Builtin(_)) => ty,
Ok(ty) => {
diag.push_error(format!("'{}' cannot be used as an element", ty), &base_node);
Type::Invalid
}
Err(err) => {
diag.push_error(err, &base_node);
Type::Invalid
}
}
} else {
if parent_type != Type::Invalid {
// This should normally never happen because the parser does not allow for this
assert!(diag.has_error());
return ElementRc::default();
}
// This must be a global component it can only have properties and callback
let mut error_on = |node: &dyn Spanned, what: &str| {
diag.push_error(format!("A global component cannot have {}", what), node);
};
node.SubElement().for_each(|n| error_on(&n, "sub elements"));
node.RepeatedElement().for_each(|n| error_on(&n, "sub elements"));
node.ChildrenPlaceholder().map(|n| error_on(&n, "sub elements"));
node.CallbackConnection().for_each(|n| error_on(&n, "callback connections"));
node.PropertyAnimation().for_each(|n| error_on(&n, "animations"));
node.States().for_each(|n| error_on(&n, "states"));
node.Transitions().for_each(|n| error_on(&n, "transitions"));
Type::Void
};
let mut r = Element { id, base_type, node: Some(node.clone()), ..Default::default() };
for prop_decl in node.PropertyDeclaration() {
let prop_type = prop_decl
.Type()
.map(|type_node| {
let prop_type = type_from_node(type_node.clone(), diag, tr);
if prop_type != Type::Invalid && !prop_type.is_property_type() {
diag.push_error(
format!("'{}' is not a valid property type", prop_type),
&type_node,
);
}
prop_type
})
// Type::Void is used for two way bindings without type specified
.unwrap_or(Type::InferredProperty);
let unresolved_prop_name =
unwrap_or_continue!(identifier_text(&prop_decl.DeclaredIdentifier()); diag);
let PropertyLookupResult {
resolved_name: prop_name,
property_type: maybe_existing_prop_type,
} = r.lookup_property(&unresolved_prop_name);
if !matches!(maybe_existing_prop_type, Type::Invalid) {
diag.push_error(
format!("Cannot override property '{}'", prop_name),
&prop_decl.DeclaredIdentifier().child_token(SyntaxKind::Identifier).unwrap(),
)
}
r.property_declarations.insert(
prop_name.to_string(),
PropertyDeclaration {
property_type: prop_type,
node: Some(Either::Left(prop_decl.clone())),
..Default::default()
},
);
if let Some(csn) = prop_decl.BindingExpression() {
if r.bindings
.insert(prop_name.to_string(), BindingExpression::new_uncompiled(csn.into()))
.is_some()
{
diag.push_error(
"Duplicated property binding".into(),
&prop_decl.DeclaredIdentifier(),
);
}
}
if let Some(csn) = prop_decl.TwoWayBinding() {
if r.bindings
.insert(prop_name.into(), BindingExpression::new_uncompiled(csn.into()))
.is_some()
{
diag.push_error(
"Duplicated property binding".into(),
&prop_decl.DeclaredIdentifier(),
);
}
}
}
r.parse_bindings(
node.Binding().filter_map(|b| {
Some((b.child_token(SyntaxKind::Identifier)?, b.BindingExpression().into()))
}),
diag,
);
r.parse_bindings(
node.TwoWayBinding()
.filter_map(|b| Some((b.child_token(SyntaxKind::Identifier)?, b.into()))),
diag,
);
if let Type::Builtin(builtin_base) = &r.base_type {
for (prop, info) in &builtin_base.properties {
if let Some(expr) = &info.default_value {
r.bindings.entry(prop.clone()).or_insert_with(|| expr.clone().into());
}
}
}
for sig_decl in node.CallbackDeclaration() {
let name = unwrap_or_continue!(identifier_text(&sig_decl.DeclaredIdentifier()); diag);
if let Some(csn) = sig_decl.TwoWayBinding() {
r.bindings.insert(name.clone(), BindingExpression::new_uncompiled(csn.into()));
r.property_declarations.insert(
name,
PropertyDeclaration {
property_type: Type::InferredCallback,
node: Some(Either::Right(sig_decl)),
..Default::default()
},
);
continue;
}
let args = sig_decl.Type().map(|node_ty| type_from_node(node_ty, diag, tr)).collect();
let return_type = sig_decl
.ReturnType()
.map(|ret_ty| Box::new(type_from_node(ret_ty.Type(), diag, tr)));
r.property_declarations.insert(
name,
PropertyDeclaration {
property_type: Type::Callback { return_type, args },
node: Some(Either::Right(sig_decl)),
..Default::default()
},
);
}
for con_node in node.CallbackConnection() {
let unresolved_name = unwrap_or_continue!(identifier_text(&con_node); diag);
let PropertyLookupResult { resolved_name, property_type } =
r.lookup_property(&unresolved_name);
if let Type::Callback { args, .. } = &property_type {
let num_arg = con_node.DeclaredIdentifier().count();
if num_arg > args.len() {
diag.push_error(
format!(
"'{}' only has {} arguments, but {} were provided",
unresolved_name,
args.len(),
num_arg
),
&con_node.child_token(SyntaxKind::Identifier).unwrap(),
);
}
} else if property_type == Type::InferredCallback {
// argument matching will happen later
} else {
diag.push_error(
format!("'{}' is not a callback in {}", unresolved_name, r.base_type),
&con_node.child_token(SyntaxKind::Identifier).unwrap(),
);
continue;
}
if r.bindings
.insert(
resolved_name.into_owned(),
BindingExpression::new_uncompiled(con_node.clone().into()),
)
.is_some()
{
diag.push_error(
"Duplicated callback".into(),
&con_node.child_token(SyntaxKind::Identifier).unwrap(),
);
}
}
for anim in node.PropertyAnimation() {
if let Some(star) = anim.child_token(SyntaxKind::Star) {
diag.push_error(
"catch-all property is only allowed within transitions".into(),
&star,
)
};
for prop_name_token in anim.QualifiedName() {
match QualifiedTypeName::from_node(prop_name_token.clone()).members.as_slice() {
[unresolved_prop_name] => {
let PropertyLookupResult { resolved_name, property_type } =
r.lookup_property(unresolved_prop_name);
if let Some(anim_element) = animation_element_from_node(
&anim,
&prop_name_token,
property_type,
diag,
tr,
) {
if unresolved_prop_name != resolved_name.as_ref() {
diag.push_property_deprecation_warning(
unresolved_prop_name,
&resolved_name,
&prop_name_token,
);
}
if r.property_animations
.insert(
resolved_name.to_string(),
PropertyAnimation::Static(anim_element),
)
.is_some()
{
diag.push_error("Duplicated animation".into(), &prop_name_token)
}
}
}
_ => diag.push_error(
"Can only refer to property in the current element".into(),
&prop_name_token,
),
}
}
}
let mut children_placeholder = None;
let r = ElementRc::new(RefCell::new(r));
for se in node.children() {
if se.kind() == SyntaxKind::SubElement {
let parent_type = r.borrow().base_type.clone();
r.borrow_mut().children.push(Element::from_sub_element_node(
se.into(),
parent_type,
component_child_insertion_point,
diag,
tr,
));
} else if se.kind() == SyntaxKind::RepeatedElement {
let rep = Element::from_repeated_node(
se.into(),
&r,
component_child_insertion_point,
diag,
tr,
);
r.borrow_mut().children.push(rep);
} else if se.kind() == SyntaxKind::ConditionalElement {
let rep = Element::from_conditional_node(
se.into(),
r.borrow().base_type.clone(),
component_child_insertion_point,
diag,
tr,
);
r.borrow_mut().children.push(rep);
} else if se.kind() == SyntaxKind::ChildrenPlaceholder {
if children_placeholder.is_some() {
diag.push_error(
"The @children placeholder can only appear once in an element".into(),
&se,
)
} else {
children_placeholder = Some(se.clone().into());
}
}
}
if let Some(children_placeholder) = children_placeholder {
if component_child_insertion_point.is_some() {
diag.push_error(
"The @children placeholder can only appear once in an element hierarchy".into(),
&children_placeholder,
)
} else {
*component_child_insertion_point = Some((r.clone(), children_placeholder));
}
}
for state in node.States().flat_map(|s| s.State()) {
let s = State {
id: identifier_text(&state.DeclaredIdentifier()).unwrap_or_default(),
condition: state.Expression().map(|e| Expression::Uncompiled(e.into())),
property_changes: state
.StatePropertyChange()
.filter_map(|s| {
lookup_property_from_qualified_name(s.QualifiedName(), &r, diag).map(
|(ne, _)| (ne, Expression::Uncompiled(s.BindingExpression().into())),
)
})
.collect(),
};
r.borrow_mut().states.push(s);
}
for trs in node.Transitions().flat_map(|s| s.Transition()) {
if let Some(star) = trs.child_token(SyntaxKind::Star) {
diag.push_error("TODO: catch-all not yet implemented".into(), &star);
};
let trans = Transition {
is_out: identifier_text(&trs).unwrap_or_default() == "out",
state_id: identifier_text(&trs.DeclaredIdentifier()).unwrap_or_default(),
property_animations: trs
.PropertyAnimation()
.flat_map(|pa| pa.QualifiedName().map(move |qn| (pa.clone(), qn)))
.filter_map(|(pa, qn)| {
lookup_property_from_qualified_name(qn.clone(), &r, diag).and_then(
|(ne, prop_type)| {
animation_element_from_node(&pa, &qn, prop_type, diag, tr)
.map(|anim_element| (ne, qn.to_source_location(), anim_element))
},
)
})
.collect(),
node: trs.DeclaredIdentifier().into(),
};
r.borrow_mut().transitions.push(trans);
}
r
}
fn from_sub_element_node(
node: syntax_nodes::SubElement,
parent_type: Type,
component_child_insertion_point: &mut Option<ChildrenInsertionPoint>,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> ElementRc {
let id = identifier_text(&node).unwrap_or_default();
if matches!(id.as_ref(), "parent" | "self" | "root") {
diag.push_error(
format!("'{}' is a reserved id", id),
&node.child_token(SyntaxKind::Identifier).unwrap(),
)
}
Element::from_node(
node.Element(),
id,
parent_type,
component_child_insertion_point,
diag,
tr,
)
}
fn from_repeated_node(
node: syntax_nodes::RepeatedElement,
parent: &ElementRc,
component_child_insertion_point: &mut Option<ChildrenInsertionPoint>,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> ElementRc {
let is_listview = if parent.borrow().base_type.to_string() == "ListView" {
Some(ListViewInfo {
viewport_y: NamedReference::new(parent, "viewport_y"),
viewport_height: NamedReference::new(parent, "viewport_height"),
viewport_width: NamedReference::new(parent, "viewport_width"),
listview_height: NamedReference::new(parent, "visible_height"),
listview_width: NamedReference::new(parent, "visible_width"),
})
} else {
None
};
let rei = RepeatedElementInfo {
model: Expression::Uncompiled(node.Expression().into()),
model_data_id: node
.DeclaredIdentifier()
.and_then(|n| identifier_text(&n))
.unwrap_or_default(),
index_id: node.RepeatedIndex().and_then(|r| identifier_text(&r)).unwrap_or_default(),
is_conditional_element: false,
is_listview,
};
let e = Element::from_sub_element_node(
node.SubElement(),
parent.borrow().base_type.clone(),
component_child_insertion_point,
diag,
tr,
);
e.borrow_mut().repeated = Some(rei);
e
}
fn from_conditional_node(
node: syntax_nodes::ConditionalElement,
parent_type: Type,
component_child_insertion_point: &mut Option<ChildrenInsertionPoint>,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> ElementRc {
let rei = RepeatedElementInfo {
model: Expression::Uncompiled(node.Expression().into()),
model_data_id: String::new(),
index_id: String::new(),
is_conditional_element: true,
is_listview: None,
};
let e = Element::from_sub_element_node(
node.SubElement(),
parent_type,
component_child_insertion_point,
diag,
tr,
);
e.borrow_mut().repeated = Some(rei);
e
}
/// Return the type of a property in this element or its base, along with the final name, in case
/// the provided name points towards a property alias. Type::Invalid is returned if the property does
/// not exist.
pub fn lookup_property<'a>(&self, name: &'a str) -> PropertyLookupResult<'a> {
self.property_declarations.get(name).cloned().map(|decl| decl.property_type).map_or_else(
|| self.base_type.lookup_property(name),
|property_type| PropertyLookupResult { resolved_name: name.into(), property_type },
)
}
/// Return the Span of this element in the AST for error reporting
pub fn span(&self) -> crate::diagnostics::Span {
self.node.as_ref().map(|n| n.span()).unwrap_or_default()
}
fn parse_bindings(
&mut self,
bindings: impl Iterator<Item = (crate::parser::SyntaxToken, SyntaxNode)>,
diag: &mut BuildDiagnostics,
) {
for (name_token, b) in bindings {
let unresolved_name = crate::parser::normalize_identifier(name_token.text());
let PropertyLookupResult { resolved_name, property_type } =
self.lookup_property(&unresolved_name);
if !property_type.is_property_type() {
diag.push_error(
match property_type {
Type::Invalid => {
if self.base_type != Type::Invalid {
format!(
"Unknown property {} in {}",
unresolved_name, self.base_type
)
} else {
continue;
}
}
Type::Callback { .. } => {
format!("'{}' is a callback. Use `=>` to connect", unresolved_name)
}
_ => format!(
"Cannot assign to {} in {} because it does not have a valid property type",
unresolved_name, self.base_type,
),
},
&name_token,
);
}
if resolved_name != unresolved_name {
diag.push_property_deprecation_warning(
&unresolved_name,
&resolved_name,
&name_token,
);
}
if self
.bindings
.insert(resolved_name.to_string(), BindingExpression::new_uncompiled(b))
.is_some()
{
diag.push_error("Duplicated property binding".into(), &name_token);
}
}
}
pub fn native_class(&self) -> Option<Rc<NativeClass>> {
let mut base_type = self.base_type.clone();
loop {
match &base_type {
Type::Component(component) => {
base_type = component.root_element.clone().borrow().base_type.clone();
}
Type::Builtin(builtin) => break Some(builtin.native_class.clone()),
Type::Native(native) => break Some(native.clone()),
_ => break None,
}
}
}
pub fn builtin_type(&self) -> Option<Rc<BuiltinElement>> {
let mut base_type = self.base_type.clone();
loop {
match &base_type {
Type::Component(component) => {
base_type = component.root_element.clone().borrow().base_type.clone();
}
Type::Builtin(builtin) => break Some(builtin.clone()),
_ => break None,
}
}
}
pub fn layout_info_prop(&self, orientation: Orientation) -> Option<&NamedReference> {
self.layout_info_prop.as_ref().map(|prop| match orientation {
Orientation::Horizontal => &prop.0,
Orientation::Vertical => &prop.1,
})
}
}
/// Create a Type for this node
pub fn type_from_node(
node: syntax_nodes::Type,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> Type {
if let Some(qualified_type_node) = node.QualifiedName() {
let qualified_type = QualifiedTypeName::from_node(qualified_type_node.clone());
let prop_type = tr.lookup_qualified(&qualified_type.members);
if prop_type == Type::Invalid {
diag.push_error(
format!("Unknown type '{}'", qualified_type.to_string()),
&qualified_type_node,
);
}
prop_type
} else if let Some(object_node) = node.ObjectType() {
type_struct_from_node(object_node, diag, tr)
} else if let Some(array_node) = node.ArrayType() {
Type::Array(Box::new(type_from_node(array_node.Type(), diag, tr)))
} else {
assert!(diag.has_error());
Type::Invalid
}
}
/// Create a Type::Object from a syntax_nodes::ObjectType
pub fn type_struct_from_node(
object_node: syntax_nodes::ObjectType,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> Type {
let fields = object_node
.ObjectTypeMember()
.map(|member| {
(identifier_text(&member).unwrap_or_default(), type_from_node(member.Type(), diag, tr))
})
.collect();
Type::Struct { fields, name: None, node: Some(object_node) }
}
fn animation_element_from_node(
anim: &syntax_nodes::PropertyAnimation,
prop_name: &syntax_nodes::QualifiedName,
prop_type: Type,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> Option<ElementRc> {
let anim_type = tr.property_animation_type_for_property(prop_type);
if !matches!(anim_type, Type::Builtin(..)) {
diag.push_error(
format!(
"'{}' is not a property that can be animated",
prop_name.text().to_string().trim()
),
prop_name,
);
None
} else {
let mut anim_element =
Element { id: "".into(), base_type: anim_type, node: None, ..Default::default() };
anim_element.parse_bindings(
anim.Binding().filter_map(|b| {
Some((b.child_token(SyntaxKind::Identifier)?, b.BindingExpression().into()))
}),
diag,
);
Some(Rc::new(RefCell::new(anim_element)))
}
}
#[derive(Default, Debug, Clone)]
pub struct QualifiedTypeName {
pub members: Vec<String>,
}
impl QualifiedTypeName {
pub fn from_node(node: syntax_nodes::QualifiedName) -> Self {
debug_assert_eq!(node.kind(), SyntaxKind::QualifiedName);
let members = node
.children_with_tokens()
.filter(|n| n.kind() == SyntaxKind::Identifier)
.filter_map(|x| x.as_token().map(|x| crate::parser::normalize_identifier(x.text())))
.collect();
Self { members }
}
}
impl std::fmt::Display for QualifiedTypeName {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.members.join("."))
}
}
/// Return a NamedReference, if the reference is invalid, there will be a diagnostic
fn lookup_property_from_qualified_name(
node: syntax_nodes::QualifiedName,
r: &Rc<RefCell<Element>>,
diag: &mut BuildDiagnostics,
) -> Option<(NamedReference, Type)> {
let qualname = QualifiedTypeName::from_node(node.clone());
match qualname.members.as_slice() {
[unresolved_prop_name] => {
let PropertyLookupResult { resolved_name, property_type } =
r.borrow().lookup_property(unresolved_prop_name.as_ref());
if !property_type.is_property_type() {
diag.push_error(format!("'{}' is not a valid property", qualname), &node);
}
Some((NamedReference::new(r, &resolved_name), property_type))
}
[elem_id, unresolved_prop_name] => {
if let Some(element) = find_element_by_id(r, elem_id.as_ref()) {
let PropertyLookupResult { resolved_name, property_type } =
element.borrow().lookup_property(unresolved_prop_name.as_ref());
if !property_type.is_property_type() {
diag.push_error(
format!("'{}' not found in '{}'", unresolved_prop_name, elem_id),
&node,
);
}
Some((NamedReference::new(&element, &resolved_name), property_type))
} else {
diag.push_error(format!("'{}' is not a valid element id", elem_id), &node);
None
}
}
_ => {
diag.push_error(format!("'{}' is not a valid property", qualname), &node);
None
}
}
}
/// FIXME: this is duplicated the resolving pass. Also, we should use a hash table
fn find_element_by_id(e: &ElementRc, name: &str) -> Option<ElementRc> {
if e.borrow().id == name {
return Some(e.clone());
}
for x in &e.borrow().children {
if x.borrow().repeated.is_some() {
continue;
}
if let Some(x) = find_element_by_id(x, name) {
return Some(x);
}
}
None
}
/// Find the parent element to a given element.
/// (since there is no parent mapping we need to fo an exhaustive search)
pub fn find_parent_element(e: &ElementRc) -> Option<ElementRc> {
fn recurse(base: &ElementRc, e: &ElementRc) -> Option<ElementRc> {
for child in &base.borrow().children {
if Rc::ptr_eq(child, e) {
return Some(base.clone());
}
if let Some(x) = recurse(child, e) {
return Some(x);
}
}
None
}
let root = e.borrow().enclosing_component.upgrade().unwrap().root_element.clone();
if Rc::ptr_eq(&root, e) {
return None;
}
recurse(&root, e)
}
/// Call the visitor for each children of the element recursively, starting with the element itself
///
/// The state returned by the visitor is passed to the children
pub fn recurse_elem<State>(
elem: &ElementRc,
state: &State,
vis: &mut impl FnMut(&ElementRc, &State) -> State,
) {
let state = vis(elem, state);
for sub in &elem.borrow().children {
recurse_elem(sub, &state, vis);
}
}
/// Same as [`recurse_elem`] but include the elements form sub_components
pub fn recurse_elem_including_sub_components<State>(
component: &Component,
state: &State,
vis: &mut impl FnMut(&ElementRc, &State) -> State,
) {
recurse_elem(&component.root_element, state, &mut |elem, state| {
debug_assert!(std::ptr::eq(
component as *const Component,
(&*elem.borrow().enclosing_component.upgrade().unwrap()) as *const Component
));
if elem.borrow().repeated.is_some() {
if let Type::Component(base) = &elem.borrow().base_type {
recurse_elem_including_sub_components(base, state, vis);
}
}
vis(elem, state)
});
component
.popup_windows
.borrow()
.iter()
.for_each(|p| recurse_elem_including_sub_components(&p.component, state, vis))
}
/// Same as recurse_elem, but will take the children from the element as to not keep the element borrow
pub fn recurse_elem_no_borrow<State>(
elem: &ElementRc,
state: &State,
vis: &mut impl FnMut(&ElementRc, &State) -> State,
) {
let state = vis(elem, state);
let children = elem.borrow().children.clone();
for sub in &children {
recurse_elem_no_borrow(sub, &state, vis);
}
}
/// Same as [`recurse_elem`] but include the elements form sub_components
pub fn recurse_elem_including_sub_components_no_borrow<State>(
component: &Component,
state: &State,
vis: &mut impl FnMut(&ElementRc, &State) -> State,
) {
recurse_elem_no_borrow(&component.root_element, state, &mut |elem, state| {
let base = if elem.borrow().repeated.is_some() {
if let Type::Component(base) = &elem.borrow().base_type {
Some(base.clone())
} else {
None
}
} else {
None
};
if let Some(base) = base {
recurse_elem_including_sub_components_no_borrow(&base, state, vis);
}
vis(elem, state)
});
component
.popup_windows
.borrow()
.iter()
.for_each(|p| recurse_elem_including_sub_components_no_borrow(&p.component, state, vis))
}
/// This visit the binding attached to this element, but does not recurse in children elements
/// Also does not recurse within the expressions.
///
/// This code will temporarily move the bindings or states member so it can call the visitor without
/// maintaining a borrow on the RefCell.
pub fn visit_element_expressions(
elem: &ElementRc,
mut vis: impl FnMut(&mut Expression, Option<&str>, &dyn Fn() -> Type),
) {
fn visit_element_expressions_simple(
elem: &ElementRc,
vis: &mut impl FnMut(&mut Expression, Option<&str>, &dyn Fn() -> Type),
) {
let mut bindings = std::mem::take(&mut elem.borrow_mut().bindings);
for (name, expr) in &mut bindings {
vis(expr, Some(name.as_str()), &|| elem.borrow().lookup_property(name).property_type);
}
elem.borrow_mut().bindings = bindings;
}
let repeated = std::mem::take(&mut elem.borrow_mut().repeated);
if let Some(mut r) = repeated {
let is_conditional_element = r.is_conditional_element;
vis(&mut r.model, None, &|| if is_conditional_element { Type::Bool } else { Type::Model });
elem.borrow_mut().repeated = Some(r)
}
visit_element_expressions_simple(elem, &mut vis);
let mut states = std::mem::take(&mut elem.borrow_mut().states);
for s in &mut states {
if let Some(cond) = s.condition.as_mut() {
vis(cond, None, &|| Type::Bool)
}
for (ne, e) in &mut s.property_changes {
vis(e, Some(ne.name()), &|| {
ne.element().borrow().lookup_property(ne.name()).property_type
});
}
}
elem.borrow_mut().states = states;
let mut transitions = std::mem::take(&mut elem.borrow_mut().transitions);
for t in &mut transitions {
for (_, _, a) in &mut t.property_animations {
visit_element_expressions_simple(a, &mut vis);
}
}
elem.borrow_mut().transitions = transitions;
let mut property_animations = std::mem::take(&mut elem.borrow_mut().property_animations);
for anim_elem in property_animations.values_mut() {
match anim_elem {
PropertyAnimation::Static(e) => visit_element_expressions_simple(e, &mut vis),
PropertyAnimation::Transition { animations, state_ref } => {
vis(state_ref, None, &|| Type::Int32);
for a in animations {
visit_element_expressions_simple(&a.animation, &mut vis)
}
}
}
}
elem.borrow_mut().property_animations = property_animations;
}
/// Visit all the named reference in an element
/// But does not recurse in sub-elements. (unlike [`visit_all_named_references`] which recurse)
pub fn visit_all_named_references_in_element(
elem: &ElementRc,
mut vis: impl FnMut(&mut NamedReference),
) {
fn recurse_expression(expr: &mut Expression, vis: &mut impl FnMut(&mut NamedReference)) {
expr.visit_mut(|sub| recurse_expression(sub, vis));
match expr {
Expression::PropertyReference(r) | Expression::CallbackReference(r) => vis(r),
Expression::TwoWayBinding(r, _) => vis(r),
Expression::LayoutCacheAccess { layout_cache_prop, .. } => vis(layout_cache_prop),
Expression::SolveLayout(l, _) => l.visit_named_references(vis),
Expression::ComputeLayoutInfo(l, _) => l.visit_named_references(vis),
// This is not really a named reference, but the result is the same, it need to be updated
// FIXME: this should probably be lowered into a PropertyReference
Expression::RepeaterModelReference { element }
| Expression::RepeaterIndexReference { element } => {
// FIXME: this is questionable
let mut nc = NamedReference::new(&element.upgrade().unwrap(), "$model");
vis(&mut nc);
debug_assert!(nc.element().borrow().repeated.is_some());
*element = Rc::downgrade(&nc.element());
}
_ => {}
}
}
visit_element_expressions(elem, |expr, _, _| recurse_expression(expr, &mut vis));
let mut states = std::mem::take(&mut elem.borrow_mut().states);
for s in &mut states {
for (r, _) in &mut s.property_changes {
vis(r);
}
}
elem.borrow_mut().states = states;
let mut transitions = std::mem::take(&mut elem.borrow_mut().transitions);
for t in &mut transitions {
for (r, _, _) in &mut t.property_animations {
vis(r)
}
}
elem.borrow_mut().transitions = transitions;
let mut repeated = std::mem::take(&mut elem.borrow_mut().repeated);
if let Some(r) = &mut repeated {
if let Some(lv) = &mut r.is_listview {
vis(&mut lv.viewport_y);
vis(&mut lv.viewport_height);
vis(&mut lv.viewport_width);
vis(&mut lv.listview_height);
vis(&mut lv.listview_width);
}
}
elem.borrow_mut().repeated = repeated;
let mut layout_info_prop = std::mem::take(&mut elem.borrow_mut().layout_info_prop);
layout_info_prop.as_mut().map(|(h, b)| (vis(h), vis(b)));
elem.borrow_mut().layout_info_prop = layout_info_prop;
let mut property_declarations = std::mem::take(&mut elem.borrow_mut().property_declarations);
for (_, pd) in &mut property_declarations {
pd.is_alias.as_mut().map(&mut vis);
}
elem.borrow_mut().property_declarations = property_declarations;
}
/// Visit all named reference in this component and sub component
pub fn visit_all_named_references(
component: &Component,
vis: &mut impl FnMut(&mut NamedReference),
) {
recurse_elem_including_sub_components_no_borrow(
component,
&Weak::new(),
&mut |elem, parent_compo| {
visit_all_named_references_in_element(elem, |nr| vis(nr));
let compo = elem.borrow().enclosing_component.clone();
if !Weak::ptr_eq(parent_compo, &compo) {
let compo = compo.upgrade().unwrap();
compo.root_constraints.borrow_mut().visit_named_references(vis);
compo.popup_windows.borrow_mut().iter_mut().for_each(|p| {
vis(&mut p.x);
vis(&mut p.y);
});
}
compo
},
);
}
/// Visit all expression in this component and sub components
///
/// Does not recurse in the expression itself
pub fn visit_all_expressions(
component: &Component,
mut vis: impl FnMut(&mut Expression, &dyn Fn() -> Type),
) {
recurse_elem_including_sub_components(component, &(), &mut |elem, _| {
visit_element_expressions(elem, |expr, _, ty| vis(expr, ty));
})
}
#[derive(Debug, Clone)]
pub struct State {
pub id: String,
pub condition: Option<Expression>,
pub property_changes: Vec<(NamedReference, Expression)>,
}
#[derive(Debug, Clone)]
pub struct Transition {
/// false for 'to', true for 'out'
pub is_out: bool,
pub state_id: String,
pub property_animations: Vec<(NamedReference, SourceLocation, ElementRc)>,
/// Node pointing to the state name
pub node: SyntaxNode,
}
#[derive(Default, Debug, derive_more::Deref)]
pub struct Exports(Vec<(String, Type)>);
impl Exports {
pub fn from_node(
doc: &syntax_nodes::Document,
inner_components: &[Rc<Component>],
type_registry: &TypeRegister,
diag: &mut BuildDiagnostics,
) -> Self {
#[derive(Debug, Clone)]
struct NamedExport {
internal_name_ident: SyntaxNode,
internal_name: String,
exported_name: String,
}
let mut exports = doc
.ExportsList()
.flat_map(|exports| exports.ExportSpecifier())
.map(|export_specifier| {
let internal_name = identifier_text(&export_specifier.ExportIdentifier())
.unwrap_or_else(|| {
debug_assert!(diag.has_error());
String::new()
});
let exported_name = export_specifier
.ExportName()
.and_then(|ident| identifier_text(&ident))
.unwrap_or_else(|| internal_name.clone());
NamedExport {
internal_name_ident: export_specifier.ExportIdentifier().into(),
internal_name,
exported_name,
}
})
.collect::<Vec<_>>();
exports.extend(doc.ExportsList().filter_map(|exports| exports.Component()).map(
|component| {
let name = identifier_text(&component.DeclaredIdentifier()).unwrap_or_else(|| {
debug_assert!(diag.has_error());
String::new()
});
NamedExport {
internal_name_ident: component.DeclaredIdentifier().into(),
internal_name: name.clone(),
exported_name: name,
}
},
));
exports.extend(doc.ExportsList().flat_map(|exports| exports.StructDeclaration()).map(
|st| {
let name = identifier_text(&st.DeclaredIdentifier()).unwrap_or_else(|| {
debug_assert!(diag.has_error());
String::new()
});
NamedExport {
internal_name_ident: st.DeclaredIdentifier().into(),
internal_name: name.clone(),
exported_name: name,
}
},
));
if exports.is_empty() {
if let Some(internal_name) = inner_components.last().as_ref().map(|x| x.id.clone()) {
exports.push(NamedExport {
internal_name_ident: doc.clone().into(),
internal_name: internal_name.clone(),
exported_name: internal_name,
})
}
}
let mut resolve_export_to_inner_component_or_import =
|export: &NamedExport| match type_registry.lookup(export.internal_name.as_str()) {
ty @ Type::Component(_) | ty @ Type::Struct { .. } => Some(ty),
Type::Invalid => {
diag.push_error(
format!("'{}' not found", export.internal_name),
&export.internal_name_ident,
);
None
}
_ => {
diag.push_error(
format!(
"Cannot export '{}' because it is not a component",
export.internal_name,
),
&export.internal_name_ident,
);
None
}
};
Self(
exports
.iter()
.filter_map(|export| {
Some((
export.exported_name.clone(),
resolve_export_to_inner_component_or_import(export)?,
))
})
.collect(),
)
}
}
/// This function replace the root element of a repeated element. the previous root becomes the only
/// child of the new root element.
/// Note that no reference to the base component must exist outside of repeated_element.base_type
pub fn inject_element_as_repeated_element(repeated_element: &ElementRc, new_root: ElementRc) {
let component = repeated_element.borrow().base_type.as_component().clone();
// Since we're going to replace the repeated element's component, we need to assert that
// outside this function no strong reference exists to it. Then we can unwrap and
// replace the root element.
debug_assert_eq!(Rc::strong_count(&component), 2);
let old_root = &component.root_element;
// Any elements with a weak reference to the repeater's component will need fixing later.
let mut elements_with_enclosing_component_reference = Vec::new();
recurse_elem(old_root, &(), &mut |element: &ElementRc, _| {
if let Some(enclosing_component) = element.borrow().enclosing_component.upgrade() {
if Rc::ptr_eq(&enclosing_component, &component) {
elements_with_enclosing_component_reference.push(element.clone());
}
}
});
elements_with_enclosing_component_reference
.extend_from_slice(component.optimized_elements.borrow().as_slice());
elements_with_enclosing_component_reference.push(new_root.clone());
new_root.borrow_mut().child_of_layout =
std::mem::replace(&mut old_root.borrow_mut().child_of_layout, false);
// Replace the repeated component's element with our shadow element. That requires a bit of reference counting
// surgery and relies on nobody having a strong reference left to the component, which we take out of the Rc.
drop(std::mem::take(&mut repeated_element.borrow_mut().base_type));
debug_assert_eq!(Rc::strong_count(&component), 1);
let mut component = Rc::try_unwrap(component).expect("internal compiler error: more than one strong reference left to repeated component when lowering shadow properties");
let old_root = std::mem::replace(&mut component.root_element, new_root.clone());
new_root.borrow_mut().children.push(old_root);
let component = Rc::new(component);
repeated_element.borrow_mut().base_type = Type::Component(component.clone());
for elem in elements_with_enclosing_component_reference {
elem.borrow_mut().enclosing_component = Rc::downgrade(&component);
}
}