slint/internal/backends/mcu/renderer.rs
Olivier Goffart b75e9a8cf3 Revert "MCU renderer: Do not call geometry() to avoid creating bindings on x and y"
This reverts commit dea0990fb1.

Otherwise the dirty tracker don't register dependency on x and y
2022-03-11 15:27:47 +01:00

783 lines
29 KiB
Rust

// Copyright © SixtyFPS GmbH <info@slint-ui.com>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial
mod draw_functions;
use crate::{
profiler, Devices, LogicalItemGeometry, LogicalLength, LogicalPoint, LogicalRect,
PhysicalLength, PhysicalPoint, PhysicalRect, PhysicalSize, PointLengths, RectLengths,
ScaleFactor, SizeLengths,
};
use alloc::rc::Rc;
use alloc::{vec, vec::Vec};
use core::pin::Pin;
use embedded_graphics::pixelcolor::Rgb888;
use i_slint_core::graphics::{FontRequest, IntRect, PixelFormat, Rect as RectF};
use i_slint_core::item_rendering::PartialRenderingCache;
use i_slint_core::textlayout::TextParagraphLayout;
use i_slint_core::{Color, ImageInner, StaticTextures};
type DirtyRegion = PhysicalRect;
pub fn render_window_frame(
runtime_window: Rc<i_slint_core::window::Window>,
background: Rgb888,
devices: &mut dyn Devices,
cache: &mut PartialRenderingCache,
) {
let size = devices.screen_size();
let mut scene = prepare_scene(runtime_window, size, devices, cache);
/*for item in scene.future_items {
match item.command {
SceneCommand::Rectangle { color } => {
embedded_graphics::primitives::Rectangle {
top_left: Point { x: item.x as _, y: item.y as _ },
size: Size { width: item.width as _, height: item.height as _ },
}
.into_styled(
embedded_graphics::primitives::PrimitiveStyleBuilder::new()
.fill_color(Rgb888::new(color.red(), color.green(), color.blue()))
.build(),
)
.draw(display)
.unwrap();
}
SceneCommand::Texture { data, format, stride, source_width, source_height, color } => {
let sx = item.width as f32 / source_width as f32;
let sy = item.height as f32 / source_height as f32;
let bpp = bpp(format) as usize;
for y in 0..item.height {
let pixel_iter = (0..item.width).into_iter().map(|x| {
let pos = ((y as f32 / sy) as usize * stride as usize)
+ (x as f32 / sx) as usize * bpp;
to_color(&data[pos..], format, color)
});
display
.fill_contiguous(
&embedded_graphics::primitives::Rectangle::new(
Point::new(item.x as i32, (item.y + y) as i32),
Size::new(item.width as u32, 1),
),
pixel_iter,
)
.unwrap()
}
}
}
}*/
let mut line_processing_profiler = profiler::Timer::new_stopped();
let mut span_drawing_profiler = profiler::Timer::new_stopped();
let mut screen_fill_profiler = profiler::Timer::new_stopped();
let mut line_buffer = vec![background; size.width as usize];
let dirty_region = scene.dirty_region;
debug_assert!(scene.current_line >= dirty_region.origin.y_length());
while scene.current_line < dirty_region.origin.y_length() + dirty_region.size.height_length() {
line_buffer.fill(background);
span_drawing_profiler.start(devices);
for span in scene.items[0..scene.current_items_index].iter().rev() {
debug_assert!(scene.current_line >= span.pos.y_length());
debug_assert!(scene.current_line < span.pos.y_length() + span.size.height_length(),);
match span.command {
SceneCommand::Rectangle { color } => {
draw_functions::blend_buffer(
&mut line_buffer[span.pos.x as usize
..(span.pos.x_length() + span.size.width_length()).get() as usize],
color,
);
}
SceneCommand::Texture { texture_index } => {
let texture = &scene.textures[texture_index as usize];
draw_functions::draw_texture_line(
span,
scene.current_line,
texture,
&mut line_buffer,
);
}
SceneCommand::RoundedRectangle { rectangle_index } => {
let rr = &scene.rounded_rectangles[rectangle_index as usize];
draw_functions::draw_rounded_rectangle_line(
span,
scene.current_line,
rr,
&mut line_buffer,
);
}
}
}
span_drawing_profiler.stop(devices);
screen_fill_profiler.start(devices);
devices.fill_region(
euclid::rect(
dirty_region.origin.x,
scene.current_line.get() as i16,
dirty_region.size.width,
1,
),
&line_buffer[dirty_region.origin.x as usize
..(dirty_region.origin.x + dirty_region.size.width) as usize],
);
screen_fill_profiler.stop(devices);
line_processing_profiler.start(devices);
if scene.current_line < dirty_region.origin.y_length() + dirty_region.size.height_length() {
scene.next_line();
}
line_processing_profiler.stop(devices);
}
line_processing_profiler.stop_profiling(devices, "line processing");
span_drawing_profiler.stop_profiling(devices, "span drawing");
screen_fill_profiler.stop_profiling(devices, "screen fill");
}
struct Scene {
/// the next line to be processed
current_line: PhysicalLength,
/// The items are sorted like so:
/// - `items[future_items_index..]` are the items that have `y > current_line`.
/// They must be sorted by `y` (top to bottom), then by `z` (front to back)
/// - `items[..current_items_index]` are the items that overlap with the current_line,
/// sorted by z (front to back)
items: Vec<SceneItem>,
future_items_index: usize,
current_items_index: usize,
textures: Vec<SceneTexture>,
rounded_rectangles: Vec<RoundedRectangle>,
dirty_region: DirtyRegion,
}
impl Scene {
pub fn new(
mut items: Vec<SceneItem>,
textures: Vec<SceneTexture>,
rounded_rectangles: Vec<RoundedRectangle>,
dirty_region: DirtyRegion,
) -> Self {
let current_line = dirty_region.origin.y_length();
items.retain(|i| i.pos.y_length() + i.size.height_length() > current_line);
items.sort_unstable_by(|a, b| compare_scene_item(a, b));
let current_items_index = items.partition_point(|i| i.pos.y_length() <= current_line);
items[..current_items_index].sort_unstable_by(|a, b| b.z.cmp(&a.z));
Self {
items,
current_line,
current_items_index,
future_items_index: current_items_index,
textures,
rounded_rectangles,
dirty_region,
}
}
/// Updates `current_items_index` and `future_items_index` to match the invariant
pub fn next_line(&mut self) {
self.current_line += PhysicalLength::new(1);
// The items array is split in part:
// 1. [0..i] are the items that have already been processed, that are on this line
// 2. [j..current_items_index] are the items from the previous line that might still be
// valid on this line
// 3. [tmp1, tmp2] is a buffer where we swap items so we can make room for the items in [0..i]
// 4. [future_items_index..] are the items which might get processed now
// 5. [current_items_index..tmp1], [tmp2..future_items_index] and [i..j] is garbage
//
// At each step, we selecting the item with the higher z from the list 2 or 3 or 4 and take it from
// that list. Then we add it to the list [0..i] if it needs more processing. If needed,
// we move the first item from list 2. to list 3. to make some room
let (mut i, mut j, mut tmp1, mut tmp2) =
(0, 0, self.current_items_index, self.current_items_index);
'outer: loop {
let future_next_z = self
.items
.get(self.future_items_index)
.filter(|i| i.pos.y_length() <= self.current_line)
.map(|i| i.z);
let item = loop {
if tmp1 != tmp2 {
if future_next_z.map_or(true, |z| self.items[tmp1].z > z) {
let idx = tmp1;
tmp1 += 1;
if tmp1 == tmp2 {
tmp1 = self.current_items_index;
tmp2 = self.current_items_index;
}
break self.items[idx];
}
} else if j < self.current_items_index {
let item = &self.items[j];
if item.pos.y_length() + item.size.height_length() <= self.current_line {
j += 1;
continue;
}
if future_next_z.map_or(true, |z| item.z > z) {
j += 1;
break *item;
}
}
if future_next_z.is_some() {
self.future_items_index += 1;
break self.items[self.future_items_index - 1];
}
break 'outer;
};
if i != j {
// there is room
} else if j >= self.current_items_index && tmp1 == tmp2 {
// the current_items list is empty
j += 1
} else if self.items[j].pos.y_length() + self.items[j].size.height_length()
<= self.current_line
{
// next item in the current_items array is no longer in this line
j += 1;
} else if tmp2 < self.future_items_index && j < self.current_items_index {
// move the next item in current_items
let to_move = self.items[j];
self.items[tmp2] = to_move;
j += 1;
tmp2 += 1;
} else {
debug_assert!(tmp1 >= self.current_items_index);
let sort_begin = i;
// merge sort doesn't work because we don't have enough tmp space, just bring all items and use a normal sort.
while j < self.current_items_index {
let item = self.items[j];
if item.pos.y_length() + item.size.height_length() > self.current_line {
self.items[i] = item;
i += 1;
}
j += 1;
}
self.items.copy_within(tmp1..tmp2, i);
i += tmp2 - tmp1;
debug_assert!(i < self.future_items_index);
self.items[i] = item;
i += 1;
while self.future_items_index < self.items.len() {
let item = self.items[self.future_items_index];
if item.pos.y_length() > self.current_line {
break;
}
self.items[i] = item;
i += 1;
self.future_items_index += 1;
}
self.items[sort_begin..i].sort_unstable_by(|a, b| b.z.cmp(&a.z));
break;
}
self.items[i] = item;
i += 1;
}
self.current_items_index = i;
// check that current items are properly sorted
debug_assert!(self.items[0..self.current_items_index].windows(2).all(|x| x[0].z >= x[1].z));
}
}
#[derive(Clone, Copy, Debug)]
struct SceneItem {
pos: PhysicalPoint,
size: PhysicalSize,
// this is the order of the item from which it is in the item tree
z: u16,
command: SceneCommand,
}
fn compare_scene_item(a: &SceneItem, b: &SceneItem) -> core::cmp::Ordering {
// First, order by line (top to bottom)
match a.pos.y.partial_cmp(&b.pos.y) {
None | Some(core::cmp::Ordering::Equal) => {}
Some(ord) => return ord,
}
// Then by the reverse z (front to back)
match a.z.partial_cmp(&b.z) {
None | Some(core::cmp::Ordering::Equal) => {}
Some(ord) => return ord.reverse(),
}
// anything else, we don't care
core::cmp::Ordering::Equal
}
#[derive(Clone, Copy, Debug)]
#[repr(u8)]
enum SceneCommand {
Rectangle {
color: Color,
},
/// texture_index is an index in the Scene::textures array
Texture {
texture_index: u16,
},
/// rectangle_index is an index in the Scene::rounded_rectangle array
RoundedRectangle {
rectangle_index: u16,
},
}
struct SceneTexture {
data: &'static [u8],
format: PixelFormat,
/// bytes between two lines in the source
stride: u16,
source_size: PhysicalSize,
color: Color,
}
struct RoundedRectangle {
radius: PhysicalLength,
/// the border's width
width: PhysicalLength,
border_color: Color,
inner_color: Color,
/// The clips is the amount of pixels of the rounded rectangle that is clipped away.
/// For example, if left_clip > width, then the left border will not be visible, and
/// if left_clip > radius, then no radius will be seen in the left side
left_clip: PhysicalLength,
right_clip: PhysicalLength,
top_clip: PhysicalLength,
bottom_clip: PhysicalLength,
}
fn prepare_scene(
runtime_window: Rc<i_slint_core::window::Window>,
size: PhysicalSize,
devices: &dyn Devices,
cache: &mut PartialRenderingCache,
) -> Scene {
let prepare_scene_profiler = profiler::Timer::new(devices);
let mut compute_dirty_region_profiler = profiler::Timer::new_stopped();
let factor = ScaleFactor::new(runtime_window.scale_factor());
let prepare_scene = PrepareScene::new(size, factor, runtime_window.default_font_properties());
let mut renderer = i_slint_core::item_rendering::PartialRenderer::new(cache, prepare_scene);
runtime_window.draw_contents(|components| {
compute_dirty_region_profiler.start(devices);
for (component, origin) in components {
renderer.compute_dirty_regions(component, *origin);
}
compute_dirty_region_profiler.stop(devices);
for (component, origin) in components {
i_slint_core::item_rendering::render_component_items(component, &mut renderer, *origin);
}
});
let dirty_region = (euclid::Rect::from_untyped(&renderer.dirty_region.to_rect()) * factor)
.round_out()
.cast()
.intersection(&PhysicalRect { origin: euclid::point2(0, 0), size })
.unwrap_or_default();
prepare_scene_profiler.stop_profiling(devices, "prepare_scene");
compute_dirty_region_profiler.stop_profiling(devices, "+ dirty_region");
let prepare_scene = renderer.into_inner();
Scene::new(
prepare_scene.items,
prepare_scene.textures,
prepare_scene.rounded_rectangles,
dirty_region,
)
}
struct PrepareScene {
items: Vec<SceneItem>,
textures: Vec<SceneTexture>,
rounded_rectangles: Vec<RoundedRectangle>,
state_stack: Vec<RenderState>,
current_state: RenderState,
scale_factor: ScaleFactor,
default_font: FontRequest,
}
impl PrepareScene {
fn new(size: PhysicalSize, scale_factor: ScaleFactor, default_font: FontRequest) -> Self {
Self {
items: vec![],
rounded_rectangles: vec![],
textures: vec![],
state_stack: vec![],
current_state: RenderState {
alpha: 1.,
offset: LogicalPoint::default(),
clip: LogicalRect::new(LogicalPoint::default(), size.cast() / scale_factor),
},
scale_factor,
default_font,
}
}
fn should_draw(&self, rect: &LogicalRect) -> bool {
!rect.size.is_empty()
&& self.current_state.alpha > 0.01
&& self.current_state.clip.intersects(rect)
}
fn new_scene_rectangle(&mut self, geometry: LogicalRect, color: Color) {
self.new_scene_item(geometry, SceneCommand::Rectangle { color });
}
fn new_scene_texture(&mut self, geometry: LogicalRect, texture: SceneTexture) {
let texture_index = self.textures.len() as u16;
self.textures.push(texture);
self.new_scene_item(geometry, SceneCommand::Texture { texture_index });
}
fn new_scene_item(&mut self, geometry: LogicalRect, command: SceneCommand) {
let size = (geometry.size * self.scale_factor).cast();
if !size.is_empty() {
let z = self.items.len() as u16;
let pos = ((geometry.origin + self.current_state.offset.to_vector())
* self.scale_factor)
.cast();
self.items.push(SceneItem { pos, size, z, command });
}
}
fn draw_image_impl(
&mut self,
geom: LogicalRect,
source: &i_slint_core::graphics::Image,
source_clip: IntRect,
colorize: Color,
) {
let image_inner: &ImageInner = source.into();
match image_inner {
ImageInner::None => (),
ImageInner::AbsoluteFilePath(_) | ImageInner::EmbeddedData { .. } => {
unimplemented!()
}
ImageInner::EmbeddedImage(_) => todo!(),
ImageInner::StaticTextures(StaticTextures { size, data, textures, .. }) => {
let sx = geom.width() / (size.width as f32);
let sy = geom.height() / (size.height as f32);
for t in textures.as_slice() {
if let Some(dest_rect) = t.rect.intersection(&source_clip).and_then(|r| {
r.intersection(
&self
.current_state
.clip
.to_untyped()
.scale(1. / sx, 1. / sy)
.round_in()
.cast(),
)
}) {
let actual_x = dest_rect.origin.x - t.rect.origin.x;
let actual_y = dest_rect.origin.y - t.rect.origin.y;
let stride = t.rect.width() as u16 * bpp(t.format);
self.new_scene_texture(
LogicalRect::from_untyped(&dest_rect.cast().scale(sx, sy)),
SceneTexture {
data: &data.as_slice()[(t.index
+ (stride as usize) * (actual_y as usize)
+ (bpp(t.format) as usize) * (actual_x as usize))..],
stride,
source_size: PhysicalSize::from_untyped(dest_rect.size.cast()),
format: t.format,
color: if colorize.alpha() > 0 { colorize } else { t.color },
},
);
}
}
}
};
}
}
#[derive(Clone, Copy)]
struct RenderState {
alpha: f32,
offset: LogicalPoint,
clip: LogicalRect,
}
impl i_slint_core::item_rendering::ItemRenderer for PrepareScene {
fn draw_rectangle(&mut self, rect: Pin<&i_slint_core::items::Rectangle>) {
let geom = LogicalRect::new(LogicalPoint::default(), rect.logical_geometry().size_length());
if self.should_draw(&geom) {
let geom = match geom.intersection(&self.current_state.clip) {
Some(geom) => geom,
None => return,
};
// FIXME: gradients
let color = rect.background().color();
if color.alpha() == 0 {
return;
}
self.new_scene_rectangle(geom, color);
}
}
fn draw_border_rectangle(&mut self, rect: Pin<&i_slint_core::items::BorderRectangle>) {
let geom = LogicalRect::new(LogicalPoint::default(), rect.logical_geometry().size_length());
if self.should_draw(&geom) {
let border = rect.border_width();
let radius = rect.border_radius();
// FIXME: gradients
let color = rect.background().color();
if radius > 0. {
if let Some(clipped) = geom.intersection(&self.current_state.clip) {
let geom2 = (geom * self.scale_factor).cast::<i16>();
let clipped2 = (clipped * self.scale_factor).cast::<i16>();
let rectangle_index = self.rounded_rectangles.len() as u16;
self.rounded_rectangles.push(RoundedRectangle {
radius: (LogicalLength::new(radius) * self.scale_factor).cast(),
width: (LogicalLength::new(border) * self.scale_factor).cast(),
border_color: rect.border_color().color(),
inner_color: color,
top_clip: PhysicalLength::new(clipped2.min_y() - geom2.min_y()),
bottom_clip: PhysicalLength::new(geom2.max_y() - clipped2.max_y()),
left_clip: PhysicalLength::new(clipped2.min_x() - geom2.min_x()),
right_clip: PhysicalLength::new(geom2.max_x() - clipped2.max_x()),
});
self.new_scene_item(
clipped,
SceneCommand::RoundedRectangle { rectangle_index },
);
}
return;
}
if color.alpha() > 0 {
if let Some(r) =
geom.inflate(-border, -border).intersection(&self.current_state.clip)
{
self.new_scene_rectangle(r, color);
}
}
if border > 0.01 {
// FIXME: radius
// FIXME: gradients
let border_color = rect.border_color().color();
if border_color.alpha() > 0 {
let mut add_border = |r: LogicalRect| {
if let Some(r) = r.intersection(&self.current_state.clip) {
self.new_scene_rectangle(r, border_color);
}
};
add_border(euclid::rect(0., 0., geom.width(), border));
add_border(euclid::rect(0., geom.height() - border, geom.width(), border));
add_border(euclid::rect(0., border, border, geom.height() - border - border));
add_border(euclid::rect(
geom.width() - border,
border,
border,
geom.height() - border - border,
));
}
}
}
}
fn draw_image(&mut self, image: Pin<&i_slint_core::items::ImageItem>) {
let geom =
LogicalRect::new(LogicalPoint::default(), image.logical_geometry().size_length());
if self.should_draw(&geom) {
self.draw_image_impl(
geom,
&image.source(),
euclid::rect(0, 0, i32::MAX, i32::MAX),
Default::default(),
);
}
}
fn draw_clipped_image(&mut self, image: Pin<&i_slint_core::items::ClippedImage>) {
// when the source_clip size is empty, make it full
let a = |v| if v == 0 { i32::MAX } else { v };
let geom =
LogicalRect::new(LogicalPoint::default(), image.logical_geometry().size_length());
if self.should_draw(&geom) {
self.draw_image_impl(
geom,
&image.source(),
euclid::rect(
image.source_clip_x(),
image.source_clip_y(),
a(image.source_clip_width()),
a(image.source_clip_height()),
),
image.colorize().color(),
);
}
}
fn draw_text(&mut self, text: Pin<&i_slint_core::items::Text>) {
let string = text.text();
if string.trim().is_empty() {
return;
}
let geom = LogicalRect::new(LogicalPoint::default(), text.logical_geometry().size_length());
if !self.should_draw(&geom) {
return;
}
let font_request = text.unresolved_font_request().merge(&self.default_font);
let font = crate::fonts::match_font(&font_request, self.scale_factor);
let color = text.color().color();
let max_size = (geom.size * self.scale_factor).cast();
let paragraph = TextParagraphLayout {
string: &string,
font: &font,
font_height: font.height(),
max_width: max_size.width_length(),
max_height: max_size.height_length(),
horizontal_alignment: text.horizontal_alignment(),
vertical_alignment: text.vertical_alignment(),
wrap: text.wrap(),
overflow: text.overflow(),
single_line: false,
};
paragraph.layout_lines(|glyphs, line_x, line_y| {
let baseline_y = line_y + font.ascent();
while let Some((glyph_baseline_x, glyph)) = glyphs.next() {
let bitmap_glyph = match glyph {
Some(g) => g,
None => continue,
};
if let Some(dest_rect) = (PhysicalRect::new(
PhysicalPoint::from_lengths(
line_x + glyph_baseline_x + bitmap_glyph.x(),
baseline_y - bitmap_glyph.y() - bitmap_glyph.height(),
),
bitmap_glyph.size(),
)
.cast()
/ self.scale_factor)
.intersection(&self.current_state.clip)
{
let stride = bitmap_glyph.width().get() as u16;
self.new_scene_texture(
dest_rect,
SceneTexture {
data: bitmap_glyph.data().as_slice(),
stride,
source_size: bitmap_glyph.size(),
format: PixelFormat::AlphaMap,
color,
},
);
}
}
});
}
fn draw_text_input(&mut self, _text_input: Pin<&i_slint_core::items::TextInput>) {
// TODO
}
#[cfg(feature = "std")]
fn draw_path(&mut self, _path: Pin<&i_slint_core::items::Path>) {
// TODO
}
fn draw_box_shadow(&mut self, _box_shadow: Pin<&i_slint_core::items::BoxShadow>) {
// TODO
}
fn combine_clip(&mut self, other: RectF, _radius: f32, _border_width: f32) {
match self.current_state.clip.intersection(&LogicalRect::from_untyped(&other)) {
Some(r) => {
self.current_state.clip = r;
}
None => {
self.current_state.clip = LogicalRect::default();
}
};
// TODO: handle radius and border
}
fn get_current_clip(&self) -> i_slint_core::graphics::Rect {
self.current_state.clip.to_untyped()
}
fn translate(&mut self, x: f32, y: f32) {
self.current_state.offset.x += x;
self.current_state.offset.y += y;
self.current_state.clip = self.current_state.clip.translate((-x, -y).into())
}
fn rotate(&mut self, _angle_in_degrees: f32) {
todo!()
}
fn apply_opacity(&mut self, opacity: f32) {
self.current_state.alpha *= opacity;
}
fn save_state(&mut self) {
self.state_stack.push(self.current_state);
}
fn restore_state(&mut self) {
self.current_state = self.state_stack.pop().unwrap();
}
fn scale_factor(&self) -> f32 {
self.scale_factor.0
}
fn draw_cached_pixmap(
&mut self,
_item_cache: &i_slint_core::item_rendering::CachedRenderingData,
_update_fn: &dyn Fn(&mut dyn FnMut(u32, u32, &[u8])),
) {
todo!()
}
fn draw_string(&mut self, _string: &str, _color: Color) {
todo!()
}
fn window(&self) -> i_slint_core::window::WindowRc {
unreachable!("this backend don't query the window")
}
fn as_any(&mut self) -> &mut dyn core::any::Any {
self
}
}
/// bytes per pixels
fn bpp(format: PixelFormat) -> u16 {
match format {
PixelFormat::Rgb => 3,
PixelFormat::Rgba => 4,
PixelFormat::AlphaMap => 1,
}
}
/*
fn to_color(data: &[u8], format: PixelFormat, color: Color) -> Rgb888 {
match format {
PixelFormat::Rgba if color.alpha() > 0 => Rgb888::new(
((color.red() as u16 * data[3] as u16) >> 8) as u8,
((color.green() as u16 * data[3] as u16) >> 8) as u8,
((color.blue() as u16 * data[3] as u16) >> 8) as u8,
),
PixelFormat::Rgb => Rgb888::new(data[0], data[1], data[2]),
PixelFormat::Rgba => Rgb888::new(data[0], data[1], data[2]),
PixelFormat::AlphaMap => Rgb888::new(
((color.red() as u16 * data[0] as u16) >> 8) as u8,
((color.green() as u16 * data[0] as u16) >> 8) as u8,
((color.blue() as u16 * data[0] as u16) >> 8) as u8,
),
}
}*/
pub fn to_rgb888_color_discard_alpha(col: Color) -> Rgb888 {
Rgb888::new(col.red(), col.green(), col.blue())
}