slint/internal/compiler/object_tree.rs
Simon Hausmann 047ab1d419 Fix run-time panic when combining forward-focus with text rendering in no_std environments
As outlined in #2199, there may be ways to trigger text layout code
through forward-focus before embedded fonts are registered. To fix this,
this patch replaces the init_code vector, which had the SetFocusItem
code before the font registration, with three explicit vectors for focus
setup code, code from init callbacks, and initial focus, and defines the
order in one central place in the copmiler (iter()).

Fixes #2199
2023-02-08 15:41:35 +01:00

2424 lines
92 KiB
Rust

// Copyright © SixtyFPS GmbH <info@slint-ui.com>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial
/*!
This module contains the intermediate representation of the code in the form of an object tree
*/
// cSpell: ignore qualname
use itertools::Either;
use crate::diagnostics::{BuildDiagnostics, SourceLocation, Spanned};
use crate::expression_tree::{self, BindingExpression, Expression, Unit};
use crate::langtype::{BuiltinElement, NativeClass, Type};
use crate::langtype::{ElementType, PropertyLookupResult};
use crate::layout::{LayoutConstraints, Orientation};
use crate::namedreference::NamedReference;
use crate::parser;
use crate::parser::{syntax_nodes, SyntaxKind, SyntaxNode};
use crate::typeloader::ImportedTypes;
use crate::typeregister::TypeRegister;
use std::cell::{Cell, RefCell};
use std::collections::btree_map::Entry;
use std::collections::{BTreeMap, HashMap};
use std::fmt::Display;
use std::rc::{Rc, Weak};
macro_rules! unwrap_or_continue {
($e:expr ; $diag:expr) => {
match $e {
Some(x) => x,
None => {
debug_assert!($diag.has_error()); // error should have been reported at parsing time
continue;
}
}
};
}
/// The full document (a complete file)
#[derive(Default, Debug)]
pub struct Document {
pub node: Option<syntax_nodes::Document>,
pub inner_components: Vec<Rc<Component>>,
pub inner_structs: Vec<Type>,
pub root_component: Rc<Component>,
pub local_registry: TypeRegister,
/// A list of paths to .ttf/.ttc files that are supposed to be registered on
/// startup for custom font use.
pub custom_fonts: Vec<(String, crate::parser::SyntaxToken)>,
pub exports: Exports,
}
impl Document {
pub fn from_node(
node: syntax_nodes::Document,
foreign_imports: Vec<ImportedTypes>,
reexports: Exports,
diag: &mut BuildDiagnostics,
parent_registry: &Rc<RefCell<TypeRegister>>,
) -> Self {
debug_assert_eq!(node.kind(), SyntaxKind::Document);
let mut local_registry = TypeRegister::new(parent_registry);
let mut inner_components = vec![];
let mut inner_structs = vec![];
let mut process_component =
|n: syntax_nodes::Component,
diag: &mut BuildDiagnostics,
local_registry: &mut TypeRegister| {
let compo = Component::from_node(n, diag, local_registry);
local_registry.add(compo.clone());
inner_components.push(compo);
};
let mut process_struct =
|n: syntax_nodes::StructDeclaration,
diag: &mut BuildDiagnostics,
local_registry: &mut TypeRegister| {
let mut ty = type_struct_from_node(n.ObjectType(), diag, local_registry);
if let Type::Struct { name, .. } = &mut ty {
*name = parser::identifier_text(&n.DeclaredIdentifier());
} else {
assert!(diag.has_error());
return;
}
local_registry.insert_type(ty.clone());
inner_structs.push(ty);
};
for n in node.children() {
match n.kind() {
SyntaxKind::Component => process_component(n.into(), diag, &mut local_registry),
SyntaxKind::StructDeclaration => {
process_struct(n.into(), diag, &mut local_registry)
}
SyntaxKind::ExportsList => {
for n in n.children() {
match n.kind() {
SyntaxKind::Component => {
process_component(n.into(), diag, &mut local_registry)
}
SyntaxKind::StructDeclaration => {
process_struct(n.into(), diag, &mut local_registry)
}
_ => {}
}
}
}
_ => {}
};
}
let mut exports = Exports::from_node(&node, &inner_components, &local_registry, diag);
exports.add_reexports(reexports, diag);
let root_component = exports
.last_exported_component
.clone()
.or_else(|| {
node.ImportSpecifier()
.last()
.and_then(|import| {
crate::typeloader::ImportedName::extract_imported_names(&import).last()
})
.and_then(|import| local_registry.lookup_element(&import.internal_name).ok())
.and_then(|c| match c {
ElementType::Component(c) => Some(c),
_ => None,
})
})
.unwrap_or_default();
let custom_fonts = foreign_imports
.into_iter()
.filter_map(|import| {
if import.file.ends_with(".ttc")
|| import.file.ends_with(".ttf")
|| import.file.ends_with(".otf")
{
// Assume remote urls are valid, we need to load them at run-time (which we currently don't). For
// local paths we should try to verify the existence and let the developer know ASAP.
if import.file.starts_with("http://")
|| import.file.starts_with("https://")
|| crate::fileaccess::load_file(std::path::Path::new(&import.file))
.is_some()
{
Some((import.file, import.import_uri_token))
} else {
diag.push_error(
format!("File \"{}\" not found", import.file),
&import.import_uri_token,
);
None
}
} else {
diag.push_error(
format!("Unsupported foreign import \"{}\"", import.file),
&import.import_uri_token,
);
None
}
})
.collect();
for local_compo in &inner_components {
if exports
.components_or_types
.iter()
.filter_map(|(_, exported_compo_or_type)| exported_compo_or_type.as_ref().left())
.any(|exported_compo| Rc::ptr_eq(exported_compo, local_compo))
{
continue;
}
// Don't warn about these for now - detecting their use can only be done after the resolve_expressions
// pass.
if local_compo.is_global() {
continue;
}
// First ref count is in the type registry, the second one in inner_components. Any use of the element
// would have resulted in another strong reference.
if Rc::strong_count(&local_compo) == 2 {
diag.push_warning(
"Component is neither used nor exported".into(),
&local_compo.node,
)
}
}
Document {
node: Some(node),
root_component,
inner_components,
inner_structs,
local_registry,
custom_fonts,
exports,
}
}
}
#[derive(Debug, Clone)]
pub struct PopupWindow {
pub component: Rc<Component>,
pub x: NamedReference,
pub y: NamedReference,
pub parent_element: ElementRc,
}
type ChildrenInsertionPoint = (ElementRc, syntax_nodes::ChildrenPlaceholder);
/// Used sub types for a root component
#[derive(Debug, Default)]
pub struct UsedSubTypes {
/// All the globals used by the component and its children.
pub globals: Vec<Rc<Component>>,
/// All the structs used by the component and its children.
pub structs: Vec<Type>,
/// All the sub components use by this components and its children,
/// and the amount of time it is used
pub sub_components: Vec<Rc<Component>>,
}
#[derive(Debug, Default, Clone)]
pub struct InitCode {
// Code from init callbacks collected from elements
pub constructor_code: Vec<Expression>,
/// Code to set the initial focus via forward-focus on the Window
pub focus_setting_code: Vec<Expression>,
/// Code to register embedded fonts.
pub font_registration_code: Vec<Expression>,
}
impl InitCode {
pub fn iter(&self) -> impl Iterator<Item = &Expression> {
self.font_registration_code
.iter()
.chain(self.focus_setting_code.iter())
.chain(self.constructor_code.iter())
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut Expression> {
self.font_registration_code
.iter_mut()
.chain(self.focus_setting_code.iter_mut())
.chain(self.constructor_code.iter_mut())
}
}
/// A component is a type in the language which can be instantiated,
/// Or is materialized for repeated expression.
#[derive(Default, Debug)]
pub struct Component {
pub node: Option<SyntaxNode>,
pub id: String,
pub root_element: ElementRc,
/// The parent element within the parent component if this component represents a repeated element
pub parent_element: Weak<RefCell<Element>>,
/// List of elements that are not attached to the root anymore because they have been
/// optimized away, but their properties may still be in use
pub optimized_elements: RefCell<Vec<ElementRc>>,
/// Map of resources that should be embedded in the generated code, indexed by their absolute path on
/// disk on the build system
pub embedded_file_resources:
RefCell<HashMap<String, crate::embedded_resources::EmbeddedResources>>,
/// The layout constraints of the root item
pub root_constraints: RefCell<LayoutConstraints>,
/// When creating this component and inserting "children", append them to the children of
/// the element pointer to by this field.
pub child_insertion_point: RefCell<Option<ChildrenInsertionPoint>>,
/// Code inserted from inlined components, ordered by offset of the place where it was inlined from. This way
/// we can preserve the order across multiple inlining passes.
pub inlined_init_code: RefCell<BTreeMap<usize, Expression>>,
pub init_code: RefCell<InitCode>,
/// The list of used extra types used (recursively) by this root component.
/// (This only make sense on the root component)
pub used_types: RefCell<UsedSubTypes>,
pub popup_windows: RefCell<Vec<PopupWindow>>,
/// The names under which this component should be accessible
/// if it is a global singleton and exported.
pub exported_global_names: RefCell<Vec<ExportedName>>,
/// This is the main entry point for the code generators. Such a component
/// should have the full API, etc.
pub is_root_component: Cell<bool>,
}
impl Component {
pub fn from_node(
node: syntax_nodes::Component,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> Rc<Self> {
let mut child_insertion_point = None;
let is_legacy_syntax = node.child_token(SyntaxKind::ColonEqual).is_some();
let c = Component {
node: Some(node.clone().into()),
id: parser::identifier_text(&node.DeclaredIdentifier()).unwrap_or_default(),
root_element: Element::from_node(
node.Element(),
"root".into(),
if node.child_text(SyntaxKind::Identifier).map_or(false, |t| t == "global") {
ElementType::Global
} else {
ElementType::Error
},
&mut child_insertion_point,
is_legacy_syntax,
diag,
tr,
),
child_insertion_point: RefCell::new(child_insertion_point),
..Default::default()
};
let c = Rc::new(c);
let weak = Rc::downgrade(&c);
recurse_elem(&c.root_element, &(), &mut |e, _| {
e.borrow_mut().enclosing_component = weak.clone()
});
c
}
/// This component is a global component introduced with the "global" keyword
pub fn is_global(&self) -> bool {
match &self.root_element.borrow().base_type {
ElementType::Global => true,
ElementType::Builtin(c) => c.is_global,
_ => false,
}
}
pub fn visible_in_public_api(&self) -> bool {
if self.is_global() {
!self.exported_global_names.borrow().is_empty()
} else {
self.parent_element.upgrade().is_none() && self.is_root_component.get()
}
}
/// Returns the names of aliases to global singletons, exactly as
/// specified in the .slint markup (not normalized).
pub fn global_aliases(&self) -> Vec<String> {
self.exported_global_names
.borrow()
.iter()
.filter(|name| name.as_str() != self.root_element.borrow().id)
.map(|name| name.original_name())
.collect()
}
pub fn is_sub_component(&self) -> bool {
!self.is_root_component.get()
&& self.parent_element.upgrade().is_none()
&& !self.is_global()
}
// Number of repeaters in this component, including sub-components
pub fn repeater_count(&self) -> u32 {
let mut count = 0;
recurse_elem(&self.root_element, &(), &mut |element, _| {
let element = element.borrow();
if let Some(sub_component) = element.sub_component() {
count += sub_component.repeater_count();
} else if element.repeated.is_some() {
count += 1;
}
});
count
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Default)]
pub enum PropertyVisibility {
#[default]
Private,
Input,
Output,
InOut,
/// For functions, not properties
Public,
}
impl Display for PropertyVisibility {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
PropertyVisibility::Private => f.write_str("private"),
PropertyVisibility::Input => f.write_str("input"),
PropertyVisibility::Output => f.write_str("output"),
PropertyVisibility::InOut => f.write_str("input output"),
PropertyVisibility::Public => f.write_str("public"),
}
}
}
#[derive(Clone, Debug, Default)]
pub struct PropertyDeclaration {
pub property_type: Type,
pub node: Option<SyntaxNode>,
/// Tells if getter and setter will be added to expose in the native language API
pub expose_in_public_api: bool,
/// Public API property exposed as an alias: it shouldn't be generated but instead forward to the alias.
pub is_alias: Option<NamedReference>,
pub visibility: PropertyVisibility,
/// For function or callback: whether it is declared as `pure` (None for private function for which this has to be deduced)
pub pure: Option<bool>,
}
impl PropertyDeclaration {
// For diagnostics: return a node pointing to the type
pub fn type_node(&self) -> Option<SyntaxNode> {
let node = self.node.as_ref()?;
if let Some(x) = syntax_nodes::PropertyDeclaration::new(node.clone()) {
Some(x.Type().map_or_else(|| x.into(), |x| x.into()))
} else {
node.clone().into()
}
}
}
impl From<Type> for PropertyDeclaration {
fn from(ty: Type) -> Self {
PropertyDeclaration { property_type: ty, ..Self::default() }
}
}
#[derive(Debug, Clone)]
pub struct TransitionPropertyAnimation {
/// The state id as computed in lower_state
pub state_id: i32,
/// false for 'to', true for 'out'
pub is_out: bool,
/// The content of the `animation` object
pub animation: ElementRc,
}
impl TransitionPropertyAnimation {
/// Return an expression which returns a boolean which is true if the transition is active.
/// The state argument is an expression referencing the state property of type StateInfo
pub fn condition(&self, state: Expression) -> Expression {
Expression::BinaryExpression {
lhs: Box::new(Expression::StructFieldAccess {
base: Box::new(state),
name: (if self.is_out { "previous-state" } else { "current-state" }).into(),
}),
rhs: Box::new(Expression::NumberLiteral(self.state_id as _, Unit::None)),
op: '=',
}
}
}
#[derive(Debug)]
pub enum PropertyAnimation {
Static(ElementRc),
Transition { state_ref: Expression, animations: Vec<TransitionPropertyAnimation> },
}
impl Clone for PropertyAnimation {
fn clone(&self) -> Self {
fn deep_clone(e: &ElementRc) -> ElementRc {
let e = e.borrow();
debug_assert!(e.children.is_empty());
debug_assert!(e.property_declarations.is_empty());
debug_assert!(e.states.is_empty() && e.transitions.is_empty());
Rc::new(RefCell::new(Element {
id: e.id.clone(),
base_type: e.base_type.clone(),
bindings: e.bindings.clone(),
property_analysis: e.property_analysis.clone(),
enclosing_component: e.enclosing_component.clone(),
repeated: None,
node: e.node.clone(),
..Default::default()
}))
}
match self {
PropertyAnimation::Static(e) => PropertyAnimation::Static(deep_clone(e)),
PropertyAnimation::Transition { state_ref, animations } => {
PropertyAnimation::Transition {
state_ref: state_ref.clone(),
animations: animations
.iter()
.map(|t| TransitionPropertyAnimation {
state_id: t.state_id,
is_out: t.is_out,
animation: deep_clone(&t.animation),
})
.collect(),
}
}
}
}
}
/// Map the accessibility property (eg "accessible-role", "accessible-label") to its named reference
#[derive(Default, Clone)]
pub struct AccessibilityProps(pub BTreeMap<String, NamedReference>);
pub type BindingsMap = BTreeMap<String, RefCell<BindingExpression>>;
/// An Element is an instantiation of a Component
#[derive(Default)]
pub struct Element {
/// The id as named in the original .slint file.
///
/// Note that it can only be used for lookup before inlining.
/// After inlining there can be duplicated id in the component.
/// The id are then re-assigned unique id in the assign_id pass
pub id: String,
//pub base: QualifiedTypeName,
pub base_type: ElementType,
/// Currently contains also the callbacks. FIXME: should that be changed?
pub bindings: BindingsMap,
pub property_analysis: RefCell<HashMap<String, PropertyAnalysis>>,
pub children: Vec<ElementRc>,
/// The component which contains this element.
pub enclosing_component: Weak<Component>,
pub property_declarations: BTreeMap<String, PropertyDeclaration>,
/// Main owner for a reference to a property.
pub named_references: crate::namedreference::NamedReferenceContainer,
/// This element is part of a `for <xxx> in <model>`:
pub repeated: Option<RepeatedElementInfo>,
pub states: Vec<State>,
pub transitions: Vec<Transition>,
/// true when this item's geometry is handled by a layout
pub child_of_layout: bool,
/// The property pointing to the layout info. `(horizontal, vertical)`
pub layout_info_prop: Option<(NamedReference, NamedReference)>,
pub accessibility_props: AccessibilityProps,
/// true if this Element is the fake Flickable viewport
pub is_flickable_viewport: bool,
/// true if this Element may have a popup as child meaning it cannot be optimized
/// because the popup references it.
pub has_popup_child: bool,
/// This is the component-local index of this item in the item tree array.
/// It is generated after the last pass and before the generators run.
pub item_index: once_cell::unsync::OnceCell<usize>,
/// the index of the first children in the tree, set with item_index
pub item_index_of_first_children: once_cell::unsync::OnceCell<usize>,
/// True when this element is in a component was declared with the `:=` symbol instead of the `component` keyword
pub is_legacy_syntax: bool,
/// How many times the element was inlined
pub inline_depth: i32,
/// The AST node, if available
pub node: Option<syntax_nodes::Element>,
}
impl Spanned for Element {
fn span(&self) -> crate::diagnostics::Span {
self.node.as_ref().map(|n| n.span()).unwrap_or_default()
}
fn source_file(&self) -> Option<&crate::diagnostics::SourceFile> {
self.node.as_ref().map(|n| &n.source_file)
}
}
impl core::fmt::Debug for Element {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
pretty_print(f, self, 0)
}
}
pub fn pretty_print(
f: &mut impl std::fmt::Write,
e: &Element,
indentation: usize,
) -> std::fmt::Result {
if let Some(repeated) = &e.repeated {
write!(f, "for {}[{}] in ", repeated.model_data_id, repeated.index_id)?;
expression_tree::pretty_print(f, &repeated.model)?;
write!(f, ":")?;
if let ElementType::Component(base) = &e.base_type {
if base.parent_element.upgrade().is_some() {
pretty_print(f, &base.root_element.borrow(), indentation)?;
return Ok(());
}
}
}
writeln!(f, "{} := {} {{", e.id, e.base_type)?;
let mut indentation = indentation + 1;
macro_rules! indent {
() => {
for _ in 0..indentation {
write!(f, " ")?
}
};
}
for (name, ty) in &e.property_declarations {
indent!();
if let Some(alias) = &ty.is_alias {
writeln!(f, "alias<{}> {} <=> {:?};", ty.property_type, name, alias)?
} else {
writeln!(f, "property<{}> {};", ty.property_type, name)?
}
}
for (name, expr) in &e.bindings {
let expr = expr.borrow();
indent!();
write!(f, "{}: ", name)?;
expression_tree::pretty_print(f, &expr.expression)?;
if expr.analysis.as_ref().map_or(false, |a| a.is_const) {
write!(f, "/*const*/")?;
}
writeln!(f, ";")?;
//writeln!(f, "; /*{}*/", expr.priority)?;
if let Some(anim) = &expr.animation {
indent!();
writeln!(f, "animate {} {:?}", name, anim)?;
}
for nr in &expr.two_way_bindings {
indent!();
writeln!(f, "{} <=> {:?};", name, nr)?;
}
}
if !e.states.is_empty() {
indent!();
writeln!(f, "states {:?}", e.states)?;
}
if !e.transitions.is_empty() {
indent!();
writeln!(f, "transitions {:?} ", e.transitions)?;
}
for c in &e.children {
indent!();
pretty_print(f, &c.borrow(), indentation)?
}
/*if let Type::Component(base) = &e.base_type {
pretty_print(f, &c.borrow(), indentation)?
}*/
indentation -= 1;
indent!();
writeln!(f, "}}")
}
#[derive(Clone, Default, Debug)]
pub struct PropertyAnalysis {
/// true if somewhere in the code, there is an expression that changes this property with an assignment
pub is_set: bool,
/// True if this property might be set from a different component.
pub is_set_externally: bool,
/// true if somewhere in the code, an expression is reading this property
/// Note: currently this is only set in the binding analysis pass
pub is_read: bool,
/// true if this property is read from another component
pub is_read_externally: bool,
/// True if the property is linked to another property that is read only. That property becomes read-only
pub is_linked_to_read_only: bool,
}
impl PropertyAnalysis {
/// Merge analysis from base element for inlining
///
/// Contrary to `merge`, we don't keep the external uses because
/// they should come from us
pub fn merge_with_base(&mut self, other: &PropertyAnalysis) {
self.is_set |= other.is_set;
self.is_read |= other.is_read;
}
/// Merge the analysis
pub fn merge(&mut self, other: &PropertyAnalysis) {
self.is_set |= other.is_set;
self.is_read |= other.is_read;
self.is_read_externally |= other.is_read_externally;
self.is_set_externally |= other.is_set_externally;
}
/// Return true if it is read or set or used in any way
pub fn is_used(&self) -> bool {
self.is_read || self.is_read_externally || self.is_set || self.is_set_externally
}
}
#[derive(Debug, Clone)]
pub struct ListViewInfo {
pub viewport_y: NamedReference,
pub viewport_height: NamedReference,
pub viewport_width: NamedReference,
/// The ListView's inner visible height (not counting eventual scrollbar)
pub listview_height: NamedReference,
/// The ListView's inner visible width (not counting eventual scrollbar)
pub listview_width: NamedReference,
}
#[derive(Debug, Clone)]
/// If the parent element is a repeated element, this has information about the models
pub struct RepeatedElementInfo {
pub model: Expression,
pub model_data_id: String,
pub index_id: String,
/// A conditional element is just a for whose model is a boolean expression
///
/// When this is true, the model is of type boolean instead of Model
pub is_conditional_element: bool,
/// When the for is the delegate of a ListView
pub is_listview: Option<ListViewInfo>,
}
pub type ElementRc = Rc<RefCell<Element>>;
impl Element {
pub fn from_node(
node: syntax_nodes::Element,
id: String,
parent_type: ElementType,
component_child_insertion_point: &mut Option<ChildrenInsertionPoint>,
is_legacy_syntax: bool,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> ElementRc {
let base_type = if let Some(base_node) = node.QualifiedName() {
let base = QualifiedTypeName::from_node(base_node.clone());
let base_string = base.to_string();
match parent_type.lookup_type_for_child_element(&base_string, tr) {
Ok(ElementType::Component(c)) if c.is_global() => {
diag.push_error(
"Cannot create an instance of a global component".into(),
&base_node,
);
ElementType::Error
}
Ok(ty) => ty,
Err(err) => {
diag.push_error(err, &base_node);
ElementType::Error
}
}
} else if parent_type == ElementType::Global {
// This must be a global component it can only have properties and callback
let mut error_on = |node: &dyn Spanned, what: &str| {
diag.push_error(format!("A global component cannot have {}", what), node);
};
node.SubElement().for_each(|n| error_on(&n, "sub elements"));
node.RepeatedElement().for_each(|n| error_on(&n, "sub elements"));
if let Some(n) = node.ChildrenPlaceholder() {
error_on(&n, "sub elements");
}
node.PropertyAnimation().for_each(|n| error_on(&n, "animations"));
node.States().for_each(|n| error_on(&n, "states"));
node.Transitions().for_each(|n| error_on(&n, "transitions"));
node.CallbackDeclaration().for_each(|cb| {
if parser::identifier_text(&cb.DeclaredIdentifier()).map_or(false, |s| s == "init")
{
error_on(&cb, "an 'init' callback")
}
});
node.CallbackConnection().for_each(|cb| {
if parser::identifier_text(&cb).map_or(false, |s| s == "init") {
error_on(&cb, "an 'init' callback")
}
});
ElementType::Global
} else if parent_type != ElementType::Error {
// This should normally never happen because the parser does not allow for this
assert!(diag.has_error());
return ElementRc::default();
} else {
tr.empty_type()
};
let mut r = Element {
id,
base_type,
node: Some(node.clone()),
is_legacy_syntax,
..Default::default()
};
for prop_decl in node.PropertyDeclaration() {
let prop_type = prop_decl
.Type()
.map(|type_node| type_from_node(type_node, diag, tr))
// Type::Void is used for two way bindings without type specified
.unwrap_or(Type::InferredProperty);
let unresolved_prop_name =
unwrap_or_continue!(parser::identifier_text(&prop_decl.DeclaredIdentifier()); diag);
let PropertyLookupResult {
resolved_name: prop_name,
property_type: maybe_existing_prop_type,
..
} = r.lookup_property(&unresolved_prop_name);
match maybe_existing_prop_type {
Type::Callback { .. } => {
diag.push_error(
format!("Cannot declare property '{}' when a callback with the same name exists", prop_name),
&prop_decl.DeclaredIdentifier().child_token(SyntaxKind::Identifier).unwrap(),
);
continue;
}
Type::Function { .. } => {
diag.push_error(
format!("Cannot declare property '{}' when a callback with the same name exists", prop_name),
&prop_decl.DeclaredIdentifier().child_token(SyntaxKind::Identifier).unwrap(),
);
continue;
}
Type::Invalid => {} // Ok to proceed with a new declaration
_ => {
diag.push_error(
format!("Cannot override property '{}'", prop_name),
&prop_decl
.DeclaredIdentifier()
.child_token(SyntaxKind::Identifier)
.unwrap(),
);
continue;
}
}
let mut visibility = None;
for token in prop_decl.children_with_tokens() {
if token.kind() != SyntaxKind::Identifier {
continue;
}
match (token.as_token().unwrap().text(), visibility) {
("in", None) => visibility = Some(PropertyVisibility::Input),
("in", Some(_)) => diag.push_error("Extra 'in' keyword".into(), &token),
("out", None) => visibility = Some(PropertyVisibility::Output),
("out", Some(_)) => diag.push_error("Extra 'out' keyword".into(), &token),
("in-out" | "in_out", None) => visibility = Some(PropertyVisibility::InOut),
("in-out" | "in_out", Some(_)) => {
diag.push_error("Extra 'in-out' keyword".into(), &token)
}
("private", None) => visibility = Some(PropertyVisibility::Private),
("private", Some(_)) => {
diag.push_error("Extra 'private' keyword".into(), &token)
}
_ => (),
}
}
let visibility = visibility.unwrap_or_else(|| {
if is_legacy_syntax {
PropertyVisibility::InOut
} else {
PropertyVisibility::Private
}
});
r.property_declarations.insert(
prop_name.to_string(),
PropertyDeclaration {
property_type: prop_type,
node: Some(prop_decl.clone().into()),
visibility,
..Default::default()
},
);
if let Some(csn) = prop_decl.BindingExpression() {
if r.bindings
.insert(
prop_name.to_string(),
BindingExpression::new_uncompiled(csn.into()).into(),
)
.is_some()
{
diag.push_error(
"Duplicated property binding".into(),
&prop_decl.DeclaredIdentifier(),
);
}
}
if let Some(csn) = prop_decl.TwoWayBinding() {
if r.bindings
.insert(prop_name.into(), BindingExpression::new_uncompiled(csn.into()).into())
.is_some()
{
diag.push_error(
"Duplicated property binding".into(),
&prop_decl.DeclaredIdentifier(),
);
}
}
}
r.parse_bindings(
node.Binding().filter_map(|b| {
Some((b.child_token(SyntaxKind::Identifier)?, b.BindingExpression().into()))
}),
is_legacy_syntax,
diag,
);
r.parse_bindings(
node.TwoWayBinding()
.filter_map(|b| Some((b.child_token(SyntaxKind::Identifier)?, b.into()))),
is_legacy_syntax,
diag,
);
apply_default_type_properties(&mut r);
for sig_decl in node.CallbackDeclaration() {
let name =
unwrap_or_continue!(parser::identifier_text(&sig_decl.DeclaredIdentifier()); diag);
let pure = Some(
sig_decl.child_token(SyntaxKind::Identifier).map_or(false, |t| t.text() == "pure"),
);
if let Some(csn) = sig_decl.TwoWayBinding() {
r.bindings
.insert(name.clone(), BindingExpression::new_uncompiled(csn.into()).into());
r.property_declarations.insert(
name,
PropertyDeclaration {
property_type: Type::InferredCallback,
node: Some(sig_decl.into()),
visibility: PropertyVisibility::InOut,
pure,
..Default::default()
},
);
continue;
}
let PropertyLookupResult {
resolved_name: existing_name,
property_type: maybe_existing_prop_type,
..
} = r.lookup_property(&name);
if !matches!(maybe_existing_prop_type, Type::Invalid) {
if matches!(maybe_existing_prop_type, Type::Callback { .. }) {
if r.property_declarations.contains_key(&name) {
diag.push_error(
"Duplicated callback declaration".into(),
&sig_decl.DeclaredIdentifier(),
);
} else {
diag.push_error(
format!("Cannot override callback '{}'", existing_name),
&sig_decl.DeclaredIdentifier(),
)
}
} else {
diag.push_error(
format!(
"Cannot declare callback '{existing_name}' when a {} with the same name exists",
if matches!(maybe_existing_prop_type, Type::Function { .. }) { "function" } else { "property" }
),
&sig_decl.DeclaredIdentifier(),
);
}
continue;
}
let args = sig_decl.Type().map(|node_ty| type_from_node(node_ty, diag, tr)).collect();
let return_type = sig_decl
.ReturnType()
.map(|ret_ty| Box::new(type_from_node(ret_ty.Type(), diag, tr)));
r.property_declarations.insert(
name,
PropertyDeclaration {
property_type: Type::Callback { return_type, args },
node: Some(sig_decl.into()),
visibility: PropertyVisibility::InOut,
pure,
..Default::default()
},
);
}
for func in node.Function() {
let name =
unwrap_or_continue!(parser::identifier_text(&func.DeclaredIdentifier()); diag);
let PropertyLookupResult {
resolved_name: existing_name,
property_type: maybe_existing_prop_type,
..
} = r.lookup_property(&name);
if !matches!(maybe_existing_prop_type, Type::Invalid) {
if matches!(maybe_existing_prop_type, Type::Callback { .. } | Type::Function { .. })
{
diag.push_error(
format!("Cannot override '{}'", existing_name),
&func.DeclaredIdentifier(),
)
} else {
diag.push_error(
format!("Cannot declare function '{}' when a property with the same name exists", existing_name),
&func.DeclaredIdentifier(),
);
}
continue;
}
let mut args = vec![];
let mut arg_names = vec![];
for a in func.ArgumentDeclaration() {
args.push(type_from_node(a.Type(), diag, tr));
let name =
unwrap_or_continue!(parser::identifier_text(&a.DeclaredIdentifier()); diag);
if arg_names.contains(&name) {
diag.push_error(
format!("Duplicated argument name '{name}'"),
&a.DeclaredIdentifier(),
);
}
arg_names.push(name);
}
let return_type = Box::new(
func.ReturnType()
.map_or(Type::Void, |ret_ty| type_from_node(ret_ty.Type(), diag, tr)),
);
if r.bindings
.insert(name.clone(), BindingExpression::new_uncompiled(func.clone().into()).into())
.is_some()
{
assert!(diag.has_error());
}
let mut visibility = PropertyVisibility::Private;
let mut pure = None;
for token in func.children_with_tokens() {
if token.kind() != SyntaxKind::Identifier {
continue;
}
match token.as_token().unwrap().text() {
"pure" => pure = Some(true),
"public" => {
visibility = PropertyVisibility::Public;
pure = pure.or_else(|| Some(false));
}
_ => (),
}
}
r.property_declarations.insert(
name,
PropertyDeclaration {
property_type: Type::Function { return_type, args },
node: Some(func.into()),
visibility,
pure,
..Default::default()
},
);
}
for con_node in node.CallbackConnection() {
let unresolved_name = unwrap_or_continue!(parser::identifier_text(&con_node); diag);
let PropertyLookupResult { resolved_name, property_type, .. } =
r.lookup_property(&unresolved_name);
if let Type::Callback { args, .. } = &property_type {
let num_arg = con_node.DeclaredIdentifier().count();
if num_arg > args.len() {
diag.push_error(
format!(
"'{}' only has {} arguments, but {} were provided",
unresolved_name,
args.len(),
num_arg
),
&con_node.child_token(SyntaxKind::Identifier).unwrap(),
);
}
} else if property_type == Type::InferredCallback {
// argument matching will happen later
} else {
diag.push_error(
format!("'{}' is not a callback in {}", unresolved_name, r.base_type),
&con_node.child_token(SyntaxKind::Identifier).unwrap(),
);
continue;
}
if r.bindings
.insert(
resolved_name.into_owned(),
BindingExpression::new_uncompiled(con_node.clone().into()).into(),
)
.is_some()
{
diag.push_error(
"Duplicated callback".into(),
&con_node.child_token(SyntaxKind::Identifier).unwrap(),
);
}
}
for anim in node.PropertyAnimation() {
if let Some(star) = anim.child_token(SyntaxKind::Star) {
diag.push_error(
"catch-all property is only allowed within transitions".into(),
&star,
)
};
for prop_name_token in anim.QualifiedName() {
match QualifiedTypeName::from_node(prop_name_token.clone()).members.as_slice() {
[unresolved_prop_name] => {
let lookup_result = r.lookup_property(unresolved_prop_name);
let valid_assign = lookup_result.is_valid_for_assignment();
if let Some(anim_element) = animation_element_from_node(
&anim,
&prop_name_token,
lookup_result.property_type,
diag,
tr,
) {
if !valid_assign {
diag.push_error(
format!(
"Cannot animate {} property '{}'",
lookup_result.property_visibility, unresolved_prop_name
),
&prop_name_token,
);
}
if unresolved_prop_name != lookup_result.resolved_name.as_ref() {
diag.push_property_deprecation_warning(
unresolved_prop_name,
&lookup_result.resolved_name,
&prop_name_token,
);
}
let expr_binding = r
.bindings
.entry(lookup_result.resolved_name.to_string())
.or_insert_with(|| {
let mut r = BindingExpression::from(Expression::Invalid);
r.priority = 1;
r.span = Some(prop_name_token.to_source_location());
r.into()
});
if expr_binding
.get_mut()
.animation
.replace(PropertyAnimation::Static(anim_element))
.is_some()
{
diag.push_error("Duplicated animation".into(), &prop_name_token)
}
}
}
_ => diag.push_error(
"Can only refer to property in the current element".into(),
&prop_name_token,
),
}
}
}
let mut children_placeholder = None;
let r = ElementRc::new(RefCell::new(r));
for se in node.children() {
if se.kind() == SyntaxKind::SubElement {
let parent_type = r.borrow().base_type.clone();
r.borrow_mut().children.push(Element::from_sub_element_node(
se.into(),
parent_type,
component_child_insertion_point,
is_legacy_syntax,
diag,
tr,
));
} else if se.kind() == SyntaxKind::RepeatedElement {
let mut sub_child_insertion_point = None;
let rep = Element::from_repeated_node(
se.into(),
&r,
&mut sub_child_insertion_point,
is_legacy_syntax,
diag,
tr,
);
if let Some((_, se)) = sub_child_insertion_point {
diag.push_error(
"The @children placeholder cannot appear in a repeated element".into(),
&se,
)
}
r.borrow_mut().children.push(rep);
} else if se.kind() == SyntaxKind::ConditionalElement {
let mut sub_child_insertion_point = None;
let rep = Element::from_conditional_node(
se.into(),
r.borrow().base_type.clone(),
&mut sub_child_insertion_point,
is_legacy_syntax,
diag,
tr,
);
if let Some((_, se)) = sub_child_insertion_point {
diag.push_error(
"The @children placeholder cannot appear in a conditional element".into(),
&se,
)
}
r.borrow_mut().children.push(rep);
} else if se.kind() == SyntaxKind::ChildrenPlaceholder {
if children_placeholder.is_some() {
diag.push_error(
"The @children placeholder can only appear once in an element".into(),
&se,
)
} else {
children_placeholder = Some(se.clone().into());
}
}
}
if let Some(children_placeholder) = children_placeholder {
if component_child_insertion_point.is_some() {
diag.push_error(
"The @children placeholder can only appear once in an element hierarchy".into(),
&children_placeholder,
)
} else {
*component_child_insertion_point = Some((r.clone(), children_placeholder));
}
}
for state in node.States().flat_map(|s| s.State()) {
let s = State {
id: parser::identifier_text(&state.DeclaredIdentifier()).unwrap_or_default(),
condition: state.Expression().map(|e| Expression::Uncompiled(e.into())),
property_changes: state
.StatePropertyChange()
.filter_map(|s| {
lookup_property_from_qualified_name_for_state(s.QualifiedName(), &r, diag)
.map(|(ne, _)| {
(ne, Expression::Uncompiled(s.BindingExpression().into()), s)
})
})
.collect(),
};
for trs in state.Transition() {
let mut t = Transition::from_node(trs, &r, tr, diag);
t.state_id = s.id.clone();
r.borrow_mut().transitions.push(t);
}
r.borrow_mut().states.push(s);
}
for ts in node.Transitions() {
if !is_legacy_syntax {
diag.push_error("'transitions' block are no longer supported. Use 'in {...}' and 'out {...}' directly in the state definition".into(), &ts);
}
for trs in ts.Transition() {
let trans = Transition::from_node(trs, &r, tr, diag);
r.borrow_mut().transitions.push(trans);
}
}
if r.borrow().base_type.to_string() == "ListView" {
let mut seen_for = false;
for se in node.children() {
if se.kind() == SyntaxKind::RepeatedElement && !seen_for {
seen_for = true;
} else if matches!(
se.kind(),
SyntaxKind::SubElement
| SyntaxKind::ConditionalElement
| SyntaxKind::RepeatedElement
| SyntaxKind::ChildrenPlaceholder
) {
diag.push_warning("A ListView can just have a single 'for' as children. Anything else is not supported".into(), &se)
}
}
}
r
}
fn from_sub_element_node(
node: syntax_nodes::SubElement,
parent_type: ElementType,
component_child_insertion_point: &mut Option<ChildrenInsertionPoint>,
is_in_legacy_component: bool,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> ElementRc {
let id = parser::identifier_text(&node).unwrap_or_default();
if matches!(id.as_ref(), "parent" | "self" | "root") {
diag.push_error(
format!("'{}' is a reserved id", id),
&node.child_token(SyntaxKind::Identifier).unwrap(),
)
}
Element::from_node(
node.Element(),
id,
parent_type,
component_child_insertion_point,
is_in_legacy_component,
diag,
tr,
)
}
fn from_repeated_node(
node: syntax_nodes::RepeatedElement,
parent: &ElementRc,
component_child_insertion_point: &mut Option<ChildrenInsertionPoint>,
is_in_legacy_component: bool,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> ElementRc {
let is_listview = if parent.borrow().base_type.to_string() == "ListView" {
Some(ListViewInfo {
viewport_y: NamedReference::new(parent, "viewport-y"),
viewport_height: NamedReference::new(parent, "viewport-height"),
viewport_width: NamedReference::new(parent, "viewport-width"),
listview_height: NamedReference::new(parent, "visible-height"),
listview_width: NamedReference::new(parent, "visible-width"),
})
} else {
None
};
let rei = RepeatedElementInfo {
model: Expression::Uncompiled(node.Expression().into()),
model_data_id: node
.DeclaredIdentifier()
.and_then(|n| parser::identifier_text(&n))
.unwrap_or_default(),
index_id: node
.RepeatedIndex()
.and_then(|r| parser::identifier_text(&r))
.unwrap_or_default(),
is_conditional_element: false,
is_listview,
};
let e = Element::from_sub_element_node(
node.SubElement(),
parent.borrow().base_type.clone(),
component_child_insertion_point,
is_in_legacy_component,
diag,
tr,
);
e.borrow_mut().repeated = Some(rei);
e
}
fn from_conditional_node(
node: syntax_nodes::ConditionalElement,
parent_type: ElementType,
component_child_insertion_point: &mut Option<ChildrenInsertionPoint>,
is_in_legacy_component: bool,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> ElementRc {
let rei = RepeatedElementInfo {
model: Expression::Uncompiled(node.Expression().into()),
model_data_id: String::new(),
index_id: String::new(),
is_conditional_element: true,
is_listview: None,
};
let e = Element::from_sub_element_node(
node.SubElement(),
parent_type,
component_child_insertion_point,
is_in_legacy_component,
diag,
tr,
);
e.borrow_mut().repeated = Some(rei);
e
}
/// Return the type of a property in this element or its base, along with the final name, in case
/// the provided name points towards a property alias. Type::Invalid is returned if the property does
/// not exist.
pub fn lookup_property<'a>(&self, name: &'a str) -> PropertyLookupResult<'a> {
self.property_declarations.get(name).map_or_else(
|| {
let mut r = self.base_type.lookup_property(name);
r.is_local_to_component = false;
r
},
|p| PropertyLookupResult {
resolved_name: name.into(),
property_type: p.property_type.clone(),
property_visibility: p.visibility,
declared_pure: p.pure,
is_local_to_component: true,
},
)
}
/// Return the Span of this element in the AST for error reporting
pub fn span(&self) -> crate::diagnostics::Span {
self.node.as_ref().map(|n| n.span()).unwrap_or_default()
}
fn parse_bindings(
&mut self,
bindings: impl Iterator<Item = (crate::parser::SyntaxToken, SyntaxNode)>,
is_in_legacy_component: bool,
diag: &mut BuildDiagnostics,
) {
for (name_token, b) in bindings {
let unresolved_name = crate::parser::normalize_identifier(name_token.text());
let lookup_result = self.lookup_property(&unresolved_name);
if !lookup_result.property_type.is_property_type() {
match lookup_result.property_type {
Type::Invalid => {
if self.base_type != ElementType::Error {
diag.push_error(if self.base_type.to_string() == "Empty" {
format!( "Unknown property {unresolved_name}")
} else {
format!( "Unknown property {unresolved_name} in {}", self.base_type)
},
&name_token);
}
}
Type::Callback { .. } => {
diag.push_error(format!("'{}' is a callback. Use `=>` to connect", unresolved_name),
&name_token)
}
_ => diag.push_error(format!(
"Cannot assign to {} in {} because it does not have a valid property type",
unresolved_name, self.base_type,
),
&name_token),
}
} else if !lookup_result.is_local_to_component
&& (lookup_result.property_visibility == PropertyVisibility::Private
|| lookup_result.property_visibility == PropertyVisibility::Output)
{
if is_in_legacy_component
&& lookup_result.property_visibility == PropertyVisibility::Output
{
diag.push_warning(
format!("Assigning to output property '{unresolved_name}' is deprecated"),
&name_token,
);
} else {
diag.push_error(
format!(
"Cannot assign to {} property '{}'",
lookup_result.property_visibility, unresolved_name
),
&name_token,
);
}
}
if lookup_result.resolved_name != unresolved_name {
diag.push_property_deprecation_warning(
&unresolved_name,
&lookup_result.resolved_name,
&name_token,
);
}
if self
.bindings
.insert(
lookup_result.resolved_name.to_string(),
BindingExpression::new_uncompiled(b).into(),
)
.is_some()
{
diag.push_error("Duplicated property binding".into(), &name_token);
}
}
}
pub fn native_class(&self) -> Option<Rc<NativeClass>> {
let mut base_type = self.base_type.clone();
loop {
match &base_type {
ElementType::Component(component) => {
base_type = component.root_element.clone().borrow().base_type.clone();
}
ElementType::Builtin(builtin) => break Some(builtin.native_class.clone()),
ElementType::Native(native) => break Some(native.clone()),
_ => break None,
}
}
}
pub fn builtin_type(&self) -> Option<Rc<BuiltinElement>> {
let mut base_type = self.base_type.clone();
loop {
match &base_type {
ElementType::Component(component) => {
base_type = component.root_element.clone().borrow().base_type.clone();
}
ElementType::Builtin(builtin) => break Some(builtin.clone()),
_ => break None,
}
}
}
pub fn layout_info_prop(&self, orientation: Orientation) -> Option<&NamedReference> {
self.layout_info_prop.as_ref().map(|prop| match orientation {
Orientation::Horizontal => &prop.0,
Orientation::Vertical => &prop.1,
})
}
/// Returns the element's name as specified in the markup, not normalized.
pub fn original_name(&self) -> String {
self.node
.as_ref()
.and_then(|n| n.child_token(parser::SyntaxKind::Identifier))
.map(|n| n.to_string())
.unwrap_or_else(|| self.id.clone())
}
/// Return true if the binding is set, either on this element or in a base
///
/// If `need_explicit` is true, then only consider binding set in the code, not the ones set
/// by the compiler later.
pub fn is_binding_set(self: &Element, property_name: &str, need_explicit: bool) -> bool {
if self.bindings.get(property_name).map_or(false, |b| {
b.borrow().has_binding() && (!need_explicit || b.borrow().priority > 0)
}) {
true
} else if let ElementType::Component(base) = &self.base_type {
base.root_element.borrow().is_binding_set(property_name, need_explicit)
} else {
false
}
}
/// Set the property `property_name` of this Element only if it was not set.
/// the `expression_fn` will only be called if it isn't set
///
/// returns true if the binding was changed
pub fn set_binding_if_not_set(
&mut self,
property_name: String,
expression_fn: impl FnOnce() -> Expression,
) -> bool {
if self.is_binding_set(&property_name, false) {
return false;
}
match self.bindings.entry(property_name) {
Entry::Vacant(vacant_entry) => {
let mut binding: BindingExpression = expression_fn().into();
binding.priority = i32::MAX;
vacant_entry.insert(binding.into());
}
Entry::Occupied(mut existing_entry) => {
let mut binding: BindingExpression = expression_fn().into();
binding.priority = i32::MAX;
existing_entry.get_mut().get_mut().merge_with(&binding);
}
};
true
}
pub fn sub_component(&self) -> Option<&Rc<Component>> {
if self.repeated.is_some() {
None
} else if let ElementType::Component(sub_component) = &self.base_type {
Some(sub_component)
} else {
None
}
}
}
/// Apply default property values defined in `builtins.slint` to the element.
fn apply_default_type_properties(element: &mut Element) {
// Apply default property values on top:
if let ElementType::Builtin(builtin_base) = &element.base_type {
for (prop, info) in &builtin_base.properties {
if let Some(expr) = &info.default_value {
element.bindings.entry(prop.clone()).or_insert_with(|| {
let mut binding = BindingExpression::from(expr.clone());
binding.priority = i32::MAX;
RefCell::new(binding)
});
}
}
}
}
/// Create a Type for this node
pub fn type_from_node(
node: syntax_nodes::Type,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> Type {
if let Some(qualified_type_node) = node.QualifiedName() {
let qualified_type = QualifiedTypeName::from_node(qualified_type_node.clone());
let prop_type = tr.lookup_qualified(&qualified_type.members);
if prop_type == Type::Invalid && tr.lookup_element(&qualified_type.to_string()).is_err() {
diag.push_error(format!("Unknown type '{}'", qualified_type), &qualified_type_node);
} else if !prop_type.is_property_type() {
diag.push_error(
format!("'{}' is not a valid type", qualified_type),
&qualified_type_node,
);
}
prop_type
} else if let Some(object_node) = node.ObjectType() {
type_struct_from_node(object_node, diag, tr)
} else if let Some(array_node) = node.ArrayType() {
Type::Array(Box::new(type_from_node(array_node.Type(), diag, tr)))
} else {
assert!(diag.has_error());
Type::Invalid
}
}
/// Create a Type::Object from a syntax_nodes::ObjectType
pub fn type_struct_from_node(
object_node: syntax_nodes::ObjectType,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> Type {
let fields = object_node
.ObjectTypeMember()
.map(|member| {
(
parser::identifier_text(&member).unwrap_or_default(),
type_from_node(member.Type(), diag, tr),
)
})
.collect();
Type::Struct { fields, name: None, node: Some(object_node) }
}
fn animation_element_from_node(
anim: &syntax_nodes::PropertyAnimation,
prop_name: &syntax_nodes::QualifiedName,
prop_type: Type,
diag: &mut BuildDiagnostics,
tr: &TypeRegister,
) -> Option<ElementRc> {
let anim_type = tr.property_animation_type_for_property(prop_type);
if !matches!(anim_type, ElementType::Builtin(..)) {
diag.push_error(
format!(
"'{}' is not a property that can be animated",
prop_name.text().to_string().trim()
),
prop_name,
);
None
} else {
let mut anim_element =
Element { id: "".into(), base_type: anim_type, node: None, ..Default::default() };
anim_element.parse_bindings(
anim.Binding().filter_map(|b| {
Some((b.child_token(SyntaxKind::Identifier)?, b.BindingExpression().into()))
}),
false,
diag,
);
apply_default_type_properties(&mut anim_element);
Some(Rc::new(RefCell::new(anim_element)))
}
}
#[derive(Default, Debug, Clone)]
pub struct QualifiedTypeName {
pub members: Vec<String>,
}
impl QualifiedTypeName {
pub fn from_node(node: syntax_nodes::QualifiedName) -> Self {
debug_assert_eq!(node.kind(), SyntaxKind::QualifiedName);
let members = node
.children_with_tokens()
.filter(|n| n.kind() == SyntaxKind::Identifier)
.filter_map(|x| x.as_token().map(|x| crate::parser::normalize_identifier(x.text())))
.collect();
Self { members }
}
}
impl Display for QualifiedTypeName {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", self.members.join("."))
}
}
/// Return a NamedReference for a qualified name used in a state (or transition),
/// if the reference is invalid, there will be a diagnostic
fn lookup_property_from_qualified_name_for_state(
node: syntax_nodes::QualifiedName,
r: &ElementRc,
diag: &mut BuildDiagnostics,
) -> Option<(NamedReference, Type)> {
let qualname = QualifiedTypeName::from_node(node.clone());
match qualname.members.as_slice() {
[unresolved_prop_name] => {
let lookup_result = r.borrow().lookup_property(unresolved_prop_name.as_ref());
if !lookup_result.property_type.is_property_type() {
diag.push_error(format!("'{}' is not a valid property", qualname), &node);
} else if !lookup_result.is_valid_for_assignment() {
diag.push_error(
format!(
"'{}' cannot be set in a state because it is {}",
qualname, lookup_result.property_visibility
),
&node,
);
}
Some((
NamedReference::new(r, &lookup_result.resolved_name),
lookup_result.property_type,
))
}
[elem_id, unresolved_prop_name] => {
if let Some(element) = find_element_by_id(r, elem_id.as_ref()) {
let lookup_result = element.borrow().lookup_property(unresolved_prop_name.as_ref());
if !lookup_result.is_valid() {
diag.push_error(
format!("'{}' not found in '{}'", unresolved_prop_name, elem_id),
&node,
);
} else if !lookup_result.is_valid_for_assignment() {
diag.push_error(
format!(
"'{}' cannot be set in a state because it is {}",
qualname, lookup_result.property_visibility
),
&node,
);
}
Some((
NamedReference::new(&element, &lookup_result.resolved_name),
lookup_result.property_type,
))
} else {
diag.push_error(format!("'{}' is not a valid element id", elem_id), &node);
None
}
}
_ => {
diag.push_error(format!("'{}' is not a valid property", qualname), &node);
None
}
}
}
/// FIXME: this is duplicated the resolving pass. Also, we should use a hash table
fn find_element_by_id(e: &ElementRc, name: &str) -> Option<ElementRc> {
if e.borrow().id == name {
return Some(e.clone());
}
for x in &e.borrow().children {
if x.borrow().repeated.is_some() {
continue;
}
if let Some(x) = find_element_by_id(x, name) {
return Some(x);
}
}
None
}
/// Find the parent element to a given element.
/// (since there is no parent mapping we need to fo an exhaustive search)
pub fn find_parent_element(e: &ElementRc) -> Option<ElementRc> {
fn recurse(base: &ElementRc, e: &ElementRc) -> Option<ElementRc> {
for child in &base.borrow().children {
if Rc::ptr_eq(child, e) {
return Some(base.clone());
}
if let Some(x) = recurse(child, e) {
return Some(x);
}
}
None
}
let root = e.borrow().enclosing_component.upgrade().unwrap().root_element.clone();
if Rc::ptr_eq(&root, e) {
return None;
}
recurse(&root, e)
}
/// Call the visitor for each children of the element recursively, starting with the element itself
///
/// The state returned by the visitor is passed to the children
pub fn recurse_elem<State>(
elem: &ElementRc,
state: &State,
vis: &mut impl FnMut(&ElementRc, &State) -> State,
) {
let state = vis(elem, state);
for sub in &elem.borrow().children {
recurse_elem(sub, &state, vis);
}
}
/// Same as [`recurse_elem`] but include the elements form sub_components
pub fn recurse_elem_including_sub_components<State>(
component: &Component,
state: &State,
vis: &mut impl FnMut(&ElementRc, &State) -> State,
) {
recurse_elem(&component.root_element, state, &mut |elem, state| {
debug_assert!(std::ptr::eq(
component as *const Component,
(&*elem.borrow().enclosing_component.upgrade().unwrap()) as *const Component
));
if elem.borrow().repeated.is_some() {
if let ElementType::Component(base) = &elem.borrow().base_type {
if base.parent_element.upgrade().is_some() {
recurse_elem_including_sub_components(base, state, vis);
}
}
}
vis(elem, state)
});
component
.popup_windows
.borrow()
.iter()
.for_each(|p| recurse_elem_including_sub_components(&p.component, state, vis))
}
/// Same as recurse_elem, but will take the children from the element as to not keep the element borrow
pub fn recurse_elem_no_borrow<State>(
elem: &ElementRc,
state: &State,
vis: &mut impl FnMut(&ElementRc, &State) -> State,
) {
let state = vis(elem, state);
let children = elem.borrow().children.clone();
for sub in &children {
recurse_elem_no_borrow(sub, &state, vis);
}
}
/// Same as [`recurse_elem`] but include the elements form sub_components
pub fn recurse_elem_including_sub_components_no_borrow<State>(
component: &Component,
state: &State,
vis: &mut impl FnMut(&ElementRc, &State) -> State,
) {
recurse_elem_no_borrow(&component.root_element, state, &mut |elem, state| {
let base = if elem.borrow().repeated.is_some() {
if let ElementType::Component(base) = &elem.borrow().base_type {
Some(base.clone())
} else {
None
}
} else {
None
};
if let Some(base) = base {
recurse_elem_including_sub_components_no_borrow(&base, state, vis);
}
vis(elem, state)
});
component
.popup_windows
.borrow()
.iter()
.for_each(|p| recurse_elem_including_sub_components_no_borrow(&p.component, state, vis));
component
.used_types
.borrow()
.globals
.iter()
.for_each(|p| recurse_elem_including_sub_components_no_borrow(p, state, vis));
}
/// This visit the binding attached to this element, but does not recurse in children elements
/// Also does not recurse within the expressions.
///
/// This code will temporarily move the bindings or states member so it can call the visitor without
/// maintaining a borrow on the RefCell.
pub fn visit_element_expressions(
elem: &ElementRc,
mut vis: impl FnMut(&mut Expression, Option<&str>, &dyn Fn() -> Type),
) {
fn visit_element_expressions_simple(
elem: &ElementRc,
vis: &mut impl FnMut(&mut Expression, Option<&str>, &dyn Fn() -> Type),
) {
for (name, expr) in &elem.borrow().bindings {
vis(&mut *expr.borrow_mut(), Some(name.as_str()), &|| {
elem.borrow().lookup_property(name).property_type
});
match &mut expr.borrow_mut().animation {
Some(PropertyAnimation::Static(e)) => visit_element_expressions_simple(e, vis),
Some(PropertyAnimation::Transition { animations, state_ref }) => {
vis(state_ref, None, &|| Type::Int32);
for a in animations {
visit_element_expressions_simple(&a.animation, vis)
}
}
None => (),
}
}
}
let repeated = std::mem::take(&mut elem.borrow_mut().repeated);
if let Some(mut r) = repeated {
let is_conditional_element = r.is_conditional_element;
vis(&mut r.model, None, &|| if is_conditional_element { Type::Bool } else { Type::Model });
elem.borrow_mut().repeated = Some(r)
}
visit_element_expressions_simple(elem, &mut vis);
let mut states = std::mem::take(&mut elem.borrow_mut().states);
for s in &mut states {
if let Some(cond) = s.condition.as_mut() {
vis(cond, None, &|| Type::Bool)
}
for (ne, e, _) in &mut s.property_changes {
vis(e, Some(ne.name()), &|| {
ne.element().borrow().lookup_property(ne.name()).property_type
});
}
}
elem.borrow_mut().states = states;
let mut transitions = std::mem::take(&mut elem.borrow_mut().transitions);
for t in &mut transitions {
for (_, _, a) in &mut t.property_animations {
visit_element_expressions_simple(a, &mut vis);
}
}
elem.borrow_mut().transitions = transitions;
}
pub fn visit_named_references_in_expression(
expr: &mut Expression,
vis: &mut impl FnMut(&mut NamedReference),
) {
expr.visit_mut(|sub| visit_named_references_in_expression(sub, vis));
match expr {
Expression::PropertyReference(r)
| Expression::CallbackReference(r, _)
| Expression::FunctionReference(r, _) => vis(r),
Expression::LayoutCacheAccess { layout_cache_prop, .. } => vis(layout_cache_prop),
Expression::SolveLayout(l, _) => l.visit_named_references(vis),
Expression::ComputeLayoutInfo(l, _) => l.visit_named_references(vis),
// This is not really a named reference, but the result is the same, it need to be updated
// FIXME: this should probably be lowered into a PropertyReference
Expression::RepeaterModelReference { element }
| Expression::RepeaterIndexReference { element } => {
// FIXME: this is questionable
let mut nc = NamedReference::new(&element.upgrade().unwrap(), "$model");
vis(&mut nc);
debug_assert!(nc.element().borrow().repeated.is_some());
*element = Rc::downgrade(&nc.element());
}
_ => {}
}
}
/// Visit all the named reference in an element
/// But does not recurse in sub-elements. (unlike [`visit_all_named_references`] which recurse)
pub fn visit_all_named_references_in_element(
elem: &ElementRc,
mut vis: impl FnMut(&mut NamedReference),
) {
visit_element_expressions(elem, |expr, _, _| {
visit_named_references_in_expression(expr, &mut vis)
});
let mut states = std::mem::take(&mut elem.borrow_mut().states);
for s in &mut states {
for (r, _, _) in &mut s.property_changes {
vis(r);
}
}
elem.borrow_mut().states = states;
let mut transitions = std::mem::take(&mut elem.borrow_mut().transitions);
for t in &mut transitions {
for (r, _, _) in &mut t.property_animations {
vis(r)
}
}
elem.borrow_mut().transitions = transitions;
let mut repeated = std::mem::take(&mut elem.borrow_mut().repeated);
if let Some(r) = &mut repeated {
if let Some(lv) = &mut r.is_listview {
vis(&mut lv.viewport_y);
vis(&mut lv.viewport_height);
vis(&mut lv.viewport_width);
vis(&mut lv.listview_height);
vis(&mut lv.listview_width);
}
}
elem.borrow_mut().repeated = repeated;
let mut layout_info_prop = std::mem::take(&mut elem.borrow_mut().layout_info_prop);
layout_info_prop.as_mut().map(|(h, b)| (vis(h), vis(b)));
elem.borrow_mut().layout_info_prop = layout_info_prop;
let mut accessibility_props = std::mem::take(&mut elem.borrow_mut().accessibility_props);
accessibility_props.0.iter_mut().for_each(|(_, x)| vis(x));
elem.borrow_mut().accessibility_props = accessibility_props;
// visit two way bindings
for expr in elem.borrow().bindings.values() {
for nr in &mut expr.borrow_mut().two_way_bindings {
vis(nr);
}
}
let mut property_declarations = std::mem::take(&mut elem.borrow_mut().property_declarations);
for pd in property_declarations.values_mut() {
pd.is_alias.as_mut().map(&mut vis);
}
elem.borrow_mut().property_declarations = property_declarations;
}
/// Visit all named reference in this component and sub component
pub fn visit_all_named_references(
component: &Component,
vis: &mut impl FnMut(&mut NamedReference),
) {
recurse_elem_including_sub_components_no_borrow(
component,
&Weak::new(),
&mut |elem, parent_compo| {
visit_all_named_references_in_element(elem, |nr| vis(nr));
let compo = elem.borrow().enclosing_component.clone();
if !Weak::ptr_eq(parent_compo, &compo) {
let compo = compo.upgrade().unwrap();
compo.root_constraints.borrow_mut().visit_named_references(vis);
compo.popup_windows.borrow_mut().iter_mut().for_each(|p| {
vis(&mut p.x);
vis(&mut p.y);
});
}
compo
},
);
}
/// Visit all expression in this component and sub components
///
/// Does not recurse in the expression itself
pub fn visit_all_expressions(
component: &Component,
mut vis: impl FnMut(&mut Expression, &dyn Fn() -> Type),
) {
recurse_elem_including_sub_components(component, &(), &mut |elem, _| {
visit_element_expressions(elem, |expr, _, ty| vis(expr, ty));
})
}
#[derive(Debug, Clone)]
pub struct State {
pub id: String,
pub condition: Option<Expression>,
pub property_changes: Vec<(NamedReference, Expression, syntax_nodes::StatePropertyChange)>,
}
#[derive(Debug, Clone)]
pub struct Transition {
/// false for 'to', true for 'out'
pub is_out: bool,
pub state_id: String,
pub property_animations: Vec<(NamedReference, SourceLocation, ElementRc)>,
pub node: syntax_nodes::Transition,
}
impl Transition {
fn from_node(
trs: syntax_nodes::Transition,
r: &ElementRc,
tr: &TypeRegister,
diag: &mut BuildDiagnostics,
) -> Transition {
if let Some(star) = trs.child_token(SyntaxKind::Star) {
diag.push_error("catch-all not yet implemented".into(), &star);
};
Transition {
is_out: parser::identifier_text(&trs).unwrap_or_default() == "out",
state_id: trs
.DeclaredIdentifier()
.and_then(|x| parser::identifier_text(&x))
.unwrap_or_default(),
property_animations: trs
.PropertyAnimation()
.flat_map(|pa| pa.QualifiedName().map(move |qn| (pa.clone(), qn)))
.filter_map(|(pa, qn)| {
lookup_property_from_qualified_name_for_state(qn.clone(), r, diag).and_then(
|(ne, prop_type)| {
animation_element_from_node(&pa, &qn, prop_type, diag, tr)
.map(|anim_element| (ne, qn.to_source_location(), anim_element))
},
)
})
.collect(),
node: trs.clone(),
}
}
}
#[derive(Clone, Debug, derive_more::Deref)]
pub struct ExportedName {
#[deref]
pub name: String, // normalized
pub name_ident: SyntaxNode,
}
impl ExportedName {
pub fn original_name(&self) -> String {
self.name_ident
.child_token(parser::SyntaxKind::Identifier)
.map(|n| n.to_string())
.unwrap_or_else(|| self.name.clone())
}
}
#[derive(Default, Debug, derive_more::Deref)]
pub struct Exports {
#[deref]
components_or_types: Vec<(ExportedName, Either<Rc<Component>, Type>)>,
last_exported_component: Option<Rc<Component>>,
}
impl Exports {
pub fn from_node(
doc: &syntax_nodes::Document,
inner_components: &[Rc<Component>],
type_registry: &TypeRegister,
diag: &mut BuildDiagnostics,
) -> Self {
let resolve_export_to_inner_component_or_import =
|internal_name: &str, internal_name_node: &dyn Spanned, diag: &mut BuildDiagnostics| {
if let Ok(ElementType::Component(c)) = type_registry.lookup_element(internal_name) {
Some(Either::Left(c))
} else if let ty @ Type::Struct { .. } = type_registry.lookup(internal_name) {
Some(Either::Right(ty))
} else if type_registry.lookup_element(internal_name).is_ok()
|| type_registry.lookup(internal_name) != Type::Invalid
{
diag.push_error(
format!("Cannot export '{}' because it is not a component", internal_name,),
internal_name_node,
);
None
} else {
diag.push_error(format!("'{}' not found", internal_name,), internal_name_node);
None
}
};
let mut sorted_exports_with_duplicates: Vec<(ExportedName, _)> = Vec::new();
let mut last_exported_component = None;
let mut extend_exports =
|it: &mut dyn Iterator<Item = (ExportedName, Either<Rc<Component>, Type>)>| {
for (name, compo_or_type) in it {
match compo_or_type.as_ref().left() {
Some(compo) if !compo.is_global() => {
last_exported_component = Some(compo.clone())
}
_ => {}
}
let pos = sorted_exports_with_duplicates
.partition_point(|(existing_name, _)| existing_name.name <= name.name);
sorted_exports_with_duplicates.insert(pos, (name, compo_or_type));
}
};
extend_exports(
&mut doc.ExportsList().flat_map(|exports| exports.ExportSpecifier()).filter_map(
|export_specifier| {
let internal_name =
parser::identifier_text(&export_specifier.ExportIdentifier())
.unwrap_or_else(|| {
debug_assert!(diag.has_error());
String::new()
});
let (name, name_ident): (String, SyntaxNode) = export_specifier
.ExportName()
.and_then(|ident| {
parser::identifier_text(&ident).map(|text| (text, ident.clone().into()))
})
.unwrap_or_else(|| {
(internal_name.clone(), export_specifier.ExportIdentifier().into())
});
Some((
ExportedName { name, name_ident },
resolve_export_to_inner_component_or_import(
&internal_name,
&export_specifier.ExportIdentifier(),
diag,
)?,
))
},
),
);
extend_exports(&mut doc.ExportsList().flat_map(|exports| exports.Component()).filter_map(
|component| {
let name_ident: SyntaxNode = component.DeclaredIdentifier().into();
let name =
parser::identifier_text(&component.DeclaredIdentifier()).unwrap_or_else(|| {
debug_assert!(diag.has_error());
String::new()
});
let compo_or_type =
resolve_export_to_inner_component_or_import(&name, &name_ident, diag)?;
Some((ExportedName { name, name_ident }, compo_or_type))
},
));
extend_exports(
&mut doc.ExportsList().flat_map(|exports| exports.StructDeclaration()).filter_map(
|st| {
let name_ident: SyntaxNode = st.DeclaredIdentifier().into();
let name =
parser::identifier_text(&st.DeclaredIdentifier()).unwrap_or_else(|| {
debug_assert!(diag.has_error());
String::new()
});
let compo_or_type =
resolve_export_to_inner_component_or_import(&name, &name_ident, diag)?;
Some((ExportedName { name, name_ident }, compo_or_type))
},
),
);
let mut sorted_deduped_exports = Vec::with_capacity(sorted_exports_with_duplicates.len());
let mut it = sorted_exports_with_duplicates.into_iter().peekable();
while let Some((exported_name, compo_or_type)) = it.next() {
let mut warning_issued_on_first_occurrence = false;
// Skip over duplicates and issue warnings
while it.peek().map(|(name, _)| &name.name) == Some(&exported_name.name) {
let message = format!("Duplicated export '{}'", exported_name.name);
if !warning_issued_on_first_occurrence {
diag.push_error(message.clone(), &exported_name.name_ident);
warning_issued_on_first_occurrence = true;
}
let duplicate_loc = it.next().unwrap().0.name_ident;
diag.push_error(message.clone(), &duplicate_loc);
}
sorted_deduped_exports.push((exported_name, compo_or_type));
}
if sorted_deduped_exports.is_empty() {
if let Some(last_compo) = inner_components.last() {
if last_compo.is_global() {
diag.push_warning(
"Global singleton is implicitly marked for export. This is deprecated and it should be explicitly exported"
.into(),
&last_compo.node,
);
} else {
diag.push_warning("Component is implicitly marked for export. This is deprecated and it should be explicitly exported".into(), &last_compo.node)
}
let name = last_compo.id.clone();
sorted_deduped_exports.push((
ExportedName { name, name_ident: doc.clone().into() },
Either::Left(last_compo.clone()),
))
}
}
if last_exported_component.is_none() {
last_exported_component = inner_components.last().cloned();
}
Self { components_or_types: sorted_deduped_exports, last_exported_component }
}
pub fn add_reexports(
&mut self,
other_exports: impl IntoIterator<Item = (ExportedName, Either<Rc<Component>, Type>)>,
diag: &mut BuildDiagnostics,
) {
for export in other_exports {
match self.components_or_types.binary_search_by(|entry| entry.0.cmp(&export.0)) {
Ok(_) => {
diag.push_warning(
format!(
"'{}' is already exported in this file; it will not be re-exported",
&*export.0
),
&export.0.name_ident,
);
}
Err(insert_pos) => {
self.components_or_types.insert(insert_pos, export);
}
}
}
}
pub fn find(&self, name: &str) -> Option<Either<Rc<Component>, Type>> {
self.components_or_types
.binary_search_by(|(exported_name, _)| exported_name.as_str().cmp(name))
.ok()
.map(|index| self.components_or_types[index].1.clone())
}
}
impl std::iter::IntoIterator for Exports {
type Item = (ExportedName, Either<Rc<Component>, Type>);
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.components_or_types.into_iter()
}
}
/// This function replace the root element of a repeated element. the previous root becomes the only
/// child of the new root element.
/// Note that no reference to the base component must exist outside of repeated_element.base_type
pub fn inject_element_as_repeated_element(repeated_element: &ElementRc, new_root: ElementRc) {
let component = repeated_element.borrow().base_type.as_component().clone();
// Since we're going to replace the repeated element's component, we need to assert that
// outside this function no strong reference exists to it. Then we can unwrap and
// replace the root element.
debug_assert_eq!(Rc::strong_count(&component), 2);
let old_root = &component.root_element;
adjust_geometry_for_injected_parent(&new_root, old_root);
// Any elements with a weak reference to the repeater's component will need fixing later.
let mut elements_with_enclosing_component_reference = Vec::new();
recurse_elem(old_root, &(), &mut |element: &ElementRc, _| {
if let Some(enclosing_component) = element.borrow().enclosing_component.upgrade() {
if Rc::ptr_eq(&enclosing_component, &component) {
elements_with_enclosing_component_reference.push(element.clone());
}
}
});
elements_with_enclosing_component_reference
.extend_from_slice(component.optimized_elements.borrow().as_slice());
elements_with_enclosing_component_reference.push(new_root.clone());
new_root.borrow_mut().child_of_layout =
std::mem::replace(&mut old_root.borrow_mut().child_of_layout, false);
new_root.borrow_mut().layout_info_prop = old_root.borrow().layout_info_prop.clone();
// Replace the repeated component's element with our shadow element. That requires a bit of reference counting
// surgery and relies on nobody having a strong reference left to the component, which we take out of the Rc.
drop(std::mem::take(&mut repeated_element.borrow_mut().base_type));
debug_assert_eq!(Rc::strong_count(&component), 1);
let mut component = Rc::try_unwrap(component).expect("internal compiler error: more than one strong reference left to repeated component when lowering shadow properties");
let old_root = std::mem::replace(&mut component.root_element, new_root.clone());
new_root.borrow_mut().children.push(old_root);
let component = Rc::new(component);
repeated_element.borrow_mut().base_type = ElementType::Component(component.clone());
for elem in elements_with_enclosing_component_reference {
elem.borrow_mut().enclosing_component = Rc::downgrade(&component);
}
}
/// Make the geometry of the `injected_parent` that of the old_elem. And the old_elem
/// will cover the `injected_parent`
pub fn adjust_geometry_for_injected_parent(injected_parent: &ElementRc, old_elem: &ElementRc) {
// The values for properties that affect the geometry may be supplied in two different ways:
//
// * When coming from the outside, for example by the repeater being inside a layout, we need
// the values to apply to the new root element and the old root just needs to follow.
// * When coming from the inside, for example when the repeater just creates rectangles that
// calculate their own position, we need to move those bindings as well to the new root.
injected_parent.borrow_mut().bindings.extend(Iterator::chain(
["x", "y", "z"].iter().filter_map(|x| old_elem.borrow_mut().bindings.remove_entry(*x)),
["width", "height"].iter().map(|x| {
(
x.to_string(),
BindingExpression::from(Expression::PropertyReference(NamedReference::new(
old_elem, x,
)))
.into(),
)
}),
));
injected_parent.borrow().property_analysis.borrow_mut().extend(
["x", "y", "z"].into_iter().filter_map(|x| {
old_elem
.borrow()
.property_analysis
.borrow()
.get_key_value(x)
.map(|(k, v)| (k.clone(), v.clone()))
}),
);
}