mirror of
https://github.com/slint-ui/slint.git
synced 2025-09-28 12:54:45 +00:00

... by applying a transformation. This allows designing a path in some other path design tool and then make it fit using bindings.
241 lines
7.1 KiB
Rust
241 lines
7.1 KiB
Rust
//! Runtime support for layouting.
|
|
//!
|
|
//! Currently this is a very basic implementation
|
|
|
|
use crate::{abi::slice::Slice, Property};
|
|
|
|
type Coord = f32;
|
|
|
|
mod internal {
|
|
use super::*;
|
|
|
|
#[derive(Debug, Default)]
|
|
pub struct LayoutData {
|
|
// inputs
|
|
pub min: Coord,
|
|
pub max: Coord,
|
|
pub pref: Coord,
|
|
pub stretch: f32,
|
|
|
|
// outputs
|
|
pub pos: Coord,
|
|
pub size: Coord,
|
|
}
|
|
|
|
/// Layout the items within a specified size
|
|
///
|
|
/// This is quite a simple implementation for now
|
|
pub fn layout_items(data: &mut [LayoutData], start_pos: Coord, size: Coord) {
|
|
let (min, _max, perf, mut s) =
|
|
data.iter().fold((0., 0., 0., 0.), |(min, max, pref, s), it| {
|
|
(min + it.min, max + it.max, pref + it.pref, s + it.stretch)
|
|
});
|
|
if size >= perf {
|
|
// bigger than the prefered size
|
|
|
|
// distribute each item its prefered size
|
|
let mut pos = start_pos;
|
|
for it in data.iter_mut() {
|
|
it.size = it.pref;
|
|
it.pos = pos;
|
|
pos += it.size;
|
|
}
|
|
|
|
// Allocate the space according to the stretch. Until all space is distributed, or all item
|
|
// have reached their maximum size
|
|
let mut extra_space = size - perf;
|
|
while s > 0. && extra_space > 0. {
|
|
let extra_per_stretch = extra_space / s;
|
|
s = 0.;
|
|
let mut pos = start_pos;
|
|
for it in data.iter_mut() {
|
|
let give = (extra_per_stretch * it.stretch).min(it.max - it.size);
|
|
it.size += give;
|
|
extra_space -= give;
|
|
if give > 0. {
|
|
s += it.stretch;
|
|
}
|
|
it.pos = pos;
|
|
pos += it.size;
|
|
}
|
|
}
|
|
} else
|
|
/*if size < min*/
|
|
{
|
|
// We have less than the minimum size
|
|
// distribute the difference proportional to the size (TODO: and stretch)
|
|
let ratio = size / min;
|
|
let mut pos = start_pos;
|
|
for it in data {
|
|
it.size = it.min * ratio;
|
|
it.pos = pos;
|
|
pos += it.size;
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_layout_items() {
|
|
let my_items = &mut [
|
|
LayoutData { min: 100., max: 200., pref: 100., stretch: 1., ..Default::default() },
|
|
LayoutData { min: 50., max: 300., pref: 100., stretch: 1., ..Default::default() },
|
|
LayoutData { min: 50., max: 150., pref: 100., stretch: 1., ..Default::default() },
|
|
];
|
|
|
|
layout_items(my_items, 100., 650.);
|
|
assert_eq!(my_items[0].size, 200.);
|
|
assert_eq!(my_items[1].size, 300.);
|
|
assert_eq!(my_items[2].size, 150.);
|
|
|
|
layout_items(my_items, 100., 200.);
|
|
assert_eq!(my_items[0].size, 100.);
|
|
assert_eq!(my_items[1].size, 50.);
|
|
assert_eq!(my_items[2].size, 50.);
|
|
|
|
layout_items(my_items, 100., 300.);
|
|
assert_eq!(my_items[0].size, 100.);
|
|
assert_eq!(my_items[1].size, 100.);
|
|
assert_eq!(my_items[2].size, 100.);
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
pub struct Constraint {
|
|
pub min: Coord,
|
|
pub max: Coord,
|
|
}
|
|
|
|
impl Default for Constraint {
|
|
fn default() -> Self {
|
|
Constraint { min: 0., max: Coord::MAX }
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
pub struct GridLayoutData<'a> {
|
|
pub row_constraint: Slice<'a, Constraint>,
|
|
pub col_constraint: Slice<'a, Constraint>,
|
|
pub width: Coord,
|
|
pub height: Coord,
|
|
pub x: Coord,
|
|
pub y: Coord,
|
|
pub cells: Slice<'a, Slice<'a, GridLayoutCellData<'a>>>,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Default)]
|
|
pub struct GridLayoutCellData<'a> {
|
|
pub x: Option<&'a Property<Coord>>,
|
|
pub y: Option<&'a Property<Coord>>,
|
|
pub width: Option<&'a Property<Coord>>,
|
|
pub height: Option<&'a Property<Coord>>,
|
|
}
|
|
|
|
/// FIXME: rename with sixstyfps prefix
|
|
#[no_mangle]
|
|
pub extern "C" fn solve_grid_layout(data: &GridLayoutData) {
|
|
let map = |c: &Constraint| internal::LayoutData {
|
|
min: c.min,
|
|
max: c.max,
|
|
pref: c.min,
|
|
stretch: 1.,
|
|
pos: 0.,
|
|
size: 0.,
|
|
};
|
|
|
|
let mut row_layout_data = data.row_constraint.iter().map(map).collect::<Vec<_>>();
|
|
let mut col_layout_data = data.col_constraint.iter().map(map).collect::<Vec<_>>();
|
|
internal::layout_items(&mut row_layout_data, data.y, data.height);
|
|
internal::layout_items(&mut col_layout_data, data.x, data.width);
|
|
for (row_data, row) in row_layout_data.iter().zip(data.cells.iter()) {
|
|
for (col_data, cell) in col_layout_data.iter().zip(row.iter()) {
|
|
cell.x.map(|p| p.set(col_data.pos));
|
|
cell.width.map(|p| p.set(col_data.size));
|
|
cell.y.map(|p| p.set(row_data.pos));
|
|
cell.height.map(|p| p.set(row_data.size));
|
|
}
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
pub struct PathLayoutData<'a> {
|
|
pub elements: &'a crate::abi::datastructures::PathData,
|
|
pub items: Slice<'a, PathLayoutItemData<'a>>,
|
|
pub x: Coord,
|
|
pub y: Coord,
|
|
pub width: Coord,
|
|
pub height: Coord,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Default)]
|
|
pub struct PathLayoutItemData<'a> {
|
|
pub x: Option<&'a Property<Coord>>,
|
|
pub y: Option<&'a Property<Coord>>,
|
|
}
|
|
|
|
/// FIXME: rename with sixstyfps prefix
|
|
#[no_mangle]
|
|
pub extern "C" fn solve_path_layout(data: &PathLayoutData) {
|
|
use lyon::geom::*;
|
|
use lyon::path::iterator::PathIterator;
|
|
|
|
let path_iter = data.elements.iter().fitted(data.width, data.height);
|
|
|
|
let tolerance = 0.01;
|
|
|
|
let segment_lengths: Vec<Coord> = path_iter
|
|
.iter()
|
|
.bezier_segments()
|
|
.map(|segment| match segment {
|
|
BezierSegment::Linear(line_segment) => line_segment.length(),
|
|
BezierSegment::Quadratic(quadratic_segment) => {
|
|
quadratic_segment.approximate_length(tolerance)
|
|
}
|
|
BezierSegment::Cubic(cubic_segment) => cubic_segment.approximate_length(tolerance),
|
|
})
|
|
.collect();
|
|
|
|
let path_length: Coord = segment_lengths.iter().sum();
|
|
|
|
let mut i = 0;
|
|
let mut next_t: f32 = 0.;
|
|
let mut current_length: f32 = 0.;
|
|
for (seg_idx, segment) in path_iter.iter().bezier_segments().enumerate() {
|
|
let seg_len = segment_lengths[seg_idx];
|
|
let seg_start = current_length;
|
|
current_length += seg_len;
|
|
|
|
let seg_end_t = (seg_start + seg_len) / path_length;
|
|
|
|
while next_t < seg_end_t {
|
|
let local_t = next_t - (seg_start / path_length);
|
|
|
|
let item_pos = segment.sample(local_t);
|
|
data.items[i].x.map(|prop| prop.set(item_pos.x + data.x));
|
|
data.items[i].y.map(|prop| prop.set(item_pos.y + data.y));
|
|
|
|
i += 1;
|
|
if i >= data.items.len() {
|
|
break;
|
|
}
|
|
|
|
next_t = (i as f32) / (data.items.len() as f32);
|
|
}
|
|
|
|
if i >= data.items.len() {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Somehow this is required for the extern "C" things to be exported in a dependent dynlib
|
|
#[doc(hidden)]
|
|
pub fn dummy() {
|
|
#[derive(Clone)]
|
|
struct Foo;
|
|
foo(Foo);
|
|
fn foo(f: impl Clone) {
|
|
let _ = f.clone();
|
|
}
|
|
}
|