slint/internal/core/timers.rs
Olivier Goffart adb1b24c28 Fix the slint_mock_elapsed_time when not using the testing backend
The nodejs tests don't use the testing backend, as a result, calling
`platform::update_timers_and_animations` would use the real time instead
of the fake time.
So call `maybe_activate_timers` with the fake time instead
2022-09-16 19:14:15 +02:00

585 lines
20 KiB
Rust

// Copyright © SixtyFPS GmbH <info@slint-ui.com>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial
/*!
Support for timers.
Timers are just a bunch of callbacks sorted by expiry date.
*/
#![warn(missing_docs)]
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cell::{Cell, RefCell};
use crate::animations::Instant;
type TimerCallback = Box<dyn FnMut()>;
type SingleShotTimerCallback = Box<dyn FnOnce()>;
/// The TimerMode specifies what should happen after the timer fired.
///
/// Used by the [`Timer::start`] function.
#[derive(Copy, Clone)]
#[repr(C)]
#[non_exhaustive]
pub enum TimerMode {
/// A SingleShot timer is fired only once.
SingleShot,
/// A Repeated timer is fired repeatedly until it is stopped or dropped.
Repeated,
}
/// Timer is a handle to the timer system that allows triggering a callback to be called
/// after a specified period of time.
///
/// Use [`Timer::start()`] to create a timer that can repeat at frequent interval, or
/// [`Timer::single_shot`] if you just want to call a function with a delay and do not
/// need to be able to stop it.
///
/// Note: the timer can only be used in the thread that runs the Slint event loop.
/// They will not fire if used in another thread.
///
/// ## Example
/// ```rust,no_run
/// # i_slint_backend_testing::init();
/// use slint::{Timer, TimerMode};
/// let timer = Timer::default();
/// timer.start(TimerMode::Repeated, std::time::Duration::from_millis(200), move || {
/// println!("This will be printed every 200ms.");
/// });
/// // ... more initialization ...
/// slint::run_event_loop();
/// ```
#[derive(Default)]
pub struct Timer {
id: Cell<Option<usize>>,
}
impl Timer {
/// Starts the timer with the given mode and interval, in order for the callback to called when the
/// timer fires. If the timer has been started previously and not fired yet, then it will be restarted.
///
/// Arguments:
/// * `mode`: The timer mode to apply, i.e. whether to repeatedly fire the timer or just once.
/// * `interval`: The duration from now until when the timer should fire. And the period of that timer
/// for [`Repeated`](TimerMode::Repeated) timers.
/// * `callback`: The function to call when the time has been reached or exceeded.
pub fn start(
&self,
mode: TimerMode,
interval: core::time::Duration,
callback: impl FnMut() + 'static,
) {
CURRENT_TIMERS.with(|timers| {
let mut timers = timers.borrow_mut();
let id = timers.start_or_restart_timer(
self.id.get(),
mode,
interval,
CallbackVariant::MultiFire(Box::new(callback)),
);
self.id.set(Some(id));
})
}
/// Starts the timer with the duration, in order for the callback to called when the
/// timer fires. It is fired only once and then deleted.
///
/// Arguments:
/// * `duration`: The duration from now until when the timer should fire.
/// * `callback`: The function to call when the time has been reached or exceeded.
///
/// ## Example
/// ```rust
/// # i_slint_backend_testing::init();
/// use slint::Timer;
/// Timer::single_shot(std::time::Duration::from_millis(200), move || {
/// println!("This will be printed after 200ms.");
/// });
/// ```
pub fn single_shot(duration: core::time::Duration, callback: impl FnOnce() + 'static) {
CURRENT_TIMERS.with(|timers| {
let mut timers = timers.borrow_mut();
let id = timers.start_or_restart_timer(
None,
TimerMode::SingleShot,
duration,
CallbackVariant::SingleShot(Box::new(callback)),
);
timers.timers[id].removed = true;
})
}
/// Stops the previously started timer. Does nothing if the timer has never been started.
pub fn stop(&self) {
if let Some(id) = self.id.get() {
CURRENT_TIMERS.with(|timers| {
timers.borrow_mut().deactivate_timer(id);
});
}
}
/// Restarts the timer. If the timer was previously started by calling [`Self::start()`]
/// with a duration and callback, then the time when the callback will be next invoked
/// is re-calculated to be in the specified duration relative to when this function is called.
///
/// Does nothing if the timer was never started.
pub fn restart(&self) {
if let Some(id) = self.id.get() {
CURRENT_TIMERS.with(|timers| {
timers.borrow_mut().deactivate_timer(id);
timers.borrow_mut().activate_timer(id);
});
}
}
/// Returns true if the timer is running; false otherwise.
pub fn running(&self) -> bool {
self.id
.get()
.map(|timer_id| CURRENT_TIMERS.with(|timers| timers.borrow().timers[timer_id].running))
.unwrap_or(false)
}
}
impl Drop for Timer {
fn drop(&mut self) {
if let Some(id) = self.id.get() {
let _ = CURRENT_TIMERS.try_with(|timers| {
timers.borrow_mut().remove_timer(id);
});
}
}
}
enum CallbackVariant {
Empty,
MultiFire(TimerCallback),
SingleShot(SingleShotTimerCallback),
}
impl CallbackVariant {
fn invoke(&mut self) {
use CallbackVariant::*;
match self {
Empty => (),
MultiFire(cb) => cb(),
SingleShot(_) => {
if let SingleShot(cb) = core::mem::replace(self, Empty) {
cb();
}
}
}
}
}
struct TimerData {
duration: core::time::Duration,
mode: TimerMode,
running: bool,
/// Set to true when it is removed when the callback is still running
removed: bool,
callback: CallbackVariant,
}
#[derive(Clone, Copy)]
struct ActiveTimer {
id: usize,
timeout: Instant,
}
/// TimerList provides the interface to the event loop for activating times and
/// determining the nearest timeout.
#[derive(Default)]
pub struct TimerList {
timers: slab::Slab<TimerData>,
active_timers: Vec<ActiveTimer>,
/// If a callback is currently running, this is the id of the currently running callback
callback_active: Option<usize>,
}
impl TimerList {
/// Returns the timeout of the timer that should fire the soonest, or None if there
/// is no timer active.
pub fn next_timeout() -> Option<Instant> {
CURRENT_TIMERS.with(|timers| {
timers
.borrow()
.active_timers
.first()
.map(|first_active_timer| first_active_timer.timeout)
})
}
/// Activates any expired timers by calling their callback function. Returns true if any timers were
/// activated; false otherwise.
pub fn maybe_activate_timers(now: Instant) -> bool {
// Shortcut: Is there any timer worth activating?
if TimerList::next_timeout().map(|timeout| now < timeout).unwrap_or(false) {
return false;
}
CURRENT_TIMERS.with(|timers| {
assert!(timers.borrow().callback_active.is_none(), "Recursion in timer code");
let mut any_activated = false;
// The active timer list is cleared here and not-yet-fired ones are inserted below, in order to allow
// timer callbacks to register their own timers.
let timers_to_process = core::mem::take(&mut timers.borrow_mut().active_timers);
for active_timer in timers_to_process.into_iter() {
if active_timer.timeout <= now {
any_activated = true;
let mut callback = {
let mut timers = timers.borrow_mut();
timers.callback_active = Some(active_timer.id);
// do it before invoking the callback, in case the callback wants to stop or adjust its own timer
if matches!(timers.timers[active_timer.id].mode, TimerMode::Repeated) {
timers.activate_timer(active_timer.id);
}
// have to release the borrow on `timers` before invoking the callback,
// so here we temporarily move the callback out of its permanent place
core::mem::replace(
&mut timers.timers[active_timer.id].callback,
CallbackVariant::Empty,
)
};
callback.invoke();
let mut timers = timers.borrow_mut();
let callback_register = &mut timers.timers[active_timer.id].callback;
// only emplace back the callback if its permanent store is still Empty:
// if not, it means the invoked callback has restarted its own timer with a new callback
if matches!(callback_register, CallbackVariant::Empty) {
*callback_register = callback;
}
timers.callback_active = None;
if timers.timers[active_timer.id].removed {
timers.timers.remove(active_timer.id);
}
} else {
timers.borrow_mut().register_active_timer(active_timer);
}
}
any_activated
})
}
fn start_or_restart_timer(
&mut self,
id: Option<usize>,
mode: TimerMode,
duration: core::time::Duration,
callback: CallbackVariant,
) -> usize {
let timer_data = TimerData { duration, mode, running: false, removed: false, callback };
let inactive_timer_id = if let Some(id) = id {
self.deactivate_timer(id);
self.timers[id] = timer_data;
id
} else {
self.timers.insert(timer_data)
};
self.activate_timer(inactive_timer_id);
inactive_timer_id
}
fn deactivate_timer(&mut self, id: usize) {
let mut i = 0;
while i < self.active_timers.len() {
if self.active_timers[i].id == id {
self.active_timers.remove(i);
self.timers[id].running = false;
break;
} else {
i += 1;
}
}
}
fn activate_timer(&mut self, timer_id: usize) {
self.register_active_timer(ActiveTimer {
id: timer_id,
timeout: Instant::now() + self.timers[timer_id].duration,
});
}
fn register_active_timer(&mut self, new_active_timer: ActiveTimer) {
let insertion_index = lower_bound(&self.active_timers, |existing_timer| {
existing_timer.timeout < new_active_timer.timeout
});
self.active_timers.insert(insertion_index, new_active_timer);
self.timers[new_active_timer.id].running = true;
}
fn remove_timer(&mut self, timer_id: usize) {
self.deactivate_timer(timer_id);
if self.callback_active == Some(timer_id) {
self.timers[timer_id].removed = true;
} else {
self.timers.remove(timer_id);
}
}
}
#[cfg(all(not(feature = "std"), feature = "unsafe-single-threaded"))]
use crate::unsafe_single_threaded::thread_local;
thread_local!(static CURRENT_TIMERS : RefCell<TimerList> = RefCell::default());
fn lower_bound<T>(vec: &[T], mut less_than: impl FnMut(&T) -> bool) -> usize {
let mut left = 0;
let mut right = vec.len();
while left != right {
let mid = left + (right - left) / 2;
let value = &vec[mid];
if less_than(value) {
left = mid + 1;
} else {
right = mid;
}
}
left
}
#[cfg(feature = "ffi")]
pub(crate) mod ffi {
#![allow(unsafe_code)]
use super::*;
#[allow(non_camel_case_types)]
type c_void = ();
struct WrapFn {
callback: extern "C" fn(*mut c_void),
user_data: *mut c_void,
drop_user_data: Option<extern "C" fn(*mut c_void)>,
}
impl Drop for WrapFn {
fn drop(&mut self) {
if let Some(x) = self.drop_user_data {
x(self.user_data)
}
}
}
impl WrapFn {
fn call(&self) {
(self.callback)(self.user_data)
}
}
/// Start a timer with the given mode, duration in millisecond and callback. A timer id may be provided (first argument).
/// A value of -1 for the timer id means a new timer is to be allocated.
/// The (new) timer id is returned.
/// The timer MUST be destroyed with slint_timer_destroy.
#[no_mangle]
pub extern "C" fn slint_timer_start(
id: i64,
mode: TimerMode,
duration: u64,
callback: extern "C" fn(*mut c_void),
user_data: *mut c_void,
drop_user_data: Option<extern "C" fn(*mut c_void)>,
) -> i64 {
let wrap = WrapFn { callback, user_data, drop_user_data };
let timer = Timer::default();
if id != -1 {
timer.id.set(Some(id as _));
}
timer.start(mode, core::time::Duration::from_millis(duration), move || wrap.call());
timer.id.take().map(|x| x as i64).unwrap_or(-1)
}
/// Execute a callback with a delay in millisecond
#[no_mangle]
pub extern "C" fn slint_timer_singleshot(
delay: u64,
callback: extern "C" fn(*mut c_void),
user_data: *mut c_void,
drop_user_data: Option<extern "C" fn(*mut c_void)>,
) {
let wrap = WrapFn { callback, user_data, drop_user_data };
Timer::single_shot(core::time::Duration::from_millis(delay), move || wrap.call());
}
/// Stop a timer and free its raw data
#[no_mangle]
pub extern "C" fn slint_timer_destroy(id: i64) {
if id == -1 {
return;
}
let timer = Timer { id: Cell::new(Some(id as _)) };
drop(timer);
}
/// Stop a timer
#[no_mangle]
pub extern "C" fn slint_timer_stop(id: i64) {
if id == -1 {
return;
}
let timer = Timer { id: Cell::new(Some(id as _)) };
timer.stop();
timer.id.take(); // Make sure that dropping the Timer doesn't unregister it. C++ will call destroy() in the destructor.
}
/// Restart a repeated timer
#[no_mangle]
pub extern "C" fn slint_timer_restart(id: i64) {
if id == -1 {
return;
}
let timer = Timer { id: Cell::new(Some(id as _)) };
timer.restart();
timer.id.take(); // Make sure that dropping the Timer doesn't unregister it. C++ will call destroy() in the destructor.
}
/// Returns true if the timer is running; false otherwise.
#[no_mangle]
pub extern "C" fn slint_timer_running(id: i64) -> bool {
if id == -1 {
return false;
}
let timer = Timer { id: Cell::new(Some(id as _)) };
let running = timer.running();
timer.id.take(); // Make sure that dropping the Timer doesn't unregister it. C++ will call destroy() in the destructor.
running
}
}
/**
```rust
i_slint_backend_testing::init();
use slint::{Timer, TimerMode};
use std::{rc::Rc, cell::RefCell, time::Duration};
#[derive(Default)]
struct SharedState {
timer_200: Timer,
timer_200_called: usize,
timer_500: Timer,
timer_500_called: usize,
timer_once: Timer,
timer_once_called: usize,
}
let state = Rc::new(RefCell::new(SharedState::default()));
// Note: state will be leaked because of circular dependencies: don't do that in production
let state_ = state.clone();
state.borrow_mut().timer_200.start(TimerMode::Repeated, Duration::from_millis(200), move || {
state_.borrow_mut().timer_200_called += 1;
});
let state_ = state.clone();
state.borrow_mut().timer_once.start(TimerMode::Repeated, Duration::from_millis(300), move || {
state_.borrow_mut().timer_once_called += 1;
state_.borrow().timer_once.stop();
});
let state_ = state.clone();
state.borrow_mut().timer_500.start(TimerMode::Repeated, Duration::from_millis(500), move || {
state_.borrow_mut().timer_500_called += 1;
});
slint::platform::update_timers_and_animations();
i_slint_core::tests::slint_mock_elapsed_time(100);
assert_eq!(state.borrow().timer_200_called, 0);
assert_eq!(state.borrow().timer_once_called, 0);
assert_eq!(state.borrow().timer_500_called, 0);
i_slint_core::tests::slint_mock_elapsed_time(100);
assert_eq!(state.borrow().timer_200_called, 1);
assert_eq!(state.borrow().timer_once_called, 0);
assert_eq!(state.borrow().timer_500_called, 0);
i_slint_core::tests::slint_mock_elapsed_time(100);
assert_eq!(state.borrow().timer_200_called, 1);
assert_eq!(state.borrow().timer_once_called, 1);
assert_eq!(state.borrow().timer_500_called, 0);
i_slint_core::tests::slint_mock_elapsed_time(200); // total: 500
assert_eq!(state.borrow().timer_200_called, 2);
assert_eq!(state.borrow().timer_once_called, 1);
assert_eq!(state.borrow().timer_500_called, 1);
for _ in 0..10 {
i_slint_core::tests::slint_mock_elapsed_time(100);
}
// total: 1500
assert_eq!(state.borrow().timer_200_called, 7);
assert_eq!(state.borrow().timer_once_called, 1);
assert_eq!(state.borrow().timer_500_called, 3);
state.borrow().timer_once.restart();
state.borrow().timer_200.restart();
state.borrow().timer_500.stop();
slint::platform::update_timers_and_animations();
i_slint_core::tests::slint_mock_elapsed_time(100);
assert_eq!(state.borrow().timer_200_called, 7);
assert_eq!(state.borrow().timer_once_called, 1);
assert_eq!(state.borrow().timer_500_called, 3);
slint::platform::update_timers_and_animations();
i_slint_core::tests::slint_mock_elapsed_time(100);
assert_eq!(state.borrow().timer_200_called, 8);
assert_eq!(state.borrow().timer_once_called, 1);
assert_eq!(state.borrow().timer_500_called, 3);
slint::platform::update_timers_and_animations();
i_slint_core::tests::slint_mock_elapsed_time(100);
assert_eq!(state.borrow().timer_200_called, 8);
assert_eq!(state.borrow().timer_once_called, 2);
assert_eq!(state.borrow().timer_500_called, 3);
slint::platform::update_timers_and_animations();
i_slint_core::tests::slint_mock_elapsed_time(1000);
slint::platform::update_timers_and_animations();
slint::platform::update_timers_and_animations();
// Despite 1000ms have passed, the 200 timer is only called once because we didn't call update_timers_and_animations in between
assert_eq!(state.borrow().timer_200_called, 9);
assert_eq!(state.borrow().timer_once_called, 2);
assert_eq!(state.borrow().timer_500_called, 3);
let state_ = state.clone();
state.borrow().timer_200.start(TimerMode::SingleShot, Duration::from_millis(200), move || {
state_.borrow_mut().timer_200_called += 1;
});
for _ in 0..5 {
i_slint_core::tests::slint_mock_elapsed_time(75);
}
assert_eq!(state.borrow().timer_200_called, 10);
assert_eq!(state.borrow().timer_once_called, 2);
assert_eq!(state.borrow().timer_500_called, 3);
state.borrow().timer_200.restart();
for _ in 0..5 {
i_slint_core::tests::slint_mock_elapsed_time(75);
}
assert_eq!(state.borrow().timer_200_called, 11);
assert_eq!(state.borrow().timer_once_called, 2);
assert_eq!(state.borrow().timer_500_called, 3);
// Test re-starting from a callback
let state_ = state.clone();
state.borrow_mut().timer_500.start(TimerMode::Repeated, Duration::from_millis(500), move || {
state_.borrow_mut().timer_500_called += 1;
let state__ = state_.clone();
state_.borrow_mut().timer_500.start(TimerMode::Repeated, Duration::from_millis(500), move || {
state__.borrow_mut().timer_500_called += 1000;
});
let state__ = state_.clone();
state_.borrow_mut().timer_200.start(TimerMode::Repeated, Duration::from_millis(200), move || {
state__.borrow_mut().timer_200_called += 1000;
});
});
for _ in 0..20 {
i_slint_core::tests::slint_mock_elapsed_time(100);
}
assert_eq!(state.borrow().timer_200_called, 7011);
assert_eq!(state.borrow().timer_once_called, 2);
assert_eq!(state.borrow().timer_500_called, 3004);
```
*/
#[cfg(doctest)]
const _TIMER_TESTS: () = ();