slint/internal/core/graphics/brush.rs
Olivier Goffart 6ba76d1708 Fix interpolation between gradiants of different size
The loop was skipping one of the stop to interpolate
because when one iterator was returning None, the other
one had also advenced and its result discared.
We can just unwrap the value instead from the longer chain.

For the radial gradiant, we need to interpolate the last
colors to avoid a flash at the beginning for all the area
"outside" the circle.
2022-05-20 09:06:55 +02:00

278 lines
11 KiB
Rust

// Copyright © SixtyFPS GmbH <info@slint-ui.com>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial
/*!
This module contains brush related types for the run-time library.
*/
use super::Color;
use crate::properties::InterpolatedPropertyValue;
use crate::SharedVector;
use euclid::default::Point2D;
#[cfg(not(feature = "std"))]
use num_traits::float::Float;
/// A brush is a data structure that is used to describe how
/// a shape, such as a rectangle, path or even text, shall be filled.
/// A brush can also be applied to the outline of a shape, that means
/// the fill of the outline itself.
#[derive(Clone, PartialEq, Debug, derive_more::From)]
#[repr(C)]
#[non_exhaustive]
pub enum Brush {
/// The color variant of brush is a plain color that is to be used for the fill.
SolidColor(Color),
/// The linear gradient variant of a brush describes the gradient stops for a fill
/// where all color stops are along a line that's rotated by the specified angle.
LinearGradient(LinearGradientBrush),
/// The radial gradient variant of a brush describes a circle variant centered
/// in the middle
RadialGradient(RadialGradientBrush),
}
/// Construct a brush with transparent color
impl Default for Brush {
fn default() -> Self {
Self::SolidColor(Color::default())
}
}
impl Brush {
/// If the brush is SolidColor, the contained color is returned.
/// If the brush is a LinearGradient, the color of the first stop is returned.
pub fn color(&self) -> Color {
match self {
Brush::SolidColor(col) => *col,
Brush::LinearGradient(gradient) => {
gradient.stops().next().map(|stop| stop.color).unwrap_or_default()
}
Brush::RadialGradient(gradient) => {
gradient.stops().next().map(|stop| stop.color).unwrap_or_default()
}
}
}
/// Returns true if this brush contains a fully transparent color (alpha value is zero)
///
/// ```
/// # use i_slint_core::graphics::*;
/// assert!(Brush::default().is_transparent());
/// assert!(Brush::SolidColor(Color::from_argb_u8(0, 255, 128, 140)).is_transparent());
/// assert!(!Brush::SolidColor(Color::from_argb_u8(25, 128, 140, 210)).is_transparent());
/// ```
pub fn is_transparent(&self) -> bool {
match self {
Brush::SolidColor(c) => c.alpha() == 0,
Brush::LinearGradient(_) => false,
Brush::RadialGradient(_) => false,
}
}
/// Returns a new version of this brush that has the brightness increased
/// by the specified factor. This is done by calling [`Color::brighter`] on
/// all the colors of this brush.
#[must_use]
pub fn brighter(&self, factor: f32) -> Self {
match self {
Brush::SolidColor(c) => Brush::SolidColor(c.brighter(factor)),
Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
g.angle(),
g.stops().map(|s| GradientStop {
color: s.color.brighter(factor),
position: s.position,
}),
)),
Brush::RadialGradient(g) => {
Brush::RadialGradient(RadialGradientBrush::new_circle(g.stops().map(|s| {
GradientStop { color: s.color.brighter(factor), position: s.position }
})))
}
}
}
/// Returns a new version of this brush that has the brightness decreased
/// by the specified factor. This is done by calling [`Color::darker`] on
/// all the color of this brush.
#[must_use]
pub fn darker(&self, factor: f32) -> Self {
match self {
Brush::SolidColor(c) => Brush::SolidColor(c.darker(factor)),
Brush::LinearGradient(g) => Brush::LinearGradient(LinearGradientBrush::new(
g.angle(),
g.stops()
.map(|s| GradientStop { color: s.color.darker(factor), position: s.position }),
)),
Brush::RadialGradient(g) => Brush::RadialGradient(RadialGradientBrush::new_circle(
g.stops()
.map(|s| GradientStop { color: s.color.darker(factor), position: s.position }),
)),
}
}
}
/// The LinearGradientBrush describes a way of filling a shape with different colors, which
/// are interpolated between different stops. The colors are aligned with a line that's rotated
/// by the LinearGradient's angle.
#[derive(Clone, PartialEq, Debug)]
#[repr(transparent)]
pub struct LinearGradientBrush(SharedVector<GradientStop>);
impl LinearGradientBrush {
/// Creates a new linear gradient, described by the specified angle and the provided color stops.
///
/// The angle need to be specified in degrees.
/// The stops don't need to be sorted as this function will sort them.
pub fn new(angle: f32, stops: impl IntoIterator<Item = GradientStop>) -> Self {
let stop_iter = stops.into_iter();
let mut encoded_angle_and_stops = SharedVector::with_capacity(stop_iter.size_hint().0 + 1);
// The gradient's first stop is a fake stop to store the angle
encoded_angle_and_stops.push(GradientStop { color: Default::default(), position: angle });
encoded_angle_and_stops.extend(stop_iter);
Self(encoded_angle_and_stops)
}
/// Returns the angle of the linear gradient in degrees.
pub fn angle(&self) -> f32 {
self.0[0].position
}
/// Returns the color stops of the linear gradient.
/// The stops are sorted by positions.
pub fn stops(&self) -> impl Iterator<Item = &GradientStop> {
// skip the first fake stop that just contains the angle
self.0.iter().skip(1)
}
}
/// The RadialGradientBrush describes a way of filling a shape with a circular gradient
#[derive(Clone, PartialEq, Debug)]
#[repr(transparent)]
pub struct RadialGradientBrush(SharedVector<GradientStop>);
impl RadialGradientBrush {
/// Creates a new circle radial gradient, centered in the middle and described
/// by the provided color stops.
pub fn new_circle(stops: impl IntoIterator<Item = GradientStop>) -> Self {
Self(stops.into_iter().collect())
}
/// Returns the color stops of the linear gradient.
pub fn stops(&self) -> impl Iterator<Item = &GradientStop> {
self.0.iter()
}
}
/// GradientStop describes a single color stop in a gradient. The colors between multiple
/// stops are interpolated.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct GradientStop {
/// The color to draw at this stop.
pub color: Color,
/// The position of this stop on the entire shape, as a normalized value between 0 and 1.
pub position: f32,
}
/// Returns the start / end points of a gradient within the [-0.5; 0.5] unit square, based on the angle (in degree).
pub fn line_for_angle(angle: f32) -> (Point2D<f32>, Point2D<f32>) {
let angle = angle.to_radians();
let r = (angle.sin().abs() + angle.cos().abs()) / 2.;
let (y, x) = (angle - core::f32::consts::PI / 2.).sin_cos();
let (y, x) = (y * r, x * r);
let start = Point2D::new(0.5 - x, 0.5 - y);
let end = Point2D::new(0.5 + x, 0.5 + y);
(start, end)
}
impl InterpolatedPropertyValue for Brush {
fn interpolate(&self, target_value: &Self, t: f32) -> Self {
match (self, target_value) {
(Brush::SolidColor(source_col), Brush::SolidColor(target_col)) => {
Brush::SolidColor(source_col.interpolate(target_col, t))
}
(Brush::SolidColor(col), Brush::LinearGradient(grad)) => {
let mut new_grad = grad.clone();
for x in new_grad.0.make_mut_slice().iter_mut().skip(1) {
x.color = col.interpolate(&x.color, t);
}
Brush::LinearGradient(new_grad)
}
(a @ Brush::LinearGradient(_), b @ Brush::SolidColor(_)) => {
Self::interpolate(b, a, 1. - t)
}
(Brush::LinearGradient(lhs), Brush::LinearGradient(rhs)) => {
if lhs.0.len() < rhs.0.len() {
Self::interpolate(target_value, self, 1. - t)
} else {
let mut new_grad = lhs.clone();
let mut iter = new_grad.0.make_mut_slice().iter_mut();
{
let angle = &mut iter.next().unwrap().position;
*angle = angle.interpolate(&rhs.angle(), t);
}
for s2 in rhs.stops() {
let s1 = iter.next().unwrap();
s1.color = s1.color.interpolate(&s2.color, t);
s1.position = s1.position.interpolate(&s2.position, t);
}
for x in iter {
x.position = x.position.interpolate(&1.0, t);
}
Brush::LinearGradient(new_grad)
}
}
(Brush::SolidColor(col), Brush::RadialGradient(grad)) => {
let mut new_grad = grad.clone();
for x in new_grad.0.make_mut_slice().iter_mut() {
x.color = col.interpolate(&x.color, t);
}
Brush::RadialGradient(new_grad)
}
(a @ Brush::RadialGradient(_), b @ Brush::SolidColor(_)) => {
Self::interpolate(b, a, 1. - t)
}
(Brush::RadialGradient(lhs), Brush::RadialGradient(rhs)) => {
if lhs.0.len() < rhs.0.len() {
Self::interpolate(target_value, self, 1. - t)
} else {
let mut new_grad = lhs.clone();
let mut iter = new_grad.0.make_mut_slice().iter_mut();
let mut last_color = Color::default();
for s2 in rhs.stops() {
let s1 = iter.next().unwrap();
last_color = s2.color;
s1.color = s1.color.interpolate(&s2.color, t);
s1.position = s1.position.interpolate(&s2.position, t);
}
for x in iter {
x.position = x.position.interpolate(&1.0, t);
x.color = x.color.interpolate(&last_color, t);
}
Brush::RadialGradient(new_grad)
}
}
(a @ Brush::LinearGradient(_), b @ Brush::RadialGradient(_))
| (a @ Brush::RadialGradient(_), b @ Brush::LinearGradient(_)) => {
// Just go to an intermediate color.
let color = Color::interpolate(&b.color(), &a.color(), t);
if t < 0.5 {
Self::interpolate(a, &Brush::SolidColor(color), t * 2.)
} else {
Self::interpolate(&Brush::SolidColor(color), b, (t - 0.5) * 2.)
}
}
}
}
}
#[test]
#[allow(clippy::float_cmp)] // We want bit-wise equality here
fn test_linear_gradient_encoding() {
let stops: SharedVector<GradientStop> = [
GradientStop { position: 0.0, color: Color::from_argb_u8(255, 255, 0, 0) },
GradientStop { position: 0.5, color: Color::from_argb_u8(255, 0, 255, 0) },
GradientStop { position: 1.0, color: Color::from_argb_u8(255, 0, 0, 255) },
]
.into();
let grad = LinearGradientBrush::new(256., stops.clone());
assert_eq!(grad.angle(), 256.);
assert!(grad.stops().eq(stops.iter()));
}