slint/internal/core/graphics/image.rs
Olivier Goffart 2e08b7dd1e Fix the rendering size of svg
- On the web, to return the image size, we need to use the natural size
   of the image, and not its dom size, as the later get modified since
   commit  b727aba4a0

 - The target size did not take in account the image fit, that's because
   former version of resvg could only render by respecting the aspect
   ratio. But since the web don't have this limitation, we now need to
   take it into account. And new version of resvg can also scale with
   any aspect ratio
2022-10-24 10:05:38 +02:00

740 lines
27 KiB
Rust

// Copyright © SixtyFPS GmbH <info@slint-ui.com>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial
/*!
This module contains image decoding and caching related types for the run-time library.
*/
use crate::lengths::PhysicalPx;
use crate::slice::Slice;
use crate::{SharedString, SharedVector};
use super::{IntRect, IntSize};
use crate::items::ImageFit;
#[cfg(feature = "image-decoders")]
pub mod cache;
#[cfg(target_arch = "wasm32")]
mod htmlimage;
#[cfg(feature = "svg")]
mod svg;
#[allow(missing_docs)]
#[vtable::vtable]
#[repr(C)]
pub struct OpaqueImageVTable {
drop_in_place: fn(VRefMut<OpaqueImageVTable>) -> Layout,
dealloc: fn(&OpaqueImageVTable, ptr: *mut u8, layout: Layout),
/// Returns the image size
size: fn(VRef<OpaqueImageVTable>) -> IntSize,
/// Returns a cache key
cache_key: fn(VRef<OpaqueImageVTable>) -> ImageCacheKey,
}
#[cfg(feature = "svg")]
OpaqueImageVTable_static! {
/// VTable for RC wrapped SVG helper struct.
pub static PARSED_SVG_VT for svg::ParsedSVG
}
#[cfg(target_arch = "wasm32")]
OpaqueImageVTable_static! {
/// VTable for RC wrapped HtmlImage helper struct.
pub static HTML_IMAGE_VT for htmlimage::HTMLImage
}
/// SharedPixelBuffer is a container for storing image data as pixels. It is
/// internally reference counted and cheap to clone.
///
/// You can construct a new empty shared pixel buffer with [`SharedPixelBuffer::new`],
/// or you can clone it from an existing contiguous buffer that you might already have, using
/// [`SharedPixelBuffer::clone_from_slice`].
///
/// See the documentation for [`Image`] for examples how to use this type to integrate
/// Slint with external rendering functions.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct SharedPixelBuffer<Pixel> {
width: u32,
height: u32,
stride: u32,
data: SharedVector<Pixel>,
}
impl<Pixel> SharedPixelBuffer<Pixel> {
/// Returns the width of the image in pixels.
pub fn width(&self) -> u32 {
self.width
}
/// Returns the height of the image in pixels.
pub fn height(&self) -> u32 {
self.height
}
/// Returns the size of the image in pixels.
pub fn size(&self) -> IntSize {
[self.width, self.height].into()
}
/// Returns the number of pixels per line.
pub fn stride(&self) -> u32 {
self.stride
}
}
impl<Pixel: Clone> SharedPixelBuffer<Pixel> {
/// Return a mutable slice to the pixel data. If the SharedPixelBuffer was shared, this will make a copy of the buffer.
pub fn make_mut_slice(&mut self) -> &mut [Pixel] {
self.data.make_mut_slice()
}
}
impl<Pixel: Clone + rgb::Pod> SharedPixelBuffer<Pixel>
where
[Pixel]: rgb::ComponentBytes<u8>,
{
/// Returns the pixels interpreted as raw bytes.
pub fn as_bytes(&self) -> &[u8] {
use rgb::ComponentBytes;
self.data.as_slice().as_bytes()
}
/// Returns the pixels interpreted as raw bytes.
pub fn make_mut_bytes(&mut self) -> &mut [u8] {
use rgb::ComponentBytes;
self.data.make_mut_slice().as_bytes_mut()
}
}
impl<Pixel> SharedPixelBuffer<Pixel> {
/// Return a slice to the pixel data.
pub fn as_slice(&self) -> &[Pixel] {
self.data.as_slice()
}
}
impl<Pixel: Clone + Default> SharedPixelBuffer<Pixel> {
/// Creates a new SharedPixelBuffer with the given width and height. Each pixel will be initialized with the value
/// that [`Default::default()`] returns for the Pixel type.
pub fn new(width: u32, height: u32) -> Self {
Self {
width,
height,
stride: width,
data: core::iter::repeat(Pixel::default())
.take(width as usize * height as usize)
.collect(),
}
}
}
impl<Pixel: Clone> SharedPixelBuffer<Pixel> {
/// Creates a new SharedPixelBuffer by cloning and converting pixels from an existing
/// slice. This function is useful when another crate was used to allocate an image
/// and you would like to convert it for use in Slint.
pub fn clone_from_slice<SourcePixelType>(
pixel_slice: &[SourcePixelType],
width: u32,
height: u32,
) -> Self
where
[SourcePixelType]: rgb::AsPixels<Pixel>,
{
use rgb::AsPixels;
Self {
width,
height,
stride: width,
data: pixel_slice.as_pixels().iter().cloned().collect(),
}
}
}
/// Convenience alias for a pixel with three color channels (red, green and blue), each
/// encoded as u8.
pub type Rgb8Pixel = rgb::RGB8;
/// Convenience alias for a pixel with four color channels (red, green, blue and alpha), each
/// encoded as u8.
pub type Rgba8Pixel = rgb::RGBA8;
/// SharedImageBuffer is a container for images that are stored in CPU accessible memory.
///
/// The SharedImageBuffer's variants represent the different common formats for encoding
/// images in pixels.
#[derive(Clone, Debug)]
#[repr(C)]
pub enum SharedImageBuffer {
/// This variant holds the data for an image where each pixel has three color channels (red, green,
/// and blue) and each channel is encoded as unsigned byte.
RGB8(SharedPixelBuffer<Rgb8Pixel>),
/// This variant holds the data for an image where each pixel has four color channels (red, green,
/// blue and alpha) and each channel is encoded as unsigned byte.
RGBA8(SharedPixelBuffer<Rgba8Pixel>),
/// This variant holds the data for an image where each pixel has four color channels (red, green,
/// blue and alpha) and each channel is encoded as unsigned byte. In contrast to [`Self::RGBA8`],
/// this variant assumes that the alpha channel is also already multiplied to each red, green and blue
/// component of each pixel.
/// Only construct this format if you know that your pixels are encoded this way. It is more efficient
/// for rendering.
RGBA8Premultiplied(SharedPixelBuffer<Rgba8Pixel>),
}
impl SharedImageBuffer {
/// Returns the width of the image in pixels.
#[inline]
pub fn width(&self) -> u32 {
match self {
Self::RGB8(buffer) => buffer.width(),
Self::RGBA8(buffer) => buffer.width(),
Self::RGBA8Premultiplied(buffer) => buffer.width(),
}
}
/// Returns the height of the image in pixels.
#[inline]
pub fn height(&self) -> u32 {
match self {
Self::RGB8(buffer) => buffer.height(),
Self::RGBA8(buffer) => buffer.height(),
Self::RGBA8Premultiplied(buffer) => buffer.height(),
}
}
/// Returns the size of the image in pixels.
#[inline]
pub fn size(&self) -> IntSize {
match self {
Self::RGB8(buffer) => buffer.size(),
Self::RGBA8(buffer) => buffer.size(),
Self::RGBA8Premultiplied(buffer) => buffer.size(),
}
}
}
impl PartialEq for SharedImageBuffer {
fn eq(&self, other: &Self) -> bool {
match self {
Self::RGB8(lhs_buffer) => {
matches!(other, Self::RGB8(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
}
Self::RGBA8(lhs_buffer) => {
matches!(other, Self::RGBA8(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
}
Self::RGBA8Premultiplied(lhs_buffer) => {
matches!(other, Self::RGBA8Premultiplied(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
}
}
}
}
#[repr(u8)]
#[derive(Clone, PartialEq, Debug, Copy)]
/// The pixel format of a StaticTexture
pub enum PixelFormat {
/// red, green, blue. 24bits.
Rgb,
/// Red, green, blue, alpha. 32bits.
Rgba,
/// Red, green, blue, alpha. 32bits. The color are premultiplied by alpha
RgbaPremultiplied,
/// Alpha map. 8bits. Each pixel is an alpha value. The color is specified separately.
AlphaMap,
}
impl PixelFormat {
/// The number of bytes in a pixel
pub fn bpp(self) -> usize {
match self {
PixelFormat::Rgb => 3,
PixelFormat::Rgba => 4,
PixelFormat::RgbaPremultiplied => 4,
PixelFormat::AlphaMap => 1,
}
}
}
#[repr(C)]
#[derive(Clone, PartialEq, Debug)]
/// Some raw pixel data which is typically stored in the binary
pub struct StaticTexture {
/// The position and size of the texture within the image
pub rect: IntRect,
/// The pixel format of this texture
pub format: PixelFormat,
/// The color, for the alpha map ones
pub color: crate::Color,
/// index in the data array
pub index: usize,
}
#[repr(C)]
#[derive(Clone, PartialEq, Debug)]
/// A texture is stored in read-only memory and may be composed of sub-textures.
pub struct StaticTextures {
/// The total size of the image (this might not be the size of the full image
/// as some transparent part are not part of any texture)
pub size: IntSize,
/// The size of the image before the compiler applied any scaling
pub original_size: IntSize,
/// The pixel data referenced by the textures
pub data: Slice<'static, u8>,
/// The list of textures
pub textures: Slice<'static, StaticTexture>,
}
/// ImageCacheKey encapsulates the different ways of indexing images in the
/// cache of decoded images.
#[derive(PartialEq, Eq, Debug, Hash, Clone)]
#[repr(C)]
pub enum ImageCacheKey {
/// This variant indicates that no image cache key can be created for the image.
/// For example this is the case for programmatically created images.
Invalid,
/// The image is identified by its path on the file system.
Path(SharedString),
/// The image is identified by a URL.
#[cfg(target_arch = "wasm32")]
URL(SharedString),
/// The image is identified by the static address of its encoded data.
EmbeddedData(usize),
}
impl ImageCacheKey {
/// Returns a new cache key if decoded image data can be stored in image cache for
/// the given ImageInner.
pub fn new(resource: &ImageInner) -> Option<Self> {
let key = match resource {
ImageInner::None => return None,
ImageInner::EmbeddedImage { cache_key, .. } => cache_key.clone(),
ImageInner::StaticTextures(textures) => {
Self::from_embedded_image_data(textures.data.as_slice())
}
#[cfg(feature = "svg")]
ImageInner::Svg(parsed_svg) => parsed_svg.cache_key(),
#[cfg(target_arch = "wasm32")]
ImageInner::HTMLImage(htmlimage) => Self::URL(htmlimage.source().into()),
ImageInner::BackendStorage(x) => vtable::VRc::borrow(x).cache_key(),
};
if matches!(key, ImageCacheKey::Invalid) {
None
} else {
Some(key)
}
}
/// Returns a cache key for static embedded image data.
pub fn from_embedded_image_data(data: &'static [u8]) -> Self {
Self::EmbeddedData(data.as_ptr() as usize)
}
}
/// A resource is a reference to binary data, for example images. They can be accessible on the file
/// system or embedded in the resulting binary. Or they might be URLs to a web server and a downloaded
/// is necessary before they can be used.
/// cbindgen:prefix-with-name
#[derive(Clone, Debug)]
#[repr(u8)]
#[allow(missing_docs)]
pub enum ImageInner {
/// A resource that does not represent any data.
None,
EmbeddedImage {
cache_key: ImageCacheKey,
buffer: SharedImageBuffer,
},
#[cfg(feature = "svg")]
Svg(vtable::VRc<OpaqueImageVTable, svg::ParsedSVG>),
StaticTextures(&'static StaticTextures),
#[cfg(target_arch = "wasm32")]
HTMLImage(vtable::VRc<OpaqueImageVTable, htmlimage::HTMLImage>),
BackendStorage(vtable::VRc<OpaqueImageVTable>),
}
impl ImageInner {
/// Return or render the image into a buffer
///
/// `target_size_for_scalable_source` is the size to use if the image is scalable.
///
/// Returns None if the image can't be rendered in a buffer
pub fn render_to_buffer(
&self,
_target_size_for_scalable_source: Option<euclid::Size2D<u32, PhysicalPx>>,
) -> Option<SharedImageBuffer> {
match self {
ImageInner::EmbeddedImage { buffer, .. } => Some(buffer.clone()),
#[cfg(feature = "svg")]
ImageInner::Svg(svg) => {
match svg.render(_target_size_for_scalable_source.unwrap_or_default()) {
Ok(b) => Some(b),
Err(err) => {
eprintln!("Error rendering SVG: {}", err);
return None;
}
}
}
ImageInner::StaticTextures(ts) => {
let mut buffer =
SharedPixelBuffer::<Rgba8Pixel>::new(ts.size.width, ts.size.height);
let stride = buffer.stride() as usize;
let slice = buffer.make_mut_slice();
for t in ts.textures.iter() {
let rect = t.rect.to_usize();
for y in 0..rect.height() {
let slice = &mut slice[(rect.min_y() + y) * stride..][rect.x_range()];
let source = &ts.data[t.index + y * rect.width() * t.format.bpp()..];
match t.format {
PixelFormat::Rgb => {
let mut iter = source.chunks_exact(3).map(|p| Rgba8Pixel {
r: p[0],
g: p[1],
b: p[2],
a: 255,
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::RgbaPremultiplied => {
let mut iter = source.chunks_exact(4).map(|p| Rgba8Pixel {
r: p[0],
g: p[1],
b: p[2],
a: p[3],
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::Rgba => {
let mut iter = source.chunks_exact(4).map(|p| {
let a = p[3];
Rgba8Pixel {
r: (p[0] as u16 * a as u16 / 255) as u8,
g: (p[1] as u16 * a as u16 / 255) as u8,
b: (p[2] as u16 * a as u16 / 255) as u8,
a,
}
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::AlphaMap => {
let col = t.color.to_argb_u8();
let mut iter = source.iter().map(|p| {
let a = *p as u32 * col.alpha as u32;
Rgba8Pixel {
r: (col.red as u32 * a / (255 * 255)) as u8,
g: (col.green as u32 * a / (255 * 255)) as u8,
b: (col.blue as u32 * a / (255 * 255)) as u8,
a: (a / 255) as u8,
}
});
slice.fill_with(|| iter.next().unwrap());
}
};
}
}
Some(SharedImageBuffer::RGBA8Premultiplied(buffer))
}
_ => None,
}
}
/// Returns true if the image is an SVG (either backed by resvg or HTML image wrapper).
pub fn is_svg(&self) -> bool {
match self {
#[cfg(feature = "svg")]
Self::Svg(_) => true,
#[cfg(target_arch = "wasm32")]
Self::HTMLImage(html_image) => html_image.is_svg(),
_ => false,
}
}
}
impl PartialEq for ImageInner {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(
Self::EmbeddedImage { cache_key: l_cache_key, buffer: l_buffer },
Self::EmbeddedImage { cache_key: r_cache_key, buffer: r_buffer },
) => l_cache_key == r_cache_key && l_buffer == r_buffer,
#[cfg(feature = "svg")]
(Self::Svg(l0), Self::Svg(r0)) => vtable::VRc::ptr_eq(l0, r0),
(Self::StaticTextures(l0), Self::StaticTextures(r0)) => l0 == r0,
#[cfg(target_arch = "wasm32")]
(Self::HTMLImage(l0), Self::HTMLImage(r0)) => vtable::VRc::ptr_eq(l0, r0),
_ => core::mem::discriminant(self) == core::mem::discriminant(other),
}
}
}
impl Default for ImageInner {
fn default() -> Self {
ImageInner::None
}
}
impl<'a> From<&'a Image> for &'a ImageInner {
fn from(other: &'a Image) -> Self {
&other.0
}
}
/// Error generated if an image cannot be loaded for any reasons.
#[derive(Default, Debug, PartialEq)]
pub struct LoadImageError(());
/// An image type that can be displayed by the Image element. You can construct
/// Image objects from a path to an image file on disk, using [`Self::load_from_path`].
///
/// Another typical use-case is to render the image content with Rust code.
/// For this it's most efficient to create a new SharedPixelBuffer with the known dimensions
/// and pass the mutable slice to your rendering function. Afterwards you can create an
/// Image.
///
/// The following example creates a 320x200 RGB pixel buffer and calls an external
/// low_level_render() function to draw a shape into it. Finally the result is
/// stored in an Image with [`Self::from_rgb8()`]:
/// ```
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgb8Pixel};
///
/// fn low_level_render(width: u32, height: u32, buffer: &mut [u8]) {
/// // render beautiful circle or other shapes here
/// }
///
/// let mut pixel_buffer = SharedPixelBuffer::<Rgb8Pixel>::new(320, 200);
///
/// low_level_render(pixel_buffer.width(), pixel_buffer.height(),
/// pixel_buffer.make_mut_bytes());
///
/// let image = Image::from_rgb8(pixel_buffer);
/// ```
///
/// Another use-case is to import existing image data into Slint, by
/// creating a new Image through cloning of another image type.
///
/// The following example uses the popular [image crate](https://docs.rs/image/) to
/// load a `.png` file from disk, apply brightening filter on it and then import
/// it into an [`Image`]:
/// ```no_run
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// let mut cat_image = image::open("cat.png").expect("Error loading cat image").into_rgba8();
///
/// image::imageops::colorops::brighten_in_place(&mut cat_image, 20);
///
/// let buffer = SharedPixelBuffer::<Rgba8Pixel>::clone_from_slice(
/// cat_image.as_raw(),
/// cat_image.width(),
/// cat_image.height(),
/// );
/// let image = Image::from_rgba8(buffer);
/// ```
///
/// A popular software (CPU) rendering library in Rust is tiny-skia. The following example shows
/// how to use tiny-skia to render into a [`SharedPixelBuffer`]:
/// ```
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// let mut pixel_buffer = SharedPixelBuffer::<Rgba8Pixel>::new(640, 480);
/// let width = pixel_buffer.width();
/// let height = pixel_buffer.height();
/// let mut pixmap = tiny_skia::PixmapMut::from_bytes(
/// pixel_buffer.make_mut_bytes(), width, height
/// ).unwrap();
/// pixmap.fill(tiny_skia::Color::TRANSPARENT);
///
/// let circle = tiny_skia::PathBuilder::from_circle(320., 240., 150.).unwrap();
///
/// let mut paint = tiny_skia::Paint::default();
/// paint.shader = tiny_skia::LinearGradient::new(
/// tiny_skia::Point::from_xy(100.0, 100.0),
/// tiny_skia::Point::from_xy(400.0, 400.0),
/// vec![
/// tiny_skia::GradientStop::new(0.0, tiny_skia::Color::from_rgba8(50, 127, 150, 200)),
/// tiny_skia::GradientStop::new(1.0, tiny_skia::Color::from_rgba8(220, 140, 75, 180)),
/// ],
/// tiny_skia::SpreadMode::Pad,
/// tiny_skia::Transform::identity(),
/// ).unwrap();
///
/// pixmap.fill_path(&circle, &paint, tiny_skia::FillRule::Winding, Default::default(), None);
///
/// let image = Image::from_rgba8_premultiplied(pixel_buffer);
/// ```
#[repr(transparent)]
#[derive(Default, Clone, Debug, PartialEq, derive_more::From)]
pub struct Image(ImageInner);
impl Image {
#[cfg(feature = "image-decoders")]
/// Load an Image from a path to a file containing an image
pub fn load_from_path(path: &std::path::Path) -> Result<Self, LoadImageError> {
self::cache::IMAGE_CACHE.with(|global_cache| {
let path: SharedString = path.to_str().ok_or(LoadImageError(()))?.into();
global_cache.borrow_mut().load_image_from_path(&path).ok_or(LoadImageError(()))
})
}
/// Creates a new Image from the specified shared pixel buffer, where each pixel has three color
/// channels (red, green and blue) encoded as u8.
pub fn from_rgb8(buffer: SharedPixelBuffer<Rgb8Pixel>) -> Self {
Image(ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Invalid,
buffer: SharedImageBuffer::RGB8(buffer),
})
}
/// Creates a new Image from the specified shared pixel buffer, where each pixel has four color
/// channels (red, green, blue and alpha) encoded as u8.
pub fn from_rgba8(buffer: SharedPixelBuffer<Rgba8Pixel>) -> Self {
Image(ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Invalid,
buffer: SharedImageBuffer::RGBA8(buffer),
})
}
/// Creates a new Image from the specified shared pixel buffer, where each pixel has four color
/// channels (red, green, blue and alpha) encoded as u8 and, in contrast to [`Self::from_rgba8`],
/// the alpha channel is also assumed to be multiplied to the red, green and blue channels.
///
/// Only construct an Image with this function if you know that your pixels are encoded this way.
pub fn from_rgba8_premultiplied(buffer: SharedPixelBuffer<Rgba8Pixel>) -> Self {
Image(ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Invalid,
buffer: SharedImageBuffer::RGBA8Premultiplied(buffer),
})
}
/// Returns the size of the Image in pixels.
pub fn size(&self) -> IntSize {
match &self.0 {
ImageInner::None => Default::default(),
ImageInner::EmbeddedImage { buffer, .. } => buffer.size(),
ImageInner::StaticTextures(StaticTextures { original_size, .. }) => *original_size,
#[cfg(feature = "svg")]
ImageInner::Svg(svg) => svg.size(),
#[cfg(target_arch = "wasm32")]
ImageInner::HTMLImage(htmlimage) => htmlimage.size().unwrap_or_default(),
ImageInner::BackendStorage(x) => vtable::VRc::borrow(x).size(),
}
}
#[cfg(feature = "std")]
/// Returns the path of the image on disk, if it was constructed via [`Self::load_from_path`].
///
/// For example:
/// ```
/// # use std::path::Path;
/// # use i_slint_core::graphics::*;
/// let path_buf = Path::new(env!("CARGO_MANIFEST_DIR"))
/// .join("../../examples/printerdemo/ui/images/cat.jpg");
/// let image = Image::load_from_path(&path_buf).unwrap();
/// assert_eq!(image.path(), Some(path_buf.as_path()));
/// ```
pub fn path(&self) -> Option<&std::path::Path> {
match &self.0 {
ImageInner::EmbeddedImage { cache_key, .. } => match cache_key {
ImageCacheKey::Path(path) => Some(std::path::Path::new(path.as_str())),
_ => None,
},
_ => None,
}
}
}
/// Load an image from an image embedded in the binary.
/// This is called by the generated code.
#[cfg(feature = "image-decoders")]
pub fn load_image_from_embedded_data(
data: Slice<'static, u8>,
format: Slice<'static, u8>,
) -> Image {
self::cache::IMAGE_CACHE.with(|global_cache| {
global_cache.borrow_mut().load_image_from_embedded_data(data, format).unwrap_or_else(|| {
panic!("internal error: embedded image data is not supported by run-time library",)
})
})
}
#[test]
fn test_image_size_from_buffer_without_backend() {
{
assert_eq!(Image::default().size(), Default::default());
}
{
let buffer = SharedPixelBuffer::<Rgb8Pixel>::new(320, 200);
let image = Image::from_rgb8(buffer);
assert_eq!(image.size(), [320, 200].into())
}
}
/// Return an size that can be used to render an image in a buffer that matches a given ImageFit
pub fn fit_size(
image_fit: ImageFit,
target: euclid::Size2D<f32, PhysicalPx>,
origin: IntSize,
) -> euclid::Size2D<f32, PhysicalPx> {
let o = origin.cast::<f32>();
let ratio = match image_fit {
ImageFit::Fill => return target,
ImageFit::Contain => f32::min(target.width / o.width, target.height / o.height),
ImageFit::Cover => f32::max(target.width / o.width, target.height / o.height),
};
euclid::Size2D::from_untyped(o * ratio)
}
#[cfg(feature = "ffi")]
pub(crate) mod ffi {
#![allow(unsafe_code)]
use super::super::IntSize;
use super::*;
/// Expand Rgb8Pixel so that cbindgen can see it. (is in fact rgb::RGB<u8>)
#[cfg(cbindgen)]
#[repr(C)]
struct Rgb8Pixel {
r: u8,
g: u8,
b: u8,
}
/// Expand Rgba8Pixel so that cbindgen can see it. (is in fact rgb::RGBA<u8>)
#[cfg(cbindgen)]
#[repr(C)]
struct Rgba8Pixel {
r: u8,
g: u8,
b: u8,
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_load_from_path(path: &SharedString, image: *mut Image) {
std::ptr::write(
image,
Image::load_from_path(std::path::Path::new(path.as_str())).unwrap_or(Image::default()),
)
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_load_from_embedded_data(
data: Slice<'static, u8>,
format: Slice<'static, u8>,
image: *mut Image,
) {
std::ptr::write(image, super::load_image_from_embedded_data(data, format));
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_size(image: &Image) -> IntSize {
image.size()
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_path(image: &Image) -> Option<&SharedString> {
match &image.0 {
ImageInner::EmbeddedImage { cache_key, .. } => match cache_key {
ImageCacheKey::Path(path) => Some(path),
_ => None,
},
_ => None,
}
}
}