mirror of
https://github.com/slint-ui/slint.git
synced 2025-10-01 06:11:16 +00:00

It is not longer in used for the abstraction between backend, we'll make a new trait for it later
667 lines
23 KiB
Rust
667 lines
23 KiB
Rust
/* LICENSE BEGIN
|
|
This file is part of the SixtyFPS Project -- https://sixtyfps.io
|
|
Copyright (c) 2020 Olivier Goffart <olivier.goffart@sixtyfps.io>
|
|
Copyright (c) 2020 Simon Hausmann <simon.hausmann@sixtyfps.io>
|
|
|
|
SPDX-License-Identifier: GPL-3.0-only
|
|
This file is also available under commercial licensing terms.
|
|
Please contact info@sixtyfps.io for more information.
|
|
LICENSE END */
|
|
#![warn(missing_docs)]
|
|
/*!
|
|
Graphics Abstractions.
|
|
|
|
This module contains the abstractions and convenience types used for rendering.
|
|
|
|
The run-time library also makes use of [RenderingCache] to store the rendering primitives
|
|
created by the backend in a type-erased manner.
|
|
*/
|
|
extern crate alloc;
|
|
use crate::properties::InterpolatedPropertyValue;
|
|
#[cfg(feature = "rtti")]
|
|
use crate::rtti::{BuiltinItem, FieldInfo, PropertyInfo, ValueType};
|
|
use crate::{Callback, SharedString};
|
|
use auto_enums::auto_enum;
|
|
use const_field_offset::FieldOffsets;
|
|
use sixtyfps_corelib_macros::*;
|
|
|
|
/// 2D Rectangle
|
|
pub type Rect = euclid::default::Rect<f32>;
|
|
/// 2D Rectangle with integer coordinates
|
|
pub type IntRect = euclid::default::Rect<i32>;
|
|
/// 2D Point
|
|
pub type Point = euclid::default::Point2D<f32>;
|
|
/// 2D Size
|
|
pub type Size = euclid::default::Size2D<f32>;
|
|
|
|
/// RgbaColor stores the red, green, blue and alpha components of a color
|
|
/// with the precision of the generic parameter T. For example if T is f32,
|
|
/// the values are normalized between 0 and 1. If T is u8, they values range
|
|
/// is 0 to 255.
|
|
/// This is merely a helper class for use with [`Color`].
|
|
#[derive(Copy, Clone, PartialEq, Debug, Default)]
|
|
pub struct RgbaColor<T> {
|
|
/// The alpha component.
|
|
pub alpha: T,
|
|
/// The red channel.
|
|
pub red: T,
|
|
/// The green channel.
|
|
pub green: T,
|
|
/// The blue channel.
|
|
pub blue: T,
|
|
}
|
|
|
|
/// Color represents a color in the SixtyFPS run-time, represented using 8-bit channels for
|
|
/// red, green, blue and the alpha (opacity).
|
|
/// It can be conveniently constructed and destructured using the to_ and from_ (a)rgb helper functions:
|
|
/// ```
|
|
/// # fn do_something_with_red_and_green(_:f32, _:f32) {}
|
|
/// # fn do_something_with_red(_:u8) {}
|
|
/// # use sixtyfps_corelib::graphics::{Color, RgbaColor};
|
|
/// # let some_color = Color::from_rgb_u8(0, 0, 0);
|
|
/// let col = some_color.to_argb_f32();
|
|
/// do_something_with_red_and_green(col.red, col.green);
|
|
///
|
|
/// let RgbaColor { red, blue, green, .. } = some_color.to_argb_u8();
|
|
/// do_something_with_red(red);
|
|
///
|
|
/// let new_col = Color::from(RgbaColor{ red: 0.5, green: 0.65, blue: 0.32, alpha: 1.});
|
|
/// ```
|
|
#[derive(Copy, Clone, PartialEq, Debug, Default)]
|
|
#[repr(C)]
|
|
pub struct Color {
|
|
red: u8,
|
|
green: u8,
|
|
blue: u8,
|
|
alpha: u8,
|
|
}
|
|
|
|
impl From<RgbaColor<u8>> for Color {
|
|
fn from(col: RgbaColor<u8>) -> Self {
|
|
Self { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
|
|
}
|
|
}
|
|
|
|
impl From<Color> for RgbaColor<u8> {
|
|
fn from(col: Color) -> Self {
|
|
RgbaColor { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
|
|
}
|
|
}
|
|
|
|
impl From<RgbaColor<u8>> for RgbaColor<f32> {
|
|
fn from(col: RgbaColor<u8>) -> Self {
|
|
Self {
|
|
red: (col.red as f32) / 255.0,
|
|
green: (col.green as f32) / 255.0,
|
|
blue: (col.blue as f32) / 255.0,
|
|
alpha: (col.alpha as f32) / 255.0,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<Color> for RgbaColor<f32> {
|
|
fn from(col: Color) -> Self {
|
|
let u8col: RgbaColor<u8> = col.into();
|
|
u8col.into()
|
|
}
|
|
}
|
|
|
|
impl From<RgbaColor<f32>> for Color {
|
|
fn from(col: RgbaColor<f32>) -> Self {
|
|
Self {
|
|
red: (col.red * 255.) as u8,
|
|
green: (col.green * 255.) as u8,
|
|
blue: (col.blue * 255.) as u8,
|
|
alpha: (col.alpha * 255.) as u8,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Color {
|
|
/// Construct a color from an integer encoded as `0xAARRGGBB`
|
|
pub const fn from_argb_encoded(encoded: u32) -> Color {
|
|
Self {
|
|
red: (encoded >> 16) as u8,
|
|
green: (encoded >> 8) as u8,
|
|
blue: encoded as u8,
|
|
alpha: (encoded >> 24) as u8,
|
|
}
|
|
}
|
|
|
|
/// Returns `(alpha, red, green, blue)` encoded as u32
|
|
pub fn as_argb_encoded(&self) -> u32 {
|
|
((self.red as u32) << 16)
|
|
| ((self.green as u32) << 8)
|
|
| (self.blue as u32)
|
|
| ((self.alpha as u32) << 24)
|
|
}
|
|
|
|
/// Construct a color from the alpha, red, green and blue color channel parameters.
|
|
pub fn from_argb_u8(alpha: u8, red: u8, green: u8, blue: u8) -> Self {
|
|
Self { red, green, blue, alpha }
|
|
}
|
|
|
|
/// Construct a color from the red, green and blue color channel parameters. The alpha
|
|
/// channel will have the value 255.
|
|
pub fn from_rgb_u8(red: u8, green: u8, blue: u8) -> Self {
|
|
Self::from_argb_u8(255, red, green, blue)
|
|
}
|
|
|
|
/// Construct a color from the alpha, red, green and blue color channel parameters.
|
|
pub fn from_argb_f32(alpha: f32, red: f32, green: f32, blue: f32) -> Self {
|
|
RgbaColor { alpha, red, green, blue }.into()
|
|
}
|
|
|
|
/// Construct a color from the red, green and blue color channel parameters. The alpha
|
|
/// channel will have the value 255.
|
|
pub fn from_rgb_f32(red: f32, green: f32, blue: f32) -> Self {
|
|
Self::from_argb_f32(1.0, red, green, blue)
|
|
}
|
|
|
|
/// Converts this color to an RgbaColor struct for easy destructuring.
|
|
pub fn to_argb_u8(&self) -> RgbaColor<u8> {
|
|
RgbaColor::from(*self)
|
|
}
|
|
|
|
/// Converts this color to an RgbaColor struct for easy destructuring.
|
|
pub fn to_argb_f32(&self) -> RgbaColor<f32> {
|
|
RgbaColor::from(*self)
|
|
}
|
|
|
|
/// Returns the red channel of the color as u8 in the range 0..255.
|
|
pub fn red(self) -> u8 {
|
|
self.red
|
|
}
|
|
|
|
/// Returns the green channel of the color as u8 in the range 0..255.
|
|
pub fn green(self) -> u8 {
|
|
self.green
|
|
}
|
|
|
|
/// Returns the blue channel of the color as u8 in the range 0..255.
|
|
pub fn blue(self) -> u8 {
|
|
self.blue
|
|
}
|
|
|
|
/// Returns the alpha channel of the color as u8 in the range 0..255.
|
|
pub fn alpha(self) -> u8 {
|
|
self.alpha
|
|
}
|
|
}
|
|
|
|
impl InterpolatedPropertyValue for Color {
|
|
fn interpolate(self, target_value: Self, t: f32) -> Self {
|
|
Self {
|
|
red: self.red.interpolate(target_value.red, t),
|
|
green: self.green.interpolate(target_value.green, t),
|
|
blue: self.blue.interpolate(target_value.blue, t),
|
|
alpha: self.alpha.interpolate(target_value.alpha, t),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Display for Color {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
write!(f, "argb({}, {}, {}, {})", self.alpha, self.red, self.green, self.blue)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "femtovg_backend")]
|
|
impl From<&Color> for femtovg::Color {
|
|
fn from(col: &Color) -> Self {
|
|
Self::rgba(col.red, col.green, col.blue, col.alpha)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "femtovg_backend")]
|
|
impl From<Color> for femtovg::Color {
|
|
fn from(col: Color) -> Self {
|
|
Self::rgba(col.red, col.green, col.blue, col.alpha)
|
|
}
|
|
}
|
|
|
|
/// A resource is a reference to binary data, for example images. They can be accessible on the file
|
|
/// system or embedded in the resulting binary. Or they might be URLs to a web server and a downloaded
|
|
/// is necessary before they can be used.
|
|
#[derive(Clone, PartialEq, Debug)]
|
|
#[repr(u8)]
|
|
pub enum Resource {
|
|
/// A resource that does not represent any data.
|
|
None,
|
|
/// A resource that points to a file in the file system
|
|
AbsoluteFilePath(crate::SharedString),
|
|
/// A resource that is embedded in the program and accessible via pointer
|
|
/// The format is the same as in a file
|
|
EmbeddedData(super::slice::Slice<'static, u8>),
|
|
/// Raw ARGB
|
|
#[allow(missing_docs)]
|
|
EmbeddedRgbaImage { width: u32, height: u32, data: super::sharedvector::SharedVector<u32> },
|
|
}
|
|
|
|
impl Default for Resource {
|
|
fn default() -> Self {
|
|
Resource::None
|
|
}
|
|
}
|
|
|
|
/// CachedGraphicsData allows the graphics backend to store an arbitrary piece of data associated with
|
|
/// an item, which is typically computed by accessing properties. The dependency_tracker is used to allow
|
|
/// for a lazy computation. Typically backends store either compute intensive data or handles that refer to
|
|
/// data that's stored in GPU memory.
|
|
pub struct CachedGraphicsData<T> {
|
|
/// The backend specific data.
|
|
pub data: T,
|
|
/// The property tracker that should be used to evaluate whether the primitive needs to be re-created
|
|
/// or not.
|
|
pub dependency_tracker: core::pin::Pin<Box<crate::properties::PropertyTracker>>,
|
|
}
|
|
|
|
impl<T> CachedGraphicsData<T> {
|
|
/// Creates a new TrackingRenderingPrimitive by evaluating the provided update_fn once, storing the returned
|
|
/// rendering primitive and initializing the dependency tracker.
|
|
pub fn new(update_fn: impl FnOnce() -> T) -> Self {
|
|
let dependency_tracker = Box::pin(crate::properties::PropertyTracker::default());
|
|
let data = dependency_tracker.as_ref().evaluate(update_fn);
|
|
Self { data, dependency_tracker }
|
|
}
|
|
}
|
|
|
|
/// The RenderingCache, in combination with CachedGraphicsData, allows backends to store data that's either
|
|
/// intensive to compute or has bad CPU locality. Backends typically keep a RenderingCache instance and use
|
|
/// the item's cached_rendering_data() integer as index in the vec_arena::Arena.
|
|
pub type RenderingCache<T> = vec_arena::Arena<CachedGraphicsData<T>>;
|
|
|
|
/// FontRequest collects all the developer-configurable properties for fonts, such as family, weight, etc.
|
|
/// It is submitted as a request to the platform font system (i.e. CoreText on macOS) and in exchange the
|
|
/// backend returns a Box<dyn Font>.
|
|
#[derive(Debug, Clone, PartialEq)]
|
|
#[repr(C)]
|
|
pub struct FontRequest {
|
|
/// The name of the font family to be used, such as "Helvetica". An empty family name means the system
|
|
/// default font family should be used.
|
|
pub family: SharedString,
|
|
/// If the weight is None, the the system default font weight should be used.
|
|
pub weight: Option<i32>,
|
|
/// If the pixel size is None, the system default font size should be used.
|
|
pub pixel_size: Option<f32>,
|
|
}
|
|
|
|
/// The FontMetrics trait is constructed from a FontRequest by the graphics backend and supplied to text related
|
|
/// items in order to measure text.
|
|
pub trait FontMetrics {
|
|
/// Returns the width of the given string in physical pixels.
|
|
fn text_width(&self, text: &str) -> f32;
|
|
/// Returns the (UTF-8) byte offset in the given text that refers to the character that contributed to
|
|
/// the glyph cluster that's visually nearest to the given x coordinate. This is used for hit-testing,
|
|
/// for example when receiving a mouse click into a text field. Then this function returns the "cursor"
|
|
/// position.
|
|
fn text_offset_for_x_position<'a>(&self, text: &'a str, x: f32) -> usize;
|
|
/// Returns the height of the font. This is typically the sum of the ascent and the descent, resulting
|
|
/// in the height that can fit the talltest glyphs of the font. Note that it is possible though that
|
|
/// the font may include glyphs that exceed this.
|
|
fn height(&self) -> f32;
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(FieldOffsets, Default, SixtyFPSElement, Clone, Debug, PartialEq)]
|
|
#[pin]
|
|
/// PathLineTo describes the event of moving the cursor on the path to the specified location
|
|
/// along a straight line.
|
|
pub struct PathLineTo {
|
|
#[rtti_field]
|
|
/// The x coordinate where the line should go to.
|
|
pub x: f32,
|
|
#[rtti_field]
|
|
/// The y coordinate where the line should go to.
|
|
pub y: f32,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(FieldOffsets, Default, SixtyFPSElement, Clone, Debug, PartialEq)]
|
|
#[pin]
|
|
/// PathArcTo describes the event of moving the cursor on the path across an arc to the specified
|
|
/// x/y coordinates, with the specified x/y radius and additional properties.
|
|
pub struct PathArcTo {
|
|
#[rtti_field]
|
|
/// The x coordinate where the arc should end up.
|
|
pub x: f32,
|
|
#[rtti_field]
|
|
/// The y coordinate where the arc should end up.
|
|
pub y: f32,
|
|
#[rtti_field]
|
|
/// The radius on the x-axis of the arc.
|
|
pub radius_x: f32,
|
|
#[rtti_field]
|
|
/// The radius on the y-axis of the arc.
|
|
pub radius_y: f32,
|
|
#[rtti_field]
|
|
/// The rotation along the x-axis of the arc in degress.
|
|
pub x_rotation: f32,
|
|
#[rtti_field]
|
|
/// large_arc indicates whether to take the long or the shorter path to complete the arc.
|
|
pub large_arc: bool,
|
|
#[rtti_field]
|
|
/// sweep indicates the direction of the arc. If true, a clockwise direction is chosen,
|
|
/// otherwise counter-clockwise.
|
|
pub sweep: bool,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// PathElement describes a single element on a path, such as move-to, line-to, etc.
|
|
pub enum PathElement {
|
|
/// The LineTo variant describes a line.
|
|
LineTo(PathLineTo),
|
|
/// The PathArcTo variant describes an arc.
|
|
ArcTo(PathArcTo),
|
|
/// Indicates that the path should be closed now by connecting to the starting point.
|
|
Close,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// PathEvent is a low-level data structure describing the composition of a path. Typically it is
|
|
/// generated at compile time from a higher-level description, such as SVG commands.
|
|
pub enum PathEvent {
|
|
/// The beginning of the path.
|
|
Begin,
|
|
/// A straight line on the path.
|
|
Line,
|
|
/// A quadratic bezier curve on the path.
|
|
Quadratic,
|
|
/// A cubic bezier curve on the path.
|
|
Cubic,
|
|
/// The end of the path that remains open.
|
|
EndOpen,
|
|
/// The end of a path that is closed.
|
|
EndClosed,
|
|
}
|
|
|
|
struct ToLyonPathEventIterator<'a> {
|
|
events_it: std::slice::Iter<'a, PathEvent>,
|
|
coordinates_it: std::slice::Iter<'a, Point>,
|
|
first: Option<&'a Point>,
|
|
last: Option<&'a Point>,
|
|
}
|
|
|
|
impl<'a> Iterator for ToLyonPathEventIterator<'a> {
|
|
type Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>;
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
use lyon::path::Event;
|
|
|
|
self.events_it.next().map(|event| match event {
|
|
PathEvent::Begin => Event::Begin { at: self.coordinates_it.next().unwrap().clone() },
|
|
PathEvent::Line => Event::Line {
|
|
from: self.coordinates_it.next().unwrap().clone(),
|
|
to: self.coordinates_it.next().unwrap().clone(),
|
|
},
|
|
PathEvent::Quadratic => Event::Quadratic {
|
|
from: self.coordinates_it.next().unwrap().clone(),
|
|
ctrl: self.coordinates_it.next().unwrap().clone(),
|
|
to: self.coordinates_it.next().unwrap().clone(),
|
|
},
|
|
PathEvent::Cubic => Event::Cubic {
|
|
from: self.coordinates_it.next().unwrap().clone(),
|
|
ctrl1: self.coordinates_it.next().unwrap().clone(),
|
|
ctrl2: self.coordinates_it.next().unwrap().clone(),
|
|
to: self.coordinates_it.next().unwrap().clone(),
|
|
},
|
|
PathEvent::EndOpen => Event::End {
|
|
first: self.first.unwrap().clone(),
|
|
last: self.last.unwrap().clone(),
|
|
close: false,
|
|
},
|
|
PathEvent::EndClosed => Event::End {
|
|
first: self.first.unwrap().clone(),
|
|
last: self.last.unwrap().clone(),
|
|
close: true,
|
|
},
|
|
})
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.events_it.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<'a> ExactSizeIterator for ToLyonPathEventIterator<'a> {}
|
|
|
|
struct TransformedLyonPathIterator<EventIt> {
|
|
it: EventIt,
|
|
transform: lyon::math::Transform,
|
|
}
|
|
|
|
impl<EventIt: Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>>> Iterator
|
|
for TransformedLyonPathIterator<EventIt>
|
|
{
|
|
type Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>;
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
self.it.next().map(|ev| ev.transformed(&self.transform))
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.it.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<EventIt: Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>>>
|
|
ExactSizeIterator for TransformedLyonPathIterator<EventIt>
|
|
{
|
|
}
|
|
|
|
/// PathDataIterator is a data structure that acts as starting point for iterating
|
|
/// through the low-level events of a path. If the path was constructed from said
|
|
/// events, then it is a very thin abstraction. If the path was created from higher-level
|
|
/// elements, then an intermediate lyon path is required/built.
|
|
pub struct PathDataIterator<'a> {
|
|
it: LyonPathIteratorVariant<'a>,
|
|
transform: Option<lyon::math::Transform>,
|
|
}
|
|
|
|
enum LyonPathIteratorVariant<'a> {
|
|
FromPath(lyon::path::Path),
|
|
FromEvents(&'a crate::SharedVector<PathEvent>, &'a crate::SharedVector<Point>),
|
|
}
|
|
|
|
impl<'a> PathDataIterator<'a> {
|
|
/// Create a new iterator for path traversal.
|
|
#[auto_enum(Iterator)]
|
|
pub fn iter(
|
|
&'a self,
|
|
) -> impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a {
|
|
match &self.it {
|
|
LyonPathIteratorVariant::FromPath(path) => self.apply_transform(path.iter()),
|
|
LyonPathIteratorVariant::FromEvents(events, coordinates) => {
|
|
self.apply_transform(ToLyonPathEventIterator {
|
|
events_it: events.iter(),
|
|
coordinates_it: coordinates.iter(),
|
|
first: coordinates.first(),
|
|
last: coordinates.last(),
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
fn fit(&mut self, width: f32, height: f32) {
|
|
if width > 0. || height > 0. {
|
|
let br = lyon::algorithms::aabb::bounding_rect(self.iter());
|
|
self.transform = Some(lyon::algorithms::fit::fit_rectangle(
|
|
&br,
|
|
&Rect::from_size(Size::new(width, height)),
|
|
lyon::algorithms::fit::FitStyle::Min,
|
|
));
|
|
}
|
|
}
|
|
#[auto_enum(Iterator)]
|
|
fn apply_transform(
|
|
&'a self,
|
|
event_it: impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a,
|
|
) -> impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a {
|
|
match self.transform {
|
|
Some(transform) => TransformedLyonPathIterator { it: event_it, transform },
|
|
None => event_it,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// PathData represents a path described by either high-level elements or low-level
|
|
/// events and coordinates.
|
|
pub enum PathData {
|
|
/// None is the variant when the path is empty.
|
|
None,
|
|
/// The Elements variant is used to make a Path from shared arrays of elements.
|
|
Elements(crate::SharedVector<PathElement>),
|
|
/// The Events variant describes the path as a series of low-level events and
|
|
/// associated coordinates.
|
|
Events(crate::SharedVector<PathEvent>, crate::SharedVector<Point>),
|
|
}
|
|
|
|
impl Default for PathData {
|
|
fn default() -> Self {
|
|
Self::None
|
|
}
|
|
}
|
|
|
|
impl PathData {
|
|
/// This function returns an iterator that allows traversing the path by means of lyon events.
|
|
pub fn iter(&self) -> PathDataIterator {
|
|
PathDataIterator {
|
|
it: match self {
|
|
PathData::None => LyonPathIteratorVariant::FromPath(lyon::path::Path::new()),
|
|
PathData::Elements(elements) => LyonPathIteratorVariant::FromPath(
|
|
PathData::build_path(elements.as_slice().iter()),
|
|
),
|
|
PathData::Events(events, coordinates) => {
|
|
LyonPathIteratorVariant::FromEvents(events, coordinates)
|
|
}
|
|
},
|
|
transform: None,
|
|
}
|
|
}
|
|
|
|
/// This function returns an iterator that allows traversing the path by means of lyon events.
|
|
pub fn iter_fitted(&self, width: f32, height: f32) -> PathDataIterator {
|
|
let mut it = self.iter();
|
|
it.fit(width, height);
|
|
it
|
|
}
|
|
|
|
fn build_path(element_it: std::slice::Iter<PathElement>) -> lyon::path::Path {
|
|
use lyon::geom::SvgArc;
|
|
use lyon::math::{Angle, Point, Vector};
|
|
use lyon::path::{
|
|
builder::{Build, FlatPathBuilder, SvgBuilder},
|
|
ArcFlags,
|
|
};
|
|
|
|
let mut path_builder = lyon::path::Path::builder().with_svg();
|
|
for element in element_it {
|
|
match element {
|
|
PathElement::LineTo(PathLineTo { x, y }) => {
|
|
path_builder.line_to(Point::new(*x, *y))
|
|
}
|
|
PathElement::ArcTo(PathArcTo {
|
|
x,
|
|
y,
|
|
radius_x,
|
|
radius_y,
|
|
x_rotation,
|
|
large_arc,
|
|
sweep,
|
|
}) => {
|
|
let radii = Vector::new(*radius_x, *radius_y);
|
|
let x_rotation = Angle::degrees(*x_rotation);
|
|
let flags = ArcFlags { large_arc: *large_arc, sweep: *sweep };
|
|
let to = Point::new(*x, *y);
|
|
|
|
let svg_arc = SvgArc {
|
|
from: path_builder.current_position(),
|
|
radii,
|
|
x_rotation,
|
|
flags,
|
|
to,
|
|
};
|
|
|
|
if svg_arc.is_straight_line() {
|
|
path_builder.line_to(to);
|
|
} else {
|
|
path_builder.arc_to(radii, x_rotation, flags, to)
|
|
}
|
|
}
|
|
PathElement::Close => path_builder.close(),
|
|
}
|
|
}
|
|
|
|
path_builder.build()
|
|
}
|
|
}
|
|
|
|
pub(crate) mod ffi {
|
|
#![allow(unsafe_code)]
|
|
|
|
use super::*;
|
|
|
|
#[allow(non_camel_case_types)]
|
|
type c_void = ();
|
|
|
|
/// Expand Rect so that cbindgen can see it. ( is in fact euclid::default::Rect<f32>)
|
|
#[cfg(cbindgen)]
|
|
#[repr(C)]
|
|
struct Rect {
|
|
x: f32,
|
|
y: f32,
|
|
width: f32,
|
|
height: f32,
|
|
}
|
|
|
|
/// Expand IntRect so that cbindgen can see it. ( is in fact euclid::default::Rect<i32>)
|
|
#[cfg(cbindgen)]
|
|
#[repr(C)]
|
|
struct IntRect {
|
|
x: i32,
|
|
y: i32,
|
|
width: i32,
|
|
height: i32,
|
|
}
|
|
|
|
/// Expand Point so that cbindgen can see it. ( is in fact euclid::default::PointD2<f32>)
|
|
#[cfg(cbindgen)]
|
|
#[repr(C)]
|
|
struct Point {
|
|
x: f32,
|
|
y: f32,
|
|
}
|
|
|
|
#[no_mangle]
|
|
/// This function is used for the low-level C++ interface to allocate the backing vector for a shared path element array.
|
|
pub unsafe extern "C" fn sixtyfps_new_path_elements(
|
|
out: *mut c_void,
|
|
first_element: *const PathElement,
|
|
count: usize,
|
|
) {
|
|
let arr = crate::SharedVector::from(std::slice::from_raw_parts(first_element, count));
|
|
core::ptr::write(out as *mut crate::SharedVector<PathElement>, arr.clone());
|
|
}
|
|
|
|
#[no_mangle]
|
|
/// This function is used for the low-level C++ interface to allocate the backing vector for a shared path event array.
|
|
pub unsafe extern "C" fn sixtyfps_new_path_events(
|
|
out_events: *mut c_void,
|
|
out_coordinates: *mut c_void,
|
|
first_event: *const PathEvent,
|
|
event_count: usize,
|
|
first_coordinate: *const Point,
|
|
coordinate_count: usize,
|
|
) {
|
|
let events =
|
|
crate::SharedVector::from(std::slice::from_raw_parts(first_event, event_count));
|
|
core::ptr::write(out_events as *mut crate::SharedVector<PathEvent>, events.clone());
|
|
let coordinates = crate::SharedVector::from(std::slice::from_raw_parts(
|
|
first_coordinate,
|
|
coordinate_count,
|
|
));
|
|
core::ptr::write(out_coordinates as *mut crate::SharedVector<Point>, coordinates.clone());
|
|
}
|
|
}
|