mirror of
https://github.com/slint-ui/slint.git
synced 2025-10-02 14:51:15 +00:00

Move the layout constraint tracker into the window where we can apply the constraints right before drawing, instead of doing that from within the event loop. This allows to remove the component parameter from the run function.
1291 lines
50 KiB
Rust
1291 lines
50 KiB
Rust
/* LICENSE BEGIN
|
|
This file is part of the SixtyFPS Project -- https://sixtyfps.io
|
|
Copyright (c) 2020 Olivier Goffart <olivier.goffart@sixtyfps.io>
|
|
Copyright (c) 2020 Simon Hausmann <simon.hausmann@sixtyfps.io>
|
|
|
|
SPDX-License-Identifier: GPL-3.0-only
|
|
This file is also available under commercial licensing terms.
|
|
Please contact info@sixtyfps.io for more information.
|
|
LICENSE END */
|
|
#![warn(missing_docs)]
|
|
/*!
|
|
Graphics Abstractions.
|
|
|
|
This module contains the abstractions and convenience types to allow the runtime
|
|
library to instruct different graphics backends to render the tree of items.
|
|
|
|
The entry trait is [GraphicsBackend].
|
|
|
|
The run-time library also makes use of [RenderingCache] to store the rendering primitives
|
|
created by the backend in a type-erased manner.
|
|
*/
|
|
extern crate alloc;
|
|
use crate::component::{ComponentRc, ComponentWeak};
|
|
use crate::input::{KeyEvent, KeyboardModifiers, MouseEvent, MouseEventType};
|
|
use crate::items::ItemRef;
|
|
use crate::properties::{InterpolatedPropertyValue, Property, PropertyTracker};
|
|
#[cfg(feature = "rtti")]
|
|
use crate::rtti::{BuiltinItem, FieldInfo, PropertyInfo, ValueType};
|
|
use crate::SharedArray;
|
|
#[cfg(feature = "rtti")]
|
|
use crate::Signal;
|
|
|
|
use auto_enums::auto_enum;
|
|
use cgmath::Matrix4;
|
|
use const_field_offset::FieldOffsets;
|
|
use core::pin::Pin;
|
|
use sixtyfps_corelib_macros::*;
|
|
use std::cell::{Cell, RefCell};
|
|
use std::rc::Rc;
|
|
|
|
/// 2D Rectangle
|
|
pub type Rect = euclid::default::Rect<f32>;
|
|
/// 2D Point
|
|
pub type Point = euclid::default::Point2D<f32>;
|
|
/// 2D Size
|
|
pub type Size = euclid::default::Size2D<f32>;
|
|
|
|
/// ARGBColor stores the red, green, blue and alpha components of a color
|
|
/// with the precision of the generic parameter T. For example if T is f32,
|
|
/// the values are normalized between 0 and 1. If T is u8, they values range
|
|
/// is 0 to 255.
|
|
/// This is merely a helper class for use with [`Color`].
|
|
#[derive(Copy, Clone, PartialEq, Debug, Default)]
|
|
pub struct ARGBColor<T> {
|
|
/// The alpha component.
|
|
pub alpha: T,
|
|
/// The red channel.
|
|
pub red: T,
|
|
/// The green channel.
|
|
pub green: T,
|
|
/// The blue channel.
|
|
pub blue: T,
|
|
}
|
|
|
|
/// Color represents a color in the SixtyFPS run-time, represented using 8-bit channels for
|
|
/// red, green, blue and the alpha (opacity).
|
|
/// It can be conveniently constructed and destructured using the to_ and from_ (a)rgb helper functions:
|
|
/// ```
|
|
/// # fn do_something_with_red_and_green(_:f32, _:f32) {}
|
|
/// # fn do_something_with_red(_:u8) {}
|
|
/// # use sixtyfps_corelib::graphics::{Color, ARGBColor};
|
|
/// # let some_color = Color::from_rgb_u8(0, 0, 0);
|
|
/// let col = some_color.to_argb_f32();
|
|
/// do_something_with_red_and_green(col.red, col.green);
|
|
///
|
|
/// let ARGBColor { red, blue, green, .. } = some_color.to_argb_u8();
|
|
/// do_something_with_red(red);
|
|
///
|
|
/// let new_col = Color::from(ARGBColor{ red: 0.5, green: 0.65, blue: 0.32, alpha: 1.});
|
|
/// ```
|
|
#[derive(Copy, Clone, PartialEq, Debug, Default)]
|
|
#[repr(C)]
|
|
pub struct Color {
|
|
red: u8,
|
|
green: u8,
|
|
blue: u8,
|
|
alpha: u8,
|
|
}
|
|
|
|
impl From<ARGBColor<u8>> for Color {
|
|
fn from(col: ARGBColor<u8>) -> Self {
|
|
Self { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
|
|
}
|
|
}
|
|
|
|
impl From<Color> for ARGBColor<u8> {
|
|
fn from(col: Color) -> Self {
|
|
ARGBColor { red: col.red, green: col.green, blue: col.blue, alpha: col.alpha }
|
|
}
|
|
}
|
|
|
|
impl From<ARGBColor<u8>> for ARGBColor<f32> {
|
|
fn from(col: ARGBColor<u8>) -> Self {
|
|
Self {
|
|
red: (col.red as f32) / 255.0,
|
|
green: (col.green as f32) / 255.0,
|
|
blue: (col.blue as f32) / 255.0,
|
|
alpha: (col.alpha as f32) / 255.0,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<Color> for ARGBColor<f32> {
|
|
fn from(col: Color) -> Self {
|
|
let u8col: ARGBColor<u8> = col.into();
|
|
u8col.into()
|
|
}
|
|
}
|
|
|
|
impl From<ARGBColor<f32>> for Color {
|
|
fn from(col: ARGBColor<f32>) -> Self {
|
|
Self {
|
|
red: (col.red * 255.) as u8,
|
|
green: (col.green * 255.) as u8,
|
|
blue: (col.blue * 255.) as u8,
|
|
alpha: (col.alpha * 255.) as u8,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Color {
|
|
/// Construct a color from an integer encoded as `0xAARRGGBB`
|
|
pub const fn from_argb_encoded(encoded: u32) -> Color {
|
|
Self {
|
|
red: (encoded >> 16) as u8,
|
|
green: (encoded >> 8) as u8,
|
|
blue: encoded as u8,
|
|
alpha: (encoded >> 24) as u8,
|
|
}
|
|
}
|
|
|
|
/// Returns `(alpha, red, green, blue)` encoded as u32
|
|
pub fn as_argb_encoded(&self) -> u32 {
|
|
((self.red as u32) << 16)
|
|
| ((self.green as u32) << 8)
|
|
| (self.blue as u32)
|
|
| ((self.alpha as u32) << 24)
|
|
}
|
|
|
|
/// Construct a color from the alpha, red, green and blue color channel parameters.
|
|
pub fn from_argb_u8(alpha: u8, red: u8, green: u8, blue: u8) -> Self {
|
|
Self { red, green, blue, alpha }
|
|
}
|
|
|
|
/// Construct a color from the red, green and blue color channel parameters. The alpha
|
|
/// channel will have the value 255.
|
|
pub fn from_rgb_u8(red: u8, green: u8, blue: u8) -> Self {
|
|
Self::from_argb_u8(255, red, green, blue)
|
|
}
|
|
|
|
/// Construct a color from the alpha, red, green and blue color channel parameters.
|
|
pub fn from_argb_f32(alpha: f32, red: f32, green: f32, blue: f32) -> Self {
|
|
ARGBColor { alpha, red, green, blue }.into()
|
|
}
|
|
|
|
/// Construct a color from the red, green and blue color channel parameters. The alpha
|
|
/// channel will have the value 255.
|
|
pub fn from_rgb_f32(red: f32, green: f32, blue: f32) -> Self {
|
|
Self::from_argb_f32(1.0, red, green, blue)
|
|
}
|
|
|
|
/// Converts this color to an ARGBColor struct for easy destructuring.
|
|
pub fn to_argb_u8(&self) -> ARGBColor<u8> {
|
|
ARGBColor::from(*self)
|
|
}
|
|
|
|
/// Converts this color to an ARGBColor struct for easy destructuring.
|
|
pub fn to_argb_f32(&self) -> ARGBColor<f32> {
|
|
ARGBColor::from(*self)
|
|
}
|
|
|
|
/// Returns the red channel of the color as u8 in the range 0..255.
|
|
pub fn red(self) -> u8 {
|
|
self.red
|
|
}
|
|
|
|
/// Returns the green channel of the color as u8 in the range 0..255.
|
|
pub fn green(self) -> u8 {
|
|
self.green
|
|
}
|
|
|
|
/// Returns the blue channel of the color as u8 in the range 0..255.
|
|
pub fn blue(self) -> u8 {
|
|
self.blue
|
|
}
|
|
|
|
/// Returns the alpha channel of the color as u8 in the range 0..255.
|
|
pub fn alpha(self) -> u8 {
|
|
self.alpha
|
|
}
|
|
}
|
|
|
|
impl InterpolatedPropertyValue for Color {
|
|
fn interpolate(self, target_value: Self, t: f32) -> Self {
|
|
Self {
|
|
red: self.red.interpolate(target_value.red, t),
|
|
green: self.green.interpolate(target_value.green, t),
|
|
blue: self.blue.interpolate(target_value.blue, t),
|
|
alpha: self.alpha.interpolate(target_value.alpha, t),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl std::fmt::Display for Color {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
write!(f, "argb({}, {}, {}, {})", self.alpha, self.red, self.green, self.blue)
|
|
}
|
|
}
|
|
|
|
/// A resource is a reference to binary data, for example images. They can be accessible on the file
|
|
/// system or embedded in the resulting binary. Or they might be URLs to a web server and a downloaded
|
|
/// is necessary before they can be used.
|
|
#[derive(Clone, PartialEq, Debug)]
|
|
#[repr(u8)]
|
|
pub enum Resource {
|
|
/// A resource that does not represent any data.
|
|
None,
|
|
/// A resource that points to a file in the file system
|
|
AbsoluteFilePath(crate::SharedString),
|
|
/// A resource that is embedded in the program and accessible via pointer
|
|
/// The format is the same as in a file
|
|
EmbeddedData(super::slice::Slice<'static, u8>),
|
|
/// Raw ARGB
|
|
#[allow(missing_docs)]
|
|
EmbeddedRgbaImage { width: u32, height: u32, data: super::sharedarray::SharedArray<u32> },
|
|
}
|
|
|
|
impl Default for Resource {
|
|
fn default() -> Self {
|
|
Resource::None
|
|
}
|
|
}
|
|
|
|
/// The run-time library uses this enum to instruct the [GraphicsBackend] to render SixtyFPS
|
|
/// graphics items.
|
|
/// The different variants of this enum closely resemble the properties found in the `.60`
|
|
/// mark-up language for various items. More specifically this enum typically holds the
|
|
/// properties that usually require for the allocation and uploading of GPU side data, such
|
|
/// as vertex buffers or textures. Other properties such as colors not part of the enum but
|
|
/// are provided to the back-end using [RenderingVariable]. That means that certain variants
|
|
/// of this enum relate to a sequence of rendering variables.
|
|
///
|
|
/// Always absent here are the starting coordinates for the primitives. Those are provided
|
|
/// using a translation in the transform parameter of [Frame::render_primitive].
|
|
#[derive(PartialEq, Debug)]
|
|
#[repr(C)]
|
|
#[allow(missing_docs)]
|
|
pub enum HighLevelRenderingPrimitive {
|
|
/// There is nothing to draw.
|
|
///
|
|
/// Associated rendering variables: None.
|
|
NoContents,
|
|
/// Renders a rectangle with the specified `width` and `height`, as well as a border
|
|
/// around it. The `border_width` specifies the width to use for the border, and the
|
|
/// `border_radius` can be used to render a rounded rectangle.
|
|
///
|
|
/// Expected rendering variables:
|
|
/// * [`RenderingVariable::Color`]: The color to fill the rectangle with.
|
|
/// * [`RenderingVariable::Color`]: The color to use for stroking the border of the rectangle.
|
|
Rectangle { width: f32, height: f32, border_width: f32, border_radius: f32 },
|
|
/// Renders a image referenced by the specified `source`.
|
|
///
|
|
/// Optional rendering variables:
|
|
/// * [`RenderingVariable::ScaledWidth`]: The image will be scaled to the specified width.
|
|
/// * [`RenderingVariable::ScaledHeight`]: The image will be scaled to the specified height.
|
|
Image { source: crate::Resource },
|
|
/// Renders the specified `text` with a font that matches the specified family (`font_family`) and the given
|
|
/// pixel size (`font_size`).
|
|
///
|
|
/// Expected rendering variables:
|
|
/// * [`RenderingVariable::Color`]: The color to use for rendering the glyphs.
|
|
/// * [`RenderingVariable::TextCursor`]: Draw a text cursor.
|
|
Text { text: crate::SharedString, font_family: crate::SharedString, font_size: f32 },
|
|
/// Renders a path specified by the `elements` parameter. The path will be scaled to fit into the given
|
|
/// `width` and `height`. If the `stroke_width` is greater than zero, then path will also be outlined.
|
|
///
|
|
/// Expected rendering variables:
|
|
/// * [`RenderingVariable::Color`]: The color to use for filling the path.
|
|
/// * [`RenderingVariable::Color`]: The color to use for the path outline, if a non-zero `stroke_width`
|
|
/// was specified.
|
|
Path { width: f32, height: f32, elements: crate::PathData, stroke_width: f32 },
|
|
/// Applies a clip rectangle for all subsequent rendering, with the given `width` and `height. When rendering
|
|
/// the low-level rendering primitive created from this variant, [`Frame::render_primitive`] will return a
|
|
/// vector with cleanup primitives that must be applied in order to unapply the clipping.
|
|
ClipRect { width: f32, height: f32 },
|
|
}
|
|
|
|
impl Default for HighLevelRenderingPrimitive {
|
|
fn default() -> Self {
|
|
Self::NoContents
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
#[repr(C)]
|
|
/// This enum is used to affect various aspects of the rendering of [GraphicsBackend::LowLevelRenderingPrimitive]
|
|
/// without the need to re-create them. See the documentation of [HighLevelRenderingPrimitive]
|
|
/// about which variables are supported in which order.
|
|
pub enum RenderingVariable {
|
|
/// Translates the primitive by the given (x, y) vector.
|
|
Translate(f32, f32),
|
|
/// Apply the specified color. Depending on the order in the rendering variables array this may apply to different
|
|
/// aspects of the primitive, such as the fill or stroke.
|
|
Color(Color),
|
|
/// Scale the primitive by the specified width.
|
|
ScaledWidth(f32),
|
|
/// Scale the primitive by the specified height.
|
|
ScaledHeight(f32),
|
|
/// Draw a text cursor. The parameters provide the x coordiante and the width/height as (x, width, height) tuple.
|
|
TextCursor(f32, f32, f32),
|
|
/// Draw a text selection. The parameters provide the starting x coordinate, the width and the height. This variable
|
|
/// must be followed by two colors, foreground and background.
|
|
TextSelection(f32, f32, f32),
|
|
}
|
|
|
|
impl RenderingVariable {
|
|
/// Returns the color of this variable, or panics if the enum holds a different variant.
|
|
pub fn as_color(&self) -> &Color {
|
|
match self {
|
|
RenderingVariable::Color(c) => c,
|
|
_ => panic!("internal error: expected color but found something else"),
|
|
}
|
|
}
|
|
/// Returns the scaled width of this variable, or panics if the enum holds a different variant.
|
|
pub fn as_scaled_width(&self) -> f32 {
|
|
match self {
|
|
RenderingVariable::ScaledWidth(w) => *w,
|
|
_ => panic!("internal error: expected scaled width but found something else"),
|
|
}
|
|
}
|
|
/// Returns the scaled height of this variable, or panics if the enum holds a different variant.
|
|
pub fn as_scaled_height(&self) -> f32 {
|
|
match self {
|
|
RenderingVariable::ScaledHeight(h) => *h,
|
|
_ => panic!("internal error: expected scaled height but found something else"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Frame is used to render previously created [GraphicsBackend::LowLevelRenderingPrimitive] instances
|
|
/// to the back-buffer of the window.
|
|
pub trait Frame {
|
|
/// This associated type is usually provided through the [GraphicsBackend::LowLevelRenderingPrimitive] type.
|
|
type LowLevelRenderingPrimitive;
|
|
/// Renderings the provided primitive to the back-buffer, taking the provided transform and additional rendering
|
|
/// variables into account.
|
|
///
|
|
/// The returned primitives must be rendered after rendering any rendering primitives that are supposed to be
|
|
/// in a visual tree after this primitive. This is for example used to clean up clipping regions.
|
|
///
|
|
/// Arguments:
|
|
/// * `primitive`: The primitive to render.
|
|
/// * `transform`: The geometry of the primitive will be transformed by this 4x4 matrix. This can be used to apply
|
|
/// rotation, scaling, etc. without re-creating the low-level rendering primitive.
|
|
/// * `variables`: An array of [RenderingVariable] instances that are applied when rendering the primitive. These
|
|
/// variables typically translate to OpenGL uniforms and allow for affecting various aspects of the
|
|
/// rendering of the primitive without expensive buffer uploads to the GPU.
|
|
fn render_primitive(
|
|
&mut self,
|
|
primitive: &Self::LowLevelRenderingPrimitive,
|
|
transform: &Matrix4<f32>,
|
|
variables: SharedArray<RenderingVariable>,
|
|
) -> Vec<Self::LowLevelRenderingPrimitive>;
|
|
}
|
|
|
|
/// RenderingPrimitivesBuilder is used to convert instances of [HighLevelRenderingPrimitive] to
|
|
/// the back-end specific [GraphicsBackend::LowLevelRenderingPrimitive], giving the backend a way
|
|
/// to determin the optimal representation for rendering later. For example this may involve uploading
|
|
/// textures for images to GPU memory, pre-rendering glyphs or allocating vertex buffers.
|
|
pub trait RenderingPrimitivesBuilder {
|
|
/// This associated type is usually provided through the [GraphicsBackend::LowLevelRenderingPrimitive] type.
|
|
type LowLevelRenderingPrimitive;
|
|
|
|
/// Lowers the high-level rendering primitive to a representation suitable for the graphics backend.
|
|
///
|
|
/// Arguments:
|
|
/// * `primitive`: The primitive to convert.
|
|
fn create(
|
|
&mut self,
|
|
primitive: HighLevelRenderingPrimitive,
|
|
) -> Self::LowLevelRenderingPrimitive;
|
|
}
|
|
|
|
/// GraphicsBackend is the trait that the the SixtyFPS run-time uses to convert [HighLevelRenderingPrimitive]
|
|
/// to an internal representation that is optimal for the backend, in order to render it later. The internal
|
|
/// representation is opaque but must be provided via the [GraphicsBackend::LowLevelRenderingPrimitive] associated type.
|
|
///
|
|
/// The backend operates in two modes:
|
|
/// 1. It can be used to create new rendering primitives, by calling [GraphicsBackend::new_rendering_primitives_builder]. This is
|
|
/// usually an expensive step, that involves uploading data to the GPU or performing other pre-calculations.
|
|
///
|
|
/// 1. A series of low-level rendering primitives can be rendered into a frame, that's started using [GraphicsBackend::new_frame].
|
|
/// The low-level rendering primitives are intended to be fast and ready for rendering.
|
|
pub trait GraphicsBackend: Sized {
|
|
/// This associated type is typically opaque and is produced by the [RenderingPrimitivesBuilder]. For example it may contain
|
|
/// handles that refer to data that was uploaded to the GPU.
|
|
type LowLevelRenderingPrimitive;
|
|
/// This associated type ties the Frame trait together with this trait's LowLevelRenderingPrimitive.
|
|
type Frame: Frame<LowLevelRenderingPrimitive = Self::LowLevelRenderingPrimitive>;
|
|
/// This associated type ties the RenderingPrimitivesBuilder trait with this trait's LowLevelRenderingPrimitive.
|
|
type RenderingPrimitivesBuilder: RenderingPrimitivesBuilder<
|
|
LowLevelRenderingPrimitive = Self::LowLevelRenderingPrimitive,
|
|
>;
|
|
|
|
/// Creates a new RenderingPrimitivesBuilder for the allocation of any GPU side data of different primitives. Call
|
|
/// [GraphicsBackend::finish_primitives] when done.
|
|
fn new_rendering_primitives_builder(&mut self) -> Self::RenderingPrimitivesBuilder;
|
|
/// When all low-level rendering primitives have been created needed to render your scene, then this method
|
|
/// needs to be called to complete the process.
|
|
///
|
|
/// Arguments:
|
|
/// * `builder`: The [RenderingPrimitivesBuilder] created by calling [GraphicsBackend::new_rendering_primitives_builder].
|
|
fn finish_primitives(&mut self, builder: Self::RenderingPrimitivesBuilder);
|
|
|
|
/// Begins the process of rendering a new frame into what is typically the window back-buffer. Call [GraphicsBackend::present_frame]
|
|
/// when all rendering primitives have been queued for rendering.
|
|
///
|
|
/// Arguments:
|
|
/// * `width`: The width of the window to render.
|
|
/// * `height`: The height of the window to render.
|
|
/// * `clear_color`: The color to clear the back-buffer with.
|
|
fn new_frame(&mut self, width: u32, height: u32, clear_color: &Color) -> Self::Frame;
|
|
/// When all rendering primitives have been queued for rendering with the [Frame] API, pass the frame instance to this function
|
|
/// and thereby complete the rendering. The backend then will present the contents on the screen inside the window, for example by
|
|
/// flushing the backing store or swapping OpenGL buffers.
|
|
///
|
|
/// Arguments:
|
|
/// * `frame`: The frame created by calling [GraphicsBackend::new_frame].
|
|
fn present_frame(&mut self, frame: Self::Frame);
|
|
|
|
/// Returns the window that the backend is associated with.
|
|
fn window(&self) -> &winit::window::Window;
|
|
}
|
|
|
|
/// Holds a GraphicBackend's rendering primitive as well as a PropertyTracker that allows lazily re-creating
|
|
/// the primitive if the properties needed to create it have changed.
|
|
pub struct TrackingRenderingPrimitive<Backend: GraphicsBackend> {
|
|
/// The rendering primitive that's being tracked.
|
|
pub primitive: Backend::LowLevelRenderingPrimitive,
|
|
/// The property tracker that should be used to evaluate whether the primitive needs to be re-created
|
|
/// or not.
|
|
pub dependency_tracker: core::pin::Pin<Box<crate::properties::PropertyTracker>>,
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend> TrackingRenderingPrimitive<Backend> {
|
|
/// Creates a new TrackingRenderingPrimitive by evaluating the provided update_fn once, storing the returned
|
|
/// rendering primitive and initializing the dependency tracker.
|
|
pub fn new(update_fn: impl FnOnce() -> Backend::LowLevelRenderingPrimitive) -> Self {
|
|
let dependency_tracker = Box::pin(crate::properties::PropertyTracker::default());
|
|
let primitive = dependency_tracker.as_ref().evaluate(update_fn);
|
|
Self { primitive, dependency_tracker }
|
|
}
|
|
}
|
|
|
|
/// The RenderingCache is used by the run-time library to avoid storing the
|
|
/// typed [GraphicsBackend::LowLevelRenderingPrimitive] instances created for
|
|
/// [Items][`crate::items`]. Instead it allows mapping them to a usize
|
|
/// handle, and it also allows tracking whenever any of the properties used to
|
|
/// create the primitive changed.
|
|
pub type RenderingCache<Backend> = vec_arena::Arena<TrackingRenderingPrimitive<Backend>>;
|
|
|
|
type WindowFactoryFn<Backend> =
|
|
dyn Fn(&crate::eventloop::EventLoop, winit::window::WindowBuilder) -> Backend;
|
|
|
|
struct MappedWindow<Backend: GraphicsBackend + 'static> {
|
|
backend: RefCell<Backend>,
|
|
rendering_cache: RefCell<RenderingCache<Backend>>,
|
|
constraints: Cell<crate::layout::LayoutInfo>,
|
|
}
|
|
|
|
enum GraphicsWindowBackendState<Backend: GraphicsBackend + 'static> {
|
|
Unmapped,
|
|
Mapped(MappedWindow<Backend>),
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend + 'static> GraphicsWindowBackendState<Backend> {
|
|
fn as_mapped(&self) -> &MappedWindow<Backend> {
|
|
match self {
|
|
GraphicsWindowBackendState::Unmapped => panic!(
|
|
"internal error: tried to access window functions that require a mapped window"
|
|
),
|
|
GraphicsWindowBackendState::Mapped(mw) => &mw,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(FieldOffsets)]
|
|
#[repr(C)]
|
|
#[pin]
|
|
struct WindowProperties {
|
|
scale_factor: Property<f32>,
|
|
width: Property<f32>,
|
|
height: Property<f32>,
|
|
}
|
|
|
|
impl Default for WindowProperties {
|
|
fn default() -> Self {
|
|
Self {
|
|
scale_factor: Property::new(1.0),
|
|
width: Property::new(800.),
|
|
height: Property::new(600.),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// GraphicsWindow is an implementation of the [GenericWindow][`crate::eventloop::GenericWindow`] trait. This is
|
|
/// typically instantiated by entry factory functions of the different graphics backends.
|
|
pub struct GraphicsWindow<Backend: GraphicsBackend + 'static> {
|
|
window_factory: Box<WindowFactoryFn<Backend>>,
|
|
map_state: RefCell<GraphicsWindowBackendState<Backend>>,
|
|
properties: Pin<Box<WindowProperties>>,
|
|
cursor_blinker: std::cell::RefCell<pin_weak::rc::PinWeak<TextCursorBlinker>>,
|
|
keyboard_modifiers: std::cell::Cell<KeyboardModifiers>,
|
|
component: std::cell::RefCell<ComponentWeak>,
|
|
layout_listener: Pin<Rc<PropertyTracker>>,
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend + 'static> GraphicsWindow<Backend> {
|
|
/// Creates a new reference-counted instance.
|
|
///
|
|
/// Arguments:
|
|
/// * `graphics_backend_factory`: The factor function stored in the GraphicsWindow that's called when the state
|
|
/// of the window changes to mapped. The event loop and window builder parameters can be used to create a
|
|
/// backing window.
|
|
pub fn new(
|
|
graphics_backend_factory: impl Fn(&crate::eventloop::EventLoop, winit::window::WindowBuilder) -> Backend
|
|
+ 'static,
|
|
) -> Rc<Self> {
|
|
Rc::new(Self {
|
|
window_factory: Box::new(graphics_backend_factory),
|
|
map_state: RefCell::new(GraphicsWindowBackendState::Unmapped),
|
|
properties: Box::pin(WindowProperties::default()),
|
|
cursor_blinker: Default::default(),
|
|
keyboard_modifiers: Default::default(),
|
|
component: Default::default(),
|
|
layout_listener: Rc::pin(Default::default()),
|
|
})
|
|
}
|
|
|
|
/// Returns the window id of the window if it is mapped, None otherwise.
|
|
pub fn id(&self) -> Option<winit::window::WindowId> {
|
|
Some(self.map_state.borrow().as_mapped().backend.borrow().window().id())
|
|
}
|
|
|
|
fn apply_geometry_constraint(&self, constraints: crate::layout::LayoutInfo) {
|
|
match &*self.map_state.borrow() {
|
|
GraphicsWindowBackendState::Unmapped => {}
|
|
GraphicsWindowBackendState::Mapped(window) => {
|
|
if constraints != window.constraints.get() {
|
|
let min_width = constraints.min_width.min(constraints.max_width);
|
|
let min_height = constraints.min_height.min(constraints.max_height);
|
|
let max_width = constraints.max_width.max(constraints.min_width);
|
|
let max_height = constraints.max_height.max(constraints.min_height);
|
|
|
|
window.backend.borrow().window().set_min_inner_size(
|
|
if min_width > 0. || min_height > 0. {
|
|
Some(winit::dpi::PhysicalSize::new(min_width, min_height))
|
|
} else {
|
|
None
|
|
},
|
|
);
|
|
window.backend.borrow().window().set_max_inner_size(
|
|
if max_width < f32::MAX || max_height < f32::MAX {
|
|
Some(winit::dpi::PhysicalSize::new(
|
|
max_width.min(65535.),
|
|
max_height.min(65535.),
|
|
))
|
|
} else {
|
|
None
|
|
},
|
|
);
|
|
window.constraints.set(constraints);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend> Drop for GraphicsWindow<Backend> {
|
|
fn drop(&mut self) {
|
|
match &*self.map_state.borrow() {
|
|
GraphicsWindowBackendState::Unmapped => {}
|
|
GraphicsWindowBackendState::Mapped(mw) => {
|
|
crate::eventloop::unregister_window(mw.backend.borrow().window().id());
|
|
}
|
|
}
|
|
if let Some(existing_blinker) = self.cursor_blinker.borrow().upgrade() {
|
|
existing_blinker.stop();
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<Backend: GraphicsBackend> crate::eventloop::GenericWindow for GraphicsWindow<Backend> {
|
|
fn set_component(self: Rc<Self>, component: &ComponentRc) {
|
|
*self.component.borrow_mut() = vtable::VRc::downgrade(&component)
|
|
}
|
|
|
|
fn draw(self: Rc<Self>) {
|
|
let component = self.component.borrow().upgrade().unwrap();
|
|
let component = ComponentRc::borrow_pin(&component);
|
|
|
|
{
|
|
if self.layout_listener.as_ref().is_dirty() {
|
|
self.layout_listener.as_ref().evaluate(|| {
|
|
self.apply_geometry_constraint(component.as_ref().layout_info());
|
|
component.as_ref().apply_layout(self.get_geometry())
|
|
})
|
|
}
|
|
}
|
|
|
|
{
|
|
let map_state = self.map_state.borrow();
|
|
let window = map_state.as_mapped();
|
|
let mut backend = window.backend.borrow_mut();
|
|
let mut rendering_primitives_builder = backend.new_rendering_primitives_builder();
|
|
|
|
// Generate cached rendering data once
|
|
crate::item_tree::visit_items(
|
|
component,
|
|
crate::item_tree::TraversalOrder::BackToFront,
|
|
|_, item, _| {
|
|
crate::item_rendering::update_item_rendering_data(
|
|
item,
|
|
&window.rendering_cache,
|
|
&mut rendering_primitives_builder,
|
|
&self,
|
|
);
|
|
crate::item_tree::ItemVisitorResult::Continue(())
|
|
},
|
|
(),
|
|
);
|
|
|
|
backend.finish_primitives(rendering_primitives_builder);
|
|
}
|
|
|
|
let map_state = self.map_state.borrow();
|
|
let window = map_state.as_mapped();
|
|
let mut backend = window.backend.borrow_mut();
|
|
let size = backend.window().inner_size();
|
|
let mut frame = backend.new_frame(
|
|
size.width,
|
|
size.height,
|
|
&ARGBColor { red: 255 as u8, green: 255, blue: 255, alpha: 255 }.into(),
|
|
);
|
|
crate::item_rendering::render_component_items(
|
|
component,
|
|
&mut frame,
|
|
&window.rendering_cache,
|
|
&self,
|
|
);
|
|
backend.present_frame(frame);
|
|
}
|
|
|
|
fn process_mouse_input(
|
|
self: Rc<Self>,
|
|
pos: winit::dpi::PhysicalPosition<f64>,
|
|
what: MouseEventType,
|
|
) {
|
|
let component = self.component.borrow().upgrade().unwrap();
|
|
let component = ComponentRc::borrow_pin(&component);
|
|
component.as_ref().input_event(
|
|
MouseEvent { pos: euclid::point2(pos.x as _, pos.y as _), what },
|
|
&crate::eventloop::ComponentWindow::new(self.clone()),
|
|
&component,
|
|
);
|
|
}
|
|
|
|
fn process_key_input(self: Rc<Self>, event: &KeyEvent) {
|
|
let component = self.component.borrow().upgrade().unwrap();
|
|
ComponentRc::borrow_pin(&component)
|
|
.as_ref()
|
|
.key_event(event, &crate::eventloop::ComponentWindow::new(self.clone()));
|
|
}
|
|
|
|
fn with_platform_window(&self, callback: &dyn Fn(&winit::window::Window)) {
|
|
let map_state = self.map_state.borrow();
|
|
let window = map_state.as_mapped();
|
|
let backend = window.backend.borrow();
|
|
let handle = backend.window();
|
|
callback(handle);
|
|
}
|
|
|
|
fn map_window(self: Rc<Self>, event_loop: &crate::eventloop::EventLoop) {
|
|
if matches!(&*self.map_state.borrow(), GraphicsWindowBackendState::Mapped(..)) {
|
|
return;
|
|
}
|
|
|
|
let id = {
|
|
let window_builder = winit::window::WindowBuilder::new();
|
|
|
|
let backend = self.window_factory.as_ref()(&event_loop, window_builder);
|
|
|
|
let platform_window = backend.window();
|
|
|
|
if std::env::var("SIXTYFPS_FULLSCREEN").is_ok() {
|
|
platform_window.set_fullscreen(Some(winit::window::Fullscreen::Borderless(None)));
|
|
}
|
|
|
|
let window_id = platform_window.id();
|
|
|
|
// Ideally we should be passing the initial requested size to the window builder, but those properties
|
|
// may be specified in logical pixels, relative to the scale factory, which we only know *after* mapping
|
|
// the window to the screen. So we first map the window then, propagate the scale factory and *then* the
|
|
// width/height properties should have the correct values calculated via their bindings that multiply with
|
|
// the scale factor.
|
|
// We could pass the logical requested size at window builder time, *if* we knew what the values are.
|
|
{
|
|
self.properties.as_ref().scale_factor.set(platform_window.scale_factor() as _);
|
|
let existing_size = platform_window.inner_size();
|
|
|
|
let mut new_size = existing_size;
|
|
|
|
let component = self.component.borrow().upgrade().unwrap();
|
|
let component = ComponentRc::borrow_pin(&component);
|
|
let root_item = component.as_ref().get_item_ref(0);
|
|
|
|
if let Some(window_item) = ItemRef::downcast_pin(root_item) {
|
|
let width =
|
|
crate::items::Window::FIELD_OFFSETS.width.apply_pin(window_item).get();
|
|
if width > 0. {
|
|
new_size.width = width as _;
|
|
}
|
|
let height =
|
|
crate::items::Window::FIELD_OFFSETS.height.apply_pin(window_item).get();
|
|
if height > 0. {
|
|
new_size.height = height as _;
|
|
}
|
|
|
|
{
|
|
let window = self.clone();
|
|
window_item.as_ref().width.set_binding(move || {
|
|
WindowProperties::FIELD_OFFSETS
|
|
.width
|
|
.apply_pin(window.properties.as_ref())
|
|
.get()
|
|
});
|
|
}
|
|
{
|
|
let window = self.clone();
|
|
window_item.as_ref().height.set_binding(move || {
|
|
WindowProperties::FIELD_OFFSETS
|
|
.height
|
|
.apply_pin(window.properties.as_ref())
|
|
.get()
|
|
});
|
|
}
|
|
}
|
|
|
|
if new_size != existing_size {
|
|
platform_window.set_inner_size(new_size)
|
|
}
|
|
|
|
self.properties.as_ref().width.set(new_size.width as _);
|
|
self.properties.as_ref().height.set(new_size.height as _);
|
|
}
|
|
|
|
self.map_state.replace(GraphicsWindowBackendState::Mapped(MappedWindow {
|
|
backend: RefCell::new(backend),
|
|
rendering_cache: Default::default(),
|
|
constraints: Default::default(),
|
|
}));
|
|
|
|
window_id
|
|
};
|
|
|
|
crate::eventloop::register_window(
|
|
id,
|
|
self.clone() as Rc<dyn crate::eventloop::GenericWindow>,
|
|
);
|
|
}
|
|
|
|
fn request_redraw(&self) {
|
|
match &*self.map_state.borrow() {
|
|
GraphicsWindowBackendState::Unmapped => {}
|
|
GraphicsWindowBackendState::Mapped(window) => {
|
|
window.backend.borrow().window().request_redraw()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn unmap_window(self: Rc<Self>) {
|
|
self.map_state.replace(GraphicsWindowBackendState::Unmapped);
|
|
if let Some(existing_blinker) = self.cursor_blinker.borrow().upgrade() {
|
|
existing_blinker.stop();
|
|
}
|
|
}
|
|
|
|
fn scale_factor(&self) -> f32 {
|
|
WindowProperties::FIELD_OFFSETS.scale_factor.apply_pin(self.properties.as_ref()).get()
|
|
}
|
|
|
|
fn set_scale_factor(&self, factor: f32) {
|
|
self.properties.as_ref().scale_factor.set(factor);
|
|
}
|
|
|
|
fn set_width(&self, width: f32) {
|
|
self.properties.as_ref().width.set(width);
|
|
}
|
|
|
|
fn set_height(&self, height: f32) {
|
|
self.properties.as_ref().height.set(height);
|
|
}
|
|
|
|
fn get_geometry(&self) -> crate::graphics::Rect {
|
|
euclid::rect(
|
|
0.,
|
|
0.,
|
|
WindowProperties::FIELD_OFFSETS.width.apply_pin(self.properties.as_ref()).get(),
|
|
WindowProperties::FIELD_OFFSETS.height.apply_pin(self.properties.as_ref()).get(),
|
|
)
|
|
}
|
|
|
|
fn free_graphics_resources(
|
|
self: Rc<Self>,
|
|
component: core::pin::Pin<crate::component::ComponentRef>,
|
|
) {
|
|
match &*self.map_state.borrow() {
|
|
GraphicsWindowBackendState::Unmapped => {}
|
|
GraphicsWindowBackendState::Mapped(window) => {
|
|
crate::item_rendering::free_item_rendering_data(component, &window.rendering_cache)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn set_cursor_blink_binding(&self, prop: &crate::properties::Property<bool>) {
|
|
let existing_blinker = self.cursor_blinker.borrow().clone();
|
|
|
|
let blinker = existing_blinker.upgrade().unwrap_or_else(|| {
|
|
let new_blinker = TextCursorBlinker::new();
|
|
*self.cursor_blinker.borrow_mut() =
|
|
pin_weak::rc::PinWeak::downgrade(new_blinker.clone());
|
|
new_blinker
|
|
});
|
|
|
|
TextCursorBlinker::set_binding(blinker, prop);
|
|
}
|
|
|
|
/// Returns the currently active keyboard notifiers.
|
|
fn current_keyboard_modifiers(&self) -> KeyboardModifiers {
|
|
self.keyboard_modifiers.get()
|
|
}
|
|
/// Sets the currently active keyboard notifiers. This is used only for testing or directly
|
|
/// from the event loop implementation.
|
|
fn set_current_keyboard_modifiers(&self, state: KeyboardModifiers) {
|
|
self.keyboard_modifiers.set(state)
|
|
}
|
|
|
|
fn set_focus_item(
|
|
self: Rc<Self>,
|
|
component: core::pin::Pin<crate::component::ComponentRef>,
|
|
item_ptr: *const u8,
|
|
) {
|
|
let window = crate::eventloop::ComponentWindow::new(self.clone());
|
|
component.as_ref().focus_event(&crate::input::FocusEvent::FocusOut, &window);
|
|
component.as_ref().focus_event(&crate::input::FocusEvent::FocusIn(item_ptr), &window);
|
|
}
|
|
|
|
fn set_focus(self: Rc<Self>, have_focus: bool) {
|
|
let window = crate::eventloop::ComponentWindow::new(self.clone());
|
|
let event = if have_focus {
|
|
crate::input::FocusEvent::WindowReceivedFocus
|
|
} else {
|
|
crate::input::FocusEvent::WindowLostFocus
|
|
};
|
|
let component = self.component.borrow().upgrade().unwrap();
|
|
ComponentRc::borrow_pin(&component).as_ref().focus_event(&event, &window);
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(FieldOffsets, Default, BuiltinItem, Clone, Debug, PartialEq)]
|
|
#[pin]
|
|
/// PathLineTo describes the event of moving the cursor on the path to the specified location
|
|
/// along a straight line.
|
|
pub struct PathLineTo {
|
|
#[rtti_field]
|
|
/// The x coordinate where the line should go to.
|
|
pub x: f32,
|
|
#[rtti_field]
|
|
/// The y coordinate where the line should go to.
|
|
pub y: f32,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(FieldOffsets, Default, BuiltinItem, Clone, Debug, PartialEq)]
|
|
#[pin]
|
|
/// PathArcTo describes the event of moving the cursor on the path across an arc to the specified
|
|
/// x/y coordinates, with the specified x/y radius and additional properties.
|
|
pub struct PathArcTo {
|
|
#[rtti_field]
|
|
/// The x coordinate where the arc should end up.
|
|
pub x: f32,
|
|
#[rtti_field]
|
|
/// The y coordinate where the arc should end up.
|
|
pub y: f32,
|
|
#[rtti_field]
|
|
/// The radius on the x-axis of the arc.
|
|
pub radius_x: f32,
|
|
#[rtti_field]
|
|
/// The radius on the y-axis of the arc.
|
|
pub radius_y: f32,
|
|
#[rtti_field]
|
|
/// The rotation along the x-axis of the arc in degress.
|
|
pub x_rotation: f32,
|
|
#[rtti_field]
|
|
/// large_arc indicates whether to take the long or the shorter path to complete the arc.
|
|
pub large_arc: bool,
|
|
#[rtti_field]
|
|
/// sweep indicates the direction of the arc. If true, a clockwise direction is chosen,
|
|
/// otherwise counter-clockwise.
|
|
pub sweep: bool,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// PathElement describes a single element on a path, such as move-to, line-to, etc.
|
|
pub enum PathElement {
|
|
/// The LineTo variant describes a line.
|
|
LineTo(PathLineTo),
|
|
/// The PathArcTo variant describes an arc.
|
|
ArcTo(PathArcTo),
|
|
/// Indicates that the path should be closed now by connecting to the starting point.
|
|
Close,
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// PathEvent is a low-level data structure describing the composition of a path. Typically it is
|
|
/// generated at compile time from a higher-level description, such as SVG commands.
|
|
pub enum PathEvent {
|
|
/// The beginning of the path.
|
|
Begin,
|
|
/// A straight line on the path.
|
|
Line,
|
|
/// A quadratic bezier curve on the path.
|
|
Quadratic,
|
|
/// A cubic bezier curve on the path.
|
|
Cubic,
|
|
/// The end of the path that remains open.
|
|
EndOpen,
|
|
/// The end of a path that is closed.
|
|
EndClosed,
|
|
}
|
|
|
|
struct ToLyonPathEventIterator<'a> {
|
|
events_it: std::slice::Iter<'a, PathEvent>,
|
|
coordinates_it: std::slice::Iter<'a, Point>,
|
|
first: Option<&'a Point>,
|
|
last: Option<&'a Point>,
|
|
}
|
|
|
|
impl<'a> Iterator for ToLyonPathEventIterator<'a> {
|
|
type Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>;
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
use lyon::path::Event;
|
|
|
|
self.events_it.next().map(|event| match event {
|
|
PathEvent::Begin => Event::Begin { at: self.coordinates_it.next().unwrap().clone() },
|
|
PathEvent::Line => Event::Line {
|
|
from: self.coordinates_it.next().unwrap().clone(),
|
|
to: self.coordinates_it.next().unwrap().clone(),
|
|
},
|
|
PathEvent::Quadratic => Event::Quadratic {
|
|
from: self.coordinates_it.next().unwrap().clone(),
|
|
ctrl: self.coordinates_it.next().unwrap().clone(),
|
|
to: self.coordinates_it.next().unwrap().clone(),
|
|
},
|
|
PathEvent::Cubic => Event::Cubic {
|
|
from: self.coordinates_it.next().unwrap().clone(),
|
|
ctrl1: self.coordinates_it.next().unwrap().clone(),
|
|
ctrl2: self.coordinates_it.next().unwrap().clone(),
|
|
to: self.coordinates_it.next().unwrap().clone(),
|
|
},
|
|
PathEvent::EndOpen => Event::End {
|
|
first: self.first.unwrap().clone(),
|
|
last: self.last.unwrap().clone(),
|
|
close: false,
|
|
},
|
|
PathEvent::EndClosed => Event::End {
|
|
first: self.first.unwrap().clone(),
|
|
last: self.last.unwrap().clone(),
|
|
close: true,
|
|
},
|
|
})
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.events_it.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<'a> ExactSizeIterator for ToLyonPathEventIterator<'a> {}
|
|
|
|
struct TransformedLyonPathIterator<EventIt> {
|
|
it: EventIt,
|
|
transform: lyon::math::Transform,
|
|
}
|
|
|
|
impl<EventIt: Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>>> Iterator
|
|
for TransformedLyonPathIterator<EventIt>
|
|
{
|
|
type Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>;
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
self.it.next().map(|ev| ev.transformed(&self.transform))
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.it.size_hint()
|
|
}
|
|
}
|
|
|
|
impl<EventIt: Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>>>
|
|
ExactSizeIterator for TransformedLyonPathIterator<EventIt>
|
|
{
|
|
}
|
|
|
|
/// PathDataIterator is a data structure that acts as starting point for iterating
|
|
/// through the low-level events of a path. If the path was constructed from said
|
|
/// events, then it is a very thin abstraction. If the path was created from higher-level
|
|
/// elements, then an intermediate lyon path is required/built.
|
|
pub struct PathDataIterator<'a> {
|
|
it: LyonPathIteratorVariant<'a>,
|
|
transform: Option<lyon::math::Transform>,
|
|
}
|
|
|
|
enum LyonPathIteratorVariant<'a> {
|
|
FromPath(lyon::path::Path),
|
|
FromEvents(&'a crate::SharedArray<PathEvent>, &'a crate::SharedArray<Point>),
|
|
}
|
|
|
|
impl<'a> PathDataIterator<'a> {
|
|
/// Create a new iterator for path traversal.
|
|
#[auto_enum(Iterator)]
|
|
pub fn iter(
|
|
&'a self,
|
|
) -> impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a {
|
|
match &self.it {
|
|
LyonPathIteratorVariant::FromPath(path) => self.apply_transform(path.iter()),
|
|
LyonPathIteratorVariant::FromEvents(events, coordinates) => {
|
|
self.apply_transform(ToLyonPathEventIterator {
|
|
events_it: events.iter(),
|
|
coordinates_it: coordinates.iter(),
|
|
first: coordinates.first(),
|
|
last: coordinates.last(),
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
fn fit(&mut self, width: f32, height: f32) {
|
|
if width > 0. || height > 0. {
|
|
let br = lyon::algorithms::aabb::bounding_rect(self.iter());
|
|
self.transform = Some(lyon::algorithms::fit::fit_rectangle(
|
|
&br,
|
|
&Rect::from_size(Size::new(width, height)),
|
|
lyon::algorithms::fit::FitStyle::Min,
|
|
));
|
|
}
|
|
}
|
|
#[auto_enum(Iterator)]
|
|
fn apply_transform(
|
|
&'a self,
|
|
event_it: impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a,
|
|
) -> impl Iterator<Item = lyon::path::Event<lyon::math::Point, lyon::math::Point>> + 'a {
|
|
match self.transform {
|
|
Some(transform) => TransformedLyonPathIterator { it: event_it, transform },
|
|
None => event_it,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[repr(C)]
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// PathData represents a path described by either high-level elements or low-level
|
|
/// events and coordinates.
|
|
pub enum PathData {
|
|
/// None is the variant when the path is empty.
|
|
None,
|
|
/// The Elements variant is used to make a Path from shared arrays of elements.
|
|
Elements(crate::SharedArray<PathElement>),
|
|
/// The Events variant describes the path as a series of low-level events and
|
|
/// associated coordinates.
|
|
Events(crate::SharedArray<PathEvent>, crate::SharedArray<Point>),
|
|
}
|
|
|
|
impl Default for PathData {
|
|
fn default() -> Self {
|
|
Self::None
|
|
}
|
|
}
|
|
|
|
impl PathData {
|
|
/// This function returns an iterator that allows traversing the path by means of lyon events.
|
|
pub fn iter(&self) -> PathDataIterator {
|
|
PathDataIterator {
|
|
it: match self {
|
|
PathData::None => LyonPathIteratorVariant::FromPath(lyon::path::Path::new()),
|
|
PathData::Elements(elements) => LyonPathIteratorVariant::FromPath(
|
|
PathData::build_path(elements.as_slice().iter()),
|
|
),
|
|
PathData::Events(events, coordinates) => {
|
|
LyonPathIteratorVariant::FromEvents(events, coordinates)
|
|
}
|
|
},
|
|
transform: None,
|
|
}
|
|
}
|
|
|
|
/// This function returns an iterator that allows traversing the path by means of lyon events.
|
|
pub fn iter_fitted(&self, width: f32, height: f32) -> PathDataIterator {
|
|
let mut it = self.iter();
|
|
it.fit(width, height);
|
|
it
|
|
}
|
|
|
|
fn build_path(element_it: std::slice::Iter<PathElement>) -> lyon::path::Path {
|
|
use lyon::geom::SvgArc;
|
|
use lyon::math::{Angle, Point, Vector};
|
|
use lyon::path::{
|
|
builder::{Build, FlatPathBuilder, SvgBuilder},
|
|
ArcFlags,
|
|
};
|
|
|
|
let mut path_builder = lyon::path::Path::builder().with_svg();
|
|
for element in element_it {
|
|
match element {
|
|
PathElement::LineTo(PathLineTo { x, y }) => {
|
|
path_builder.line_to(Point::new(*x, *y))
|
|
}
|
|
PathElement::ArcTo(PathArcTo {
|
|
x,
|
|
y,
|
|
radius_x,
|
|
radius_y,
|
|
x_rotation,
|
|
large_arc,
|
|
sweep,
|
|
}) => {
|
|
let radii = Vector::new(*radius_x, *radius_y);
|
|
let x_rotation = Angle::degrees(*x_rotation);
|
|
let flags = ArcFlags { large_arc: *large_arc, sweep: *sweep };
|
|
let to = Point::new(*x, *y);
|
|
|
|
let svg_arc = SvgArc {
|
|
from: path_builder.current_position(),
|
|
radii,
|
|
x_rotation,
|
|
flags,
|
|
to,
|
|
};
|
|
|
|
if svg_arc.is_straight_line() {
|
|
path_builder.line_to(to);
|
|
} else {
|
|
path_builder.arc_to(radii, x_rotation, flags, to)
|
|
}
|
|
}
|
|
PathElement::Close => path_builder.close(),
|
|
}
|
|
}
|
|
|
|
path_builder.build()
|
|
}
|
|
}
|
|
|
|
pub(crate) mod ffi {
|
|
#![allow(unsafe_code)]
|
|
|
|
use super::*;
|
|
|
|
#[allow(non_camel_case_types)]
|
|
type c_void = ();
|
|
|
|
/// Expand Rect so that cbindgen can see it. ( is in fact euclid::default::Rect<f32>)
|
|
#[cfg(cbindgen)]
|
|
#[repr(C)]
|
|
struct Rect {
|
|
x: f32,
|
|
y: f32,
|
|
width: f32,
|
|
height: f32,
|
|
}
|
|
|
|
/// Expand Point so that cbindgen can see it. ( is in fact euclid::default::PointD2<f32>)
|
|
#[cfg(cbindgen)]
|
|
#[repr(C)]
|
|
struct Point {
|
|
x: f32,
|
|
y: f32,
|
|
}
|
|
|
|
#[no_mangle]
|
|
/// This function is used for the low-level C++ interface to allocate the backing vector for a shared path element array.
|
|
pub unsafe extern "C" fn sixtyfps_new_path_elements(
|
|
out: *mut c_void,
|
|
first_element: *const PathElement,
|
|
count: usize,
|
|
) {
|
|
let arr = crate::SharedArray::from(std::slice::from_raw_parts(first_element, count));
|
|
core::ptr::write(out as *mut crate::SharedArray<PathElement>, arr.clone());
|
|
}
|
|
|
|
#[no_mangle]
|
|
/// This function is used for the low-level C++ interface to allocate the backing vector for a shared path event array.
|
|
pub unsafe extern "C" fn sixtyfps_new_path_events(
|
|
out_events: *mut c_void,
|
|
out_coordinates: *mut c_void,
|
|
first_event: *const PathEvent,
|
|
event_count: usize,
|
|
first_coordinate: *const Point,
|
|
coordinate_count: usize,
|
|
) {
|
|
let events = crate::SharedArray::from(std::slice::from_raw_parts(first_event, event_count));
|
|
core::ptr::write(out_events as *mut crate::SharedArray<PathEvent>, events.clone());
|
|
let coordinates = crate::SharedArray::from(std::slice::from_raw_parts(
|
|
first_coordinate,
|
|
coordinate_count,
|
|
));
|
|
core::ptr::write(out_coordinates as *mut crate::SharedArray<Point>, coordinates.clone());
|
|
}
|
|
}
|
|
|
|
/// The TextCursorBlinker takes care of providing a toggled boolean property
|
|
/// that can be used to animate a blinking cursor. It's typically stored in the
|
|
/// Window using a Weak and set_binding() can be used to set up a binding on a given
|
|
/// property that'll keep it up-to-date. That binding keeps a strong reference to the
|
|
/// blinker. If the underlying item that uses it goes away, the binding goes away and
|
|
/// so does the blinker.
|
|
#[derive(FieldOffsets)]
|
|
#[repr(C)]
|
|
#[pin]
|
|
struct TextCursorBlinker {
|
|
cursor_visible: Property<bool>,
|
|
cursor_blink_timer: crate::timers::Timer,
|
|
}
|
|
|
|
impl TextCursorBlinker {
|
|
fn new() -> Pin<Rc<Self>> {
|
|
Rc::pin(Self {
|
|
cursor_visible: Property::new(true),
|
|
cursor_blink_timer: Default::default(),
|
|
})
|
|
}
|
|
|
|
fn set_binding(instance: Pin<Rc<TextCursorBlinker>>, prop: &crate::properties::Property<bool>) {
|
|
instance.as_ref().cursor_visible.set(true);
|
|
// Re-start timer, in case.
|
|
Self::start(&instance);
|
|
prop.set_binding(move || {
|
|
TextCursorBlinker::FIELD_OFFSETS.cursor_visible.apply_pin(instance.as_ref()).get()
|
|
});
|
|
}
|
|
|
|
fn start(self: &Pin<Rc<Self>>) {
|
|
if self.cursor_blink_timer.running() {
|
|
self.cursor_blink_timer.restart();
|
|
} else {
|
|
let toggle_cursor = {
|
|
let weak_blinker = pin_weak::rc::PinWeak::downgrade(self.clone());
|
|
move || {
|
|
if let Some(blinker) = weak_blinker.upgrade() {
|
|
let visible = TextCursorBlinker::FIELD_OFFSETS
|
|
.cursor_visible
|
|
.apply_pin(blinker.as_ref())
|
|
.get();
|
|
blinker.cursor_visible.set(!visible);
|
|
}
|
|
}
|
|
};
|
|
self.cursor_blink_timer.start(
|
|
crate::timers::TimerMode::Repeated,
|
|
std::time::Duration::from_millis(500),
|
|
Box::new(toggle_cursor),
|
|
);
|
|
}
|
|
}
|
|
|
|
fn stop(&self) {
|
|
self.cursor_blink_timer.stop()
|
|
}
|
|
}
|