mirror of
https://github.com/slint-ui/slint.git
synced 2025-08-28 22:34:08 +00:00

And call `extern crate std` when the feature is enabled. I've read this is the good practice on how to do it. So that the std prelude is no longer included automatically. There is then less difference between std and and no-std build which should avoid surprises in the CI when we use things from the prelude. The downside is that there is a bit of churn in the tests
1094 lines
42 KiB
Rust
1094 lines
42 KiB
Rust
// Copyright © SixtyFPS GmbH <info@slint.dev>
|
|
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0
|
|
|
|
/*!
|
|
This module contains types that are public and re-exported in the slint-rs as well as the slint-interpreter crate as public API.
|
|
*/
|
|
|
|
#![warn(missing_docs)]
|
|
|
|
#[cfg(target_has_atomic = "ptr")]
|
|
pub use crate::future::*;
|
|
use crate::graphics::{Rgba8Pixel, SharedPixelBuffer};
|
|
use crate::input::{KeyEventType, MouseEvent};
|
|
use crate::item_tree::ItemTreeVTable;
|
|
use crate::window::{WindowAdapter, WindowInner};
|
|
use alloc::boxed::Box;
|
|
use alloc::string::String;
|
|
|
|
/// A position represented in the coordinate space of logical pixels. That is the space before applying
|
|
/// a display device specific scale factor.
|
|
#[derive(Debug, Default, Copy, Clone, PartialEq)]
|
|
#[repr(C)]
|
|
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
|
|
pub struct LogicalPosition {
|
|
/// The x coordinate.
|
|
pub x: f32,
|
|
/// The y coordinate.
|
|
pub y: f32,
|
|
}
|
|
|
|
impl LogicalPosition {
|
|
/// Construct a new logical position from the given x and y coordinates, that are assumed to be
|
|
/// in the logical coordinate space.
|
|
pub const fn new(x: f32, y: f32) -> Self {
|
|
Self { x, y }
|
|
}
|
|
|
|
/// Convert a given physical position to a logical position by dividing the coordinates with the
|
|
/// specified scale factor.
|
|
pub fn from_physical(physical_pos: PhysicalPosition, scale_factor: f32) -> Self {
|
|
Self::new(physical_pos.x as f32 / scale_factor, physical_pos.y as f32 / scale_factor)
|
|
}
|
|
|
|
/// Convert this logical position to a physical position by multiplying the coordinates with the
|
|
/// specified scale factor.
|
|
pub fn to_physical(&self, scale_factor: f32) -> PhysicalPosition {
|
|
PhysicalPosition::from_logical(*self, scale_factor)
|
|
}
|
|
|
|
pub(crate) fn to_euclid(self) -> crate::lengths::LogicalPoint {
|
|
[self.x as _, self.y as _].into()
|
|
}
|
|
pub(crate) fn from_euclid(p: crate::lengths::LogicalPoint) -> Self {
|
|
Self::new(p.x as _, p.y as _)
|
|
}
|
|
}
|
|
|
|
/// A position represented in the coordinate space of physical device pixels. That is the space after applying
|
|
/// a display device specific scale factor to pixels from the logical coordinate space.
|
|
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
|
|
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
|
|
pub struct PhysicalPosition {
|
|
/// The x coordinate.
|
|
pub x: i32,
|
|
/// The y coordinate.
|
|
pub y: i32,
|
|
}
|
|
|
|
impl PhysicalPosition {
|
|
/// Construct a new physical position from the given x and y coordinates, that are assumed to be
|
|
/// in the physical coordinate space.
|
|
pub const fn new(x: i32, y: i32) -> Self {
|
|
Self { x, y }
|
|
}
|
|
|
|
/// Convert a given logical position to a physical position by multiplying the coordinates with the
|
|
/// specified scale factor.
|
|
pub fn from_logical(logical_pos: LogicalPosition, scale_factor: f32) -> Self {
|
|
Self::new((logical_pos.x * scale_factor) as i32, (logical_pos.y * scale_factor) as i32)
|
|
}
|
|
|
|
/// Convert this physical position to a logical position by dividing the coordinates with the
|
|
/// specified scale factor.
|
|
pub fn to_logical(&self, scale_factor: f32) -> LogicalPosition {
|
|
LogicalPosition::from_physical(*self, scale_factor)
|
|
}
|
|
|
|
#[cfg(feature = "ffi")]
|
|
pub(crate) fn to_euclid(&self) -> crate::graphics::euclid::default::Point2D<i32> {
|
|
[self.x, self.y].into()
|
|
}
|
|
|
|
#[cfg(feature = "ffi")]
|
|
pub(crate) fn from_euclid(p: crate::graphics::euclid::default::Point2D<i32>) -> Self {
|
|
Self::new(p.x as _, p.y as _)
|
|
}
|
|
}
|
|
|
|
/// The position of the window in either physical or logical pixels. This is used
|
|
/// with [`Window::set_position`].
|
|
#[derive(Clone, Debug, derive_more::From, PartialEq)]
|
|
pub enum WindowPosition {
|
|
/// The position in physical pixels.
|
|
Physical(PhysicalPosition),
|
|
/// The position in logical pixels.
|
|
Logical(LogicalPosition),
|
|
}
|
|
|
|
impl WindowPosition {
|
|
/// Turn the `WindowPosition` into a `PhysicalPosition`.
|
|
pub fn to_physical(&self, scale_factor: f32) -> PhysicalPosition {
|
|
match self {
|
|
WindowPosition::Physical(pos) => *pos,
|
|
WindowPosition::Logical(pos) => pos.to_physical(scale_factor),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A size represented in the coordinate space of logical pixels. That is the space before applying
|
|
/// a display device specific scale factor.
|
|
#[repr(C)]
|
|
#[derive(Debug, Default, Copy, Clone, PartialEq)]
|
|
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
|
|
pub struct LogicalSize {
|
|
/// The width in logical pixels.
|
|
pub width: f32,
|
|
/// The height in logical.
|
|
pub height: f32,
|
|
}
|
|
|
|
impl LogicalSize {
|
|
/// Construct a new logical size from the given width and height values, that are assumed to be
|
|
/// in the logical coordinate space.
|
|
pub const fn new(width: f32, height: f32) -> Self {
|
|
Self { width, height }
|
|
}
|
|
|
|
/// Convert a given physical size to a logical size by dividing width and height by the
|
|
/// specified scale factor.
|
|
pub fn from_physical(physical_size: PhysicalSize, scale_factor: f32) -> Self {
|
|
Self::new(
|
|
physical_size.width as f32 / scale_factor,
|
|
physical_size.height as f32 / scale_factor,
|
|
)
|
|
}
|
|
|
|
/// Convert this logical size to a physical size by multiplying width and height with the
|
|
/// specified scale factor.
|
|
pub fn to_physical(&self, scale_factor: f32) -> PhysicalSize {
|
|
PhysicalSize::from_logical(*self, scale_factor)
|
|
}
|
|
|
|
pub(crate) fn to_euclid(self) -> crate::lengths::LogicalSize {
|
|
[self.width as _, self.height as _].into()
|
|
}
|
|
|
|
pub(crate) fn from_euclid(p: crate::lengths::LogicalSize) -> Self {
|
|
Self::new(p.width as _, p.height as _)
|
|
}
|
|
}
|
|
|
|
/// A size represented in the coordinate space of physical device pixels. That is the space after applying
|
|
/// a display device specific scale factor to pixels from the logical coordinate space.
|
|
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
|
|
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
|
|
pub struct PhysicalSize {
|
|
/// The width in physical pixels.
|
|
pub width: u32,
|
|
/// The height in physical pixels;
|
|
pub height: u32,
|
|
}
|
|
|
|
impl PhysicalSize {
|
|
/// Construct a new physical size from the width and height values, that are assumed to be
|
|
/// in the physical coordinate space.
|
|
pub const fn new(width: u32, height: u32) -> Self {
|
|
Self { width, height }
|
|
}
|
|
|
|
/// Convert a given logical size to a physical size by multiplying width and height with the
|
|
/// specified scale factor.
|
|
pub fn from_logical(logical_size: LogicalSize, scale_factor: f32) -> Self {
|
|
Self::new(
|
|
(logical_size.width * scale_factor) as u32,
|
|
(logical_size.height * scale_factor) as u32,
|
|
)
|
|
}
|
|
|
|
/// Convert this physical size to a logical size by dividing width and height by the
|
|
/// specified scale factor.
|
|
pub fn to_logical(&self, scale_factor: f32) -> LogicalSize {
|
|
LogicalSize::from_physical(*self, scale_factor)
|
|
}
|
|
|
|
#[cfg(feature = "ffi")]
|
|
pub(crate) fn to_euclid(&self) -> crate::graphics::euclid::default::Size2D<u32> {
|
|
[self.width, self.height].into()
|
|
}
|
|
}
|
|
|
|
/// The size of a window represented in either physical or logical pixels. This is used
|
|
/// with [`Window::set_size`].
|
|
#[derive(Clone, Debug, derive_more::From, PartialEq)]
|
|
pub enum WindowSize {
|
|
/// The size in physical pixels.
|
|
Physical(PhysicalSize),
|
|
/// The size in logical screen pixels.
|
|
Logical(LogicalSize),
|
|
}
|
|
|
|
impl WindowSize {
|
|
/// Turn the `WindowSize` into a `PhysicalSize`.
|
|
pub fn to_physical(&self, scale_factor: f32) -> PhysicalSize {
|
|
match self {
|
|
WindowSize::Physical(size) => *size,
|
|
WindowSize::Logical(size) => size.to_physical(scale_factor),
|
|
}
|
|
}
|
|
|
|
/// Turn the `WindowSize` into a `LogicalSize`.
|
|
pub fn to_logical(&self, scale_factor: f32) -> LogicalSize {
|
|
match self {
|
|
WindowSize::Physical(size) => size.to_logical(scale_factor),
|
|
WindowSize::Logical(size) => *size,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn logical_physical_pos() {
|
|
use crate::graphics::euclid::approxeq::ApproxEq;
|
|
|
|
let phys = PhysicalPosition::new(100, 50);
|
|
let logical = phys.to_logical(2.);
|
|
assert!(logical.x.approx_eq(&50.));
|
|
assert!(logical.y.approx_eq(&25.));
|
|
|
|
assert_eq!(logical.to_physical(2.), phys);
|
|
}
|
|
|
|
#[test]
|
|
fn logical_physical_size() {
|
|
use crate::graphics::euclid::approxeq::ApproxEq;
|
|
|
|
let phys = PhysicalSize::new(100, 50);
|
|
let logical = phys.to_logical(2.);
|
|
assert!(logical.width.approx_eq(&50.));
|
|
assert!(logical.height.approx_eq(&25.));
|
|
|
|
assert_eq!(logical.to_physical(2.), phys);
|
|
}
|
|
|
|
/// This enum describes a low-level access to specific graphics APIs used
|
|
/// by the renderer.
|
|
#[derive(Clone)]
|
|
#[non_exhaustive]
|
|
pub enum GraphicsAPI<'a> {
|
|
/// The rendering is done using OpenGL.
|
|
NativeOpenGL {
|
|
/// Use this function pointer to obtain access to the OpenGL implementation - similar to `eglGetProcAddress`.
|
|
get_proc_address: &'a dyn Fn(&core::ffi::CStr) -> *const core::ffi::c_void,
|
|
},
|
|
/// The rendering is done on a HTML Canvas element using WebGL.
|
|
WebGL {
|
|
/// The DOM element id of the HTML Canvas element used for rendering.
|
|
canvas_element_id: &'a str,
|
|
/// The drawing context type used on the HTML Canvas element for rendering. This is the argument to the
|
|
/// `getContext` function on the HTML Canvas element.
|
|
context_type: &'a str,
|
|
},
|
|
}
|
|
|
|
impl<'a> core::fmt::Debug for GraphicsAPI<'a> {
|
|
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
|
match self {
|
|
GraphicsAPI::NativeOpenGL { .. } => write!(f, "GraphicsAPI::NativeOpenGL"),
|
|
GraphicsAPI::WebGL { context_type, .. } => {
|
|
write!(f, "GraphicsAPI::WebGL(context_type = {})", context_type)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This enum describes the different rendering states, that will be provided
|
|
/// to the parameter of the callback for `set_rendering_notifier` on the `slint::Window`.
|
|
#[derive(Debug, Clone)]
|
|
#[repr(u8)]
|
|
#[non_exhaustive]
|
|
pub enum RenderingState {
|
|
/// The window has been created and the graphics adapter/context initialized. When OpenGL
|
|
/// is used for rendering, the context will be current.
|
|
RenderingSetup,
|
|
/// The scene of items is about to be rendered. When OpenGL
|
|
/// is used for rendering, the context will be current.
|
|
BeforeRendering,
|
|
/// The scene of items was rendered, but the back buffer was not sent for display presentation
|
|
/// yet (for example GL swap buffers). When OpenGL is used for rendering, the context will be current.
|
|
AfterRendering,
|
|
/// The window will be destroyed and/or graphics resources need to be released due to other
|
|
/// constraints.
|
|
RenderingTeardown,
|
|
}
|
|
|
|
/// Internal trait that's used to map rendering state callbacks to either a Rust-API provided
|
|
/// impl FnMut or a struct that invokes a C callback and implements Drop to release the closure
|
|
/// on the C++ side.
|
|
#[doc(hidden)]
|
|
pub trait RenderingNotifier {
|
|
/// Called to notify that rendering has reached a certain state.
|
|
fn notify(&mut self, state: RenderingState, graphics_api: &GraphicsAPI);
|
|
}
|
|
|
|
impl<F: FnMut(RenderingState, &GraphicsAPI)> RenderingNotifier for F {
|
|
fn notify(&mut self, state: RenderingState, graphics_api: &GraphicsAPI) {
|
|
self(state, graphics_api)
|
|
}
|
|
}
|
|
|
|
/// This enum describes the different error scenarios that may occur when the application
|
|
/// registers a rendering notifier on a `slint::Window`.
|
|
#[derive(Debug, Clone)]
|
|
#[repr(u8)]
|
|
#[non_exhaustive]
|
|
pub enum SetRenderingNotifierError {
|
|
/// The rendering backend does not support rendering notifiers.
|
|
Unsupported,
|
|
/// There is already a rendering notifier set, multiple notifiers are not supported.
|
|
AlreadySet,
|
|
}
|
|
|
|
impl core::fmt::Display for SetRenderingNotifierError {
|
|
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
|
match self {
|
|
Self::Unsupported => {
|
|
f.write_str("The rendering backend does not support rendering notifiers.")
|
|
}
|
|
Self::AlreadySet => f.write_str(
|
|
"There is already a rendering notifier set, multiple notifiers are not supported.",
|
|
),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for SetRenderingNotifierError {}
|
|
|
|
#[cfg(feature = "raw-window-handle-06")]
|
|
#[derive(Clone)]
|
|
enum WindowHandleInner {
|
|
HandleByAdapter(alloc::rc::Rc<dyn WindowAdapter>),
|
|
HandleByRcRWH {
|
|
window_handle_provider: alloc::rc::Rc<dyn raw_window_handle_06::HasWindowHandle>,
|
|
display_handle_provider: alloc::rc::Rc<dyn raw_window_handle_06::HasDisplayHandle>,
|
|
},
|
|
}
|
|
|
|
/// This struct represents a persistent handle to a window and implements the
|
|
/// [`raw_window_handle_06::HasWindowHandle`] and [`raw_window_handle_06::HasDisplayHandle`]
|
|
/// traits for accessing exposing raw window and display handles.
|
|
/// Obtain an instance of this by calling [`Window::window_handle()`].
|
|
#[cfg(feature = "raw-window-handle-06")]
|
|
#[derive(Clone)]
|
|
pub struct WindowHandle {
|
|
inner: WindowHandleInner,
|
|
}
|
|
|
|
#[cfg(feature = "raw-window-handle-06")]
|
|
impl raw_window_handle_06::HasWindowHandle for WindowHandle {
|
|
fn window_handle<'a>(
|
|
&'a self,
|
|
) -> Result<raw_window_handle_06::WindowHandle<'a>, raw_window_handle_06::HandleError> {
|
|
match &self.inner {
|
|
WindowHandleInner::HandleByAdapter(adapter) => adapter.window_handle_06(),
|
|
WindowHandleInner::HandleByRcRWH { window_handle_provider, .. } => {
|
|
window_handle_provider.window_handle()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "raw-window-handle-06")]
|
|
impl raw_window_handle_06::HasDisplayHandle for WindowHandle {
|
|
fn display_handle<'a>(
|
|
&'a self,
|
|
) -> Result<raw_window_handle_06::DisplayHandle<'a>, raw_window_handle_06::HandleError> {
|
|
match &self.inner {
|
|
WindowHandleInner::HandleByAdapter(adapter) => adapter.display_handle_06(),
|
|
WindowHandleInner::HandleByRcRWH { display_handle_provider, .. } => {
|
|
display_handle_provider.display_handle()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This type represents a window towards the windowing system, that's used to render the
|
|
/// scene of a component. It provides API to control windowing system specific aspects such
|
|
/// as the position on the screen.
|
|
#[repr(transparent)]
|
|
pub struct Window(pub(crate) WindowInner);
|
|
|
|
/// This enum describes whether a Window is allowed to be hidden when the user tries to close the window.
|
|
/// It is the return type of the callback provided to [Window::on_close_requested].
|
|
#[derive(Copy, Clone, Debug, PartialEq, Default)]
|
|
#[repr(u8)]
|
|
pub enum CloseRequestResponse {
|
|
/// The Window will be hidden (default action)
|
|
#[default]
|
|
HideWindow = 0,
|
|
/// The close request is rejected and the window will be kept shown.
|
|
KeepWindowShown = 1,
|
|
}
|
|
|
|
impl Window {
|
|
/// Create a new window from a window adapter
|
|
///
|
|
/// You only need to create the window yourself when you create a [`WindowAdapter`] from
|
|
/// [`Platform::create_window_adapter`](crate::platform::Platform::create_window_adapter)
|
|
///
|
|
/// Since the window adapter must own the Window, this function is meant to be used with
|
|
/// [`Rc::new_cyclic`](alloc::rc::Rc::new_cyclic)
|
|
///
|
|
/// # Example
|
|
/// ```rust
|
|
/// use std::rc::Rc;
|
|
/// use slint::platform::{WindowAdapter, Renderer};
|
|
/// use slint::{Window, PhysicalSize};
|
|
/// struct MyWindowAdapter {
|
|
/// window: Window,
|
|
/// //...
|
|
/// }
|
|
/// impl WindowAdapter for MyWindowAdapter {
|
|
/// fn window(&self) -> &Window { &self.window }
|
|
/// fn size(&self) -> PhysicalSize { unimplemented!() }
|
|
/// fn renderer(&self) -> &dyn Renderer { unimplemented!() }
|
|
/// }
|
|
///
|
|
/// fn create_window_adapter() -> Rc<dyn WindowAdapter> {
|
|
/// Rc::<MyWindowAdapter>::new_cyclic(|weak| {
|
|
/// MyWindowAdapter {
|
|
/// window: Window::new(weak.clone()),
|
|
/// //...
|
|
/// }
|
|
/// })
|
|
/// }
|
|
/// ```
|
|
pub fn new(window_adapter_weak: alloc::rc::Weak<dyn WindowAdapter>) -> Self {
|
|
Self(WindowInner::new(window_adapter_weak))
|
|
}
|
|
|
|
/// Shows the window on the screen. An additional strong reference on the
|
|
/// associated component is maintained while the window is visible.
|
|
///
|
|
/// Call [`Self::hide()`] to make the window invisible again, and drop the additional
|
|
/// strong reference.
|
|
pub fn show(&self) -> Result<(), PlatformError> {
|
|
self.0.show()
|
|
}
|
|
|
|
/// Hides the window, so that it is not visible anymore. The additional strong
|
|
/// reference on the associated component, that was created when [`Self::show()`] was called, is
|
|
/// dropped.
|
|
pub fn hide(&self) -> Result<(), PlatformError> {
|
|
self.0.hide()
|
|
}
|
|
|
|
/// This function allows registering a callback that's invoked during the different phases of
|
|
/// rendering. This allows custom rendering on top or below of the scene.
|
|
pub fn set_rendering_notifier(
|
|
&self,
|
|
callback: impl FnMut(RenderingState, &GraphicsAPI) + 'static,
|
|
) -> Result<(), SetRenderingNotifierError> {
|
|
self.0.window_adapter().renderer().set_rendering_notifier(Box::new(callback))
|
|
}
|
|
|
|
/// This function allows registering a callback that's invoked when the user tries to close a window.
|
|
/// The callback has to return a [CloseRequestResponse].
|
|
pub fn on_close_requested(&self, callback: impl FnMut() -> CloseRequestResponse + 'static) {
|
|
self.0.on_close_requested(callback);
|
|
}
|
|
|
|
/// This function issues a request to the windowing system to redraw the contents of the window.
|
|
pub fn request_redraw(&self) {
|
|
self.0.window_adapter().request_redraw()
|
|
}
|
|
|
|
/// This function returns the scale factor that allows converting between logical and
|
|
/// physical pixels.
|
|
pub fn scale_factor(&self) -> f32 {
|
|
self.0.scale_factor()
|
|
}
|
|
|
|
/// Returns the position of the window on the screen, in physical screen coordinates and including
|
|
/// a window frame (if present).
|
|
pub fn position(&self) -> PhysicalPosition {
|
|
self.0.window_adapter().position().unwrap_or_default()
|
|
}
|
|
|
|
/// Sets the position of the window on the screen, in physical screen coordinates and including
|
|
/// a window frame (if present).
|
|
/// Note that on some windowing systems, such as Wayland, this functionality is not available.
|
|
pub fn set_position(&self, position: impl Into<WindowPosition>) {
|
|
let position = position.into();
|
|
self.0.window_adapter().set_position(position)
|
|
}
|
|
|
|
/// Returns the size of the window on the screen, in physical screen coordinates and excluding
|
|
/// a window frame (if present).
|
|
pub fn size(&self) -> PhysicalSize {
|
|
self.0.window_adapter().size()
|
|
}
|
|
|
|
/// Resizes the window to the specified size on the screen, in physical pixels and excluding
|
|
/// a window frame (if present).
|
|
pub fn set_size(&self, size: impl Into<WindowSize>) {
|
|
let size = size.into();
|
|
crate::window::WindowAdapter::set_size(&*self.0.window_adapter(), size);
|
|
}
|
|
|
|
/// Returns if the window is currently fullscreen
|
|
pub fn is_fullscreen(&self) -> bool {
|
|
self.0.is_fullscreen()
|
|
}
|
|
|
|
/// Set or unset the window to display fullscreen.
|
|
pub fn set_fullscreen(&self, fullscreen: bool) {
|
|
self.0.set_fullscreen(fullscreen);
|
|
}
|
|
|
|
/// Returns if the window is currently maximized
|
|
pub fn is_maximized(&self) -> bool {
|
|
self.0.is_maximized()
|
|
}
|
|
|
|
/// Maximize or unmaximize the window.
|
|
pub fn set_maximized(&self, maximized: bool) {
|
|
self.0.set_maximized(maximized);
|
|
}
|
|
|
|
/// Returns if the window is currently minimized
|
|
pub fn is_minimized(&self) -> bool {
|
|
self.0.is_minimized()
|
|
}
|
|
|
|
/// Minimize or unminimze the window.
|
|
pub fn set_minimized(&self, minimized: bool) {
|
|
self.0.set_minimized(minimized);
|
|
}
|
|
|
|
/// Dispatch a window event to the scene.
|
|
///
|
|
/// Use this when you're implementing your own backend and want to forward user input events.
|
|
///
|
|
/// Any position fields in the event must be in the logical pixel coordinate system relative to
|
|
/// the top left corner of the window.
|
|
///
|
|
/// This function panics if there is an error processing the event.
|
|
/// Use [`Self::try_dispatch_event()`] to handle the error.
|
|
#[track_caller]
|
|
pub fn dispatch_event(&self, event: crate::platform::WindowEvent) {
|
|
self.try_dispatch_event(event).unwrap()
|
|
}
|
|
|
|
/// Dispatch a window event to the scene.
|
|
///
|
|
/// Use this when you're implementing your own backend and want to forward user input events.
|
|
///
|
|
/// Any position fields in the event must be in the logical pixel coordinate system relative to
|
|
/// the top left corner of the window.
|
|
pub fn try_dispatch_event(
|
|
&self,
|
|
event: crate::platform::WindowEvent,
|
|
) -> Result<(), PlatformError> {
|
|
match event {
|
|
crate::platform::WindowEvent::PointerPressed { position, button } => {
|
|
self.0.process_mouse_input(MouseEvent::Pressed {
|
|
position: position.to_euclid().cast(),
|
|
button,
|
|
click_count: 0,
|
|
});
|
|
}
|
|
crate::platform::WindowEvent::PointerReleased { position, button } => {
|
|
self.0.process_mouse_input(MouseEvent::Released {
|
|
position: position.to_euclid().cast(),
|
|
button,
|
|
click_count: 0,
|
|
});
|
|
}
|
|
crate::platform::WindowEvent::PointerMoved { position } => {
|
|
self.0.process_mouse_input(MouseEvent::Moved {
|
|
position: position.to_euclid().cast(),
|
|
});
|
|
}
|
|
crate::platform::WindowEvent::PointerScrolled { position, delta_x, delta_y } => {
|
|
self.0.process_mouse_input(MouseEvent::Wheel {
|
|
position: position.to_euclid().cast(),
|
|
delta_x: delta_x as _,
|
|
delta_y: delta_y as _,
|
|
});
|
|
}
|
|
crate::platform::WindowEvent::PointerExited => {
|
|
self.0.process_mouse_input(MouseEvent::Exit)
|
|
}
|
|
|
|
crate::platform::WindowEvent::KeyPressed { text } => {
|
|
self.0.process_key_input(crate::input::KeyEvent {
|
|
text,
|
|
repeat: false,
|
|
event_type: KeyEventType::KeyPressed,
|
|
..Default::default()
|
|
})
|
|
}
|
|
crate::platform::WindowEvent::KeyPressRepeated { text } => {
|
|
self.0.process_key_input(crate::input::KeyEvent {
|
|
text,
|
|
repeat: true,
|
|
event_type: KeyEventType::KeyPressed,
|
|
..Default::default()
|
|
})
|
|
}
|
|
crate::platform::WindowEvent::KeyReleased { text } => {
|
|
self.0.process_key_input(crate::input::KeyEvent {
|
|
text,
|
|
event_type: KeyEventType::KeyReleased,
|
|
..Default::default()
|
|
})
|
|
}
|
|
crate::platform::WindowEvent::ScaleFactorChanged { scale_factor } => {
|
|
self.0.set_scale_factor(scale_factor);
|
|
}
|
|
crate::platform::WindowEvent::Resized { size } => {
|
|
self.0.set_window_item_geometry(size.to_euclid());
|
|
self.0.window_adapter().renderer().resize(size.to_physical(self.scale_factor()))?;
|
|
}
|
|
crate::platform::WindowEvent::CloseRequested => {
|
|
if self.0.request_close() {
|
|
self.hide()?;
|
|
}
|
|
}
|
|
crate::platform::WindowEvent::WindowActiveChanged(bool) => self.0.set_active(bool),
|
|
};
|
|
Ok(())
|
|
}
|
|
|
|
/// Returns true if there is an animation currently active on any property in the Window; false otherwise.
|
|
pub fn has_active_animations(&self) -> bool {
|
|
// TODO make it really per window.
|
|
crate::animations::CURRENT_ANIMATION_DRIVER.with(|driver| driver.has_active_animations())
|
|
}
|
|
|
|
/// Returns the visibility state of the window. This function can return false even if you previously called show()
|
|
/// on it, for example if the user minimized the window.
|
|
pub fn is_visible(&self) -> bool {
|
|
self.0.is_visible()
|
|
}
|
|
|
|
/// Returns a struct that implements the raw window handle traits to access the windowing system specific window
|
|
/// and display handles. This function is only accessible if you enable the `raw-window-handle-06` crate feature.
|
|
#[cfg(feature = "raw-window-handle-06")]
|
|
pub fn window_handle(&self) -> WindowHandle {
|
|
let adapter = self.0.window_adapter();
|
|
if let Some((window_handle_provider, display_handle_provider)) =
|
|
adapter.internal(crate::InternalToken).and_then(|internal| {
|
|
internal.window_handle_06_rc().ok().zip(internal.display_handle_06_rc().ok())
|
|
})
|
|
{
|
|
WindowHandle {
|
|
inner: WindowHandleInner::HandleByRcRWH {
|
|
window_handle_provider,
|
|
display_handle_provider,
|
|
},
|
|
}
|
|
} else {
|
|
WindowHandle { inner: WindowHandleInner::HandleByAdapter(adapter) }
|
|
}
|
|
}
|
|
|
|
/// Takes a snapshot of the window contents and returns it as RGBA8 encoded pixel buffer.
|
|
///
|
|
/// Note that this function may be slow to call as it may need to re-render the scene.
|
|
pub fn take_snapshot(&self) -> Result<SharedPixelBuffer<Rgba8Pixel>, PlatformError> {
|
|
self.0.window_adapter().renderer().take_snapshot()
|
|
}
|
|
}
|
|
|
|
pub use crate::SharedString;
|
|
|
|
#[i_slint_core_macros::slint_doc]
|
|
/// This trait is used to obtain references to global singletons exported in `.slint`
|
|
/// markup. Alternatively, you can use [`ComponentHandle::global`] to obtain access.
|
|
///
|
|
/// This trait is implemented by the compiler for each global singleton that's exported.
|
|
///
|
|
/// # Example
|
|
/// The following example of `.slint` markup defines a global singleton called `Palette`, exports
|
|
/// it and modifies it from Rust code:
|
|
/// ```rust
|
|
/// # i_slint_backend_testing::init_no_event_loop();
|
|
/// slint::slint!{
|
|
/// export global Palette {
|
|
/// in property<color> foreground-color;
|
|
/// in property<color> background-color;
|
|
/// }
|
|
///
|
|
/// export component App inherits Window {
|
|
/// background: Palette.background-color;
|
|
/// Text {
|
|
/// text: "Hello";
|
|
/// color: Palette.foreground-color;
|
|
/// }
|
|
/// // ...
|
|
/// }
|
|
/// }
|
|
/// let app = App::new().unwrap();
|
|
/// app.global::<Palette>().set_background_color(slint::Color::from_rgb_u8(0, 0, 0));
|
|
///
|
|
/// // alternate way to access the global singleton:
|
|
/// Palette::get(&app).set_foreground_color(slint::Color::from_rgb_u8(255, 255, 255));
|
|
/// ```
|
|
///
|
|
/// See also the [language documentation for global singletons](slint:globals) for more information.
|
|
///
|
|
/// **Note:** Only globals that are exported or re-exported from the main .slint file will
|
|
/// be exposed in the API
|
|
pub trait Global<'a, Component> {
|
|
/// Returns a reference that's tied to the life time of the provided component.
|
|
fn get(component: &'a Component) -> Self;
|
|
}
|
|
|
|
/// This trait describes the common public API of a strongly referenced Slint component.
|
|
/// It allows creating strongly-referenced clones, a conversion into/ a weak pointer as well
|
|
/// as other convenience functions.
|
|
///
|
|
/// This trait is implemented by the [generated component](index.html#generated-components)
|
|
pub trait ComponentHandle {
|
|
/// The type of the generated component.
|
|
#[doc(hidden)]
|
|
type Inner;
|
|
/// Returns a new weak pointer.
|
|
fn as_weak(&self) -> Weak<Self>
|
|
where
|
|
Self: Sized;
|
|
|
|
/// Returns a clone of this handle that's a strong reference.
|
|
#[must_use]
|
|
fn clone_strong(&self) -> Self;
|
|
|
|
/// Internal function used when upgrading a weak reference to a strong one.
|
|
#[doc(hidden)]
|
|
fn from_inner(_: vtable::VRc<ItemTreeVTable, Self::Inner>) -> Self;
|
|
|
|
/// Convenience function for [`crate::Window::show()`](struct.Window.html#method.show).
|
|
/// This shows the window on the screen and maintains an extra strong reference while
|
|
/// the window is visible. To react to events from the windowing system, such as draw
|
|
/// requests or mouse/touch input, it is still necessary to spin the event loop,
|
|
/// using [`crate::run_event_loop`](fn.run_event_loop.html).
|
|
fn show(&self) -> Result<(), PlatformError>;
|
|
|
|
/// Convenience function for [`crate::Window::hide()`](struct.Window.html#method.hide).
|
|
/// Hides the window, so that it is not visible anymore. The additional strong reference
|
|
/// on the associated component, that was created when show() was called, is dropped.
|
|
fn hide(&self) -> Result<(), PlatformError>;
|
|
|
|
/// Returns the Window associated with this component. The window API can be used
|
|
/// to control different aspects of the integration into the windowing system,
|
|
/// such as the position on the screen.
|
|
fn window(&self) -> &Window;
|
|
|
|
/// This is a convenience function that first calls [`Self::show`], followed by [`crate::run_event_loop()`](fn.run_event_loop.html)
|
|
/// and [`Self::hide`].
|
|
fn run(&self) -> Result<(), PlatformError>;
|
|
|
|
/// This function provides access to instances of global singletons exported in `.slint`.
|
|
/// See [`Global`] for an example how to export and access globals from `.slint` markup.
|
|
fn global<'a, T: Global<'a, Self>>(&'a self) -> T
|
|
where
|
|
Self: Sized;
|
|
}
|
|
|
|
mod weak_handle {
|
|
|
|
use super::*;
|
|
|
|
/// Struct that's used to hold weak references of a [Slint component](index.html#generated-components)
|
|
///
|
|
/// In order to create a Weak, you should use [`ComponentHandle::as_weak`].
|
|
///
|
|
/// Strong references should not be captured by the functions given to a lambda,
|
|
/// as this would produce a reference loop and leak the component.
|
|
/// Instead, the callback function should capture a weak component.
|
|
///
|
|
/// The Weak component also implement `Send` and can be send to another thread.
|
|
/// but the upgrade function will only return a valid component from the same thread
|
|
/// as the one it has been created from.
|
|
/// This is useful to use with [`invoke_from_event_loop()`] or [`Self::upgrade_in_event_loop()`].
|
|
pub struct Weak<T: ComponentHandle> {
|
|
inner: vtable::VWeak<ItemTreeVTable, T::Inner>,
|
|
#[cfg(feature = "std")]
|
|
thread: std::thread::ThreadId,
|
|
}
|
|
|
|
impl<T: ComponentHandle> Default for Weak<T> {
|
|
fn default() -> Self {
|
|
Self {
|
|
inner: vtable::VWeak::default(),
|
|
#[cfg(feature = "std")]
|
|
thread: std::thread::current().id(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: ComponentHandle> Clone for Weak<T> {
|
|
fn clone(&self) -> Self {
|
|
Self {
|
|
inner: self.inner.clone(),
|
|
#[cfg(feature = "std")]
|
|
thread: self.thread,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: ComponentHandle> Weak<T> {
|
|
#[doc(hidden)]
|
|
pub fn new(rc: &vtable::VRc<ItemTreeVTable, T::Inner>) -> Self {
|
|
Self {
|
|
inner: vtable::VRc::downgrade(rc),
|
|
#[cfg(feature = "std")]
|
|
thread: std::thread::current().id(),
|
|
}
|
|
}
|
|
|
|
/// Returns a new strongly referenced component if some other instance still
|
|
/// holds a strong reference. Otherwise, returns None.
|
|
///
|
|
/// This also returns None if the current thread is not the thread that created
|
|
/// the component
|
|
pub fn upgrade(&self) -> Option<T>
|
|
where
|
|
T: ComponentHandle,
|
|
{
|
|
#[cfg(feature = "std")]
|
|
if std::thread::current().id() != self.thread {
|
|
return None;
|
|
}
|
|
self.inner.upgrade().map(T::from_inner)
|
|
}
|
|
|
|
/// Convenience function that returns a new strongly referenced component if
|
|
/// some other instance still holds a strong reference and the current thread
|
|
/// is the thread that created this component.
|
|
/// Otherwise, this function panics.
|
|
#[track_caller]
|
|
pub fn unwrap(&self) -> T {
|
|
#[cfg(feature = "std")]
|
|
if std::thread::current().id() != self.thread {
|
|
panic!(
|
|
"Trying to upgrade a Weak from a different thread than the one it belongs to"
|
|
);
|
|
}
|
|
T::from_inner(self.inner.upgrade().expect("The Weak doesn't hold a valid component"))
|
|
}
|
|
|
|
/// A helper function to allow creation on `component_factory::Component` from
|
|
/// a `ComponentHandle`
|
|
pub(crate) fn inner(&self) -> vtable::VWeak<ItemTreeVTable, T::Inner> {
|
|
self.inner.clone()
|
|
}
|
|
|
|
/// Convenience function that combines [`invoke_from_event_loop()`] with [`Self::upgrade()`]
|
|
///
|
|
/// The given functor will be added to an internal queue and will wake the event loop.
|
|
/// On the next iteration of the event loop, the functor will be executed with a `T` as an argument.
|
|
///
|
|
/// If the component was dropped because there are no more strong reference to the component,
|
|
/// the functor will not be called.
|
|
///
|
|
/// # Example
|
|
/// ```rust
|
|
/// # i_slint_backend_testing::init_no_event_loop();
|
|
/// slint::slint! { export component MyApp inherits Window { in property <int> foo; /* ... */ } }
|
|
/// let handle = MyApp::new().unwrap();
|
|
/// let handle_weak = handle.as_weak();
|
|
/// let thread = std::thread::spawn(move || {
|
|
/// // ... Do some computation in the thread
|
|
/// let foo = 42;
|
|
/// # assert!(handle_weak.upgrade().is_none()); // note that upgrade fails in a thread
|
|
/// # return; // don't upgrade_in_event_loop in our examples
|
|
/// // now forward the data to the main thread using upgrade_in_event_loop
|
|
/// handle_weak.upgrade_in_event_loop(move |handle| handle.set_foo(foo));
|
|
/// });
|
|
/// # thread.join().unwrap(); return; // don't run the event loop in examples
|
|
/// handle.run().unwrap();
|
|
/// ```
|
|
#[cfg(any(feature = "std", feature = "unsafe-single-threaded"))]
|
|
pub fn upgrade_in_event_loop(
|
|
&self,
|
|
func: impl FnOnce(T) + Send + 'static,
|
|
) -> Result<(), EventLoopError>
|
|
where
|
|
T: 'static,
|
|
{
|
|
let weak_handle = self.clone();
|
|
super::invoke_from_event_loop(move || {
|
|
if let Some(h) = weak_handle.upgrade() {
|
|
func(h);
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
// Safety: we make sure in upgrade that the thread is the proper one,
|
|
// and the VWeak only use atomic pointer so it is safe to clone and drop in another thread
|
|
#[allow(unsafe_code)]
|
|
#[cfg(any(feature = "std", feature = "unsafe-single-threaded"))]
|
|
unsafe impl<T: ComponentHandle> Send for Weak<T> {}
|
|
#[allow(unsafe_code)]
|
|
#[cfg(any(feature = "std", feature = "unsafe-single-threaded"))]
|
|
unsafe impl<T: ComponentHandle> Sync for Weak<T> {}
|
|
}
|
|
|
|
pub use weak_handle::*;
|
|
|
|
/// Adds the specified function to an internal queue, notifies the event loop to wake up.
|
|
/// Once woken up, any queued up functors will be invoked.
|
|
///
|
|
/// This function is thread-safe and can be called from any thread, including the one
|
|
/// running the event loop. The provided functors will only be invoked from the thread
|
|
/// that started the event loop.
|
|
///
|
|
/// You can use this to set properties or use any other Slint APIs from other threads,
|
|
/// by collecting the code in a functor and queuing it up for invocation within the event loop.
|
|
///
|
|
/// If you want to capture non-Send types to run in the next event loop iteration,
|
|
/// you can use the `slint::spawn_local` function instead.
|
|
///
|
|
/// See also [`Weak::upgrade_in_event_loop`].
|
|
///
|
|
/// # Example
|
|
/// ```rust
|
|
/// slint::slint! { export component MyApp inherits Window { in property <int> foo; /* ... */ } }
|
|
/// # i_slint_backend_testing::init_no_event_loop();
|
|
/// let handle = MyApp::new().unwrap();
|
|
/// let handle_weak = handle.as_weak();
|
|
/// # return; // don't run the event loop in examples
|
|
/// let thread = std::thread::spawn(move || {
|
|
/// // ... Do some computation in the thread
|
|
/// let foo = 42;
|
|
/// // now forward the data to the main thread using invoke_from_event_loop
|
|
/// let handle_copy = handle_weak.clone();
|
|
/// slint::invoke_from_event_loop(move || handle_copy.unwrap().set_foo(foo));
|
|
/// });
|
|
/// handle.run().unwrap();
|
|
/// ```
|
|
pub fn invoke_from_event_loop(func: impl FnOnce() + Send + 'static) -> Result<(), EventLoopError> {
|
|
crate::platform::with_event_loop_proxy(|proxy| {
|
|
proxy
|
|
.ok_or(EventLoopError::NoEventLoopProvider)?
|
|
.invoke_from_event_loop(alloc::boxed::Box::new(func))
|
|
})
|
|
}
|
|
|
|
/// Schedules the main event loop for termination. This function is meant
|
|
/// to be called from callbacks triggered by the UI. After calling the function,
|
|
/// it will return immediately and once control is passed back to the event loop,
|
|
/// the initial call to `slint::run_event_loop()` will return.
|
|
///
|
|
/// This function can be called from any thread
|
|
pub fn quit_event_loop() -> Result<(), EventLoopError> {
|
|
crate::platform::with_event_loop_proxy(|proxy| {
|
|
proxy.ok_or(EventLoopError::NoEventLoopProvider)?.quit_event_loop()
|
|
})
|
|
}
|
|
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
#[non_exhaustive]
|
|
/// Error returned from the [`invoke_from_event_loop()`] and [`quit_event_loop()`] function
|
|
pub enum EventLoopError {
|
|
/// The event could not be sent because the event loop was terminated already
|
|
EventLoopTerminated,
|
|
/// The event could not be sent because the Slint platform abstraction was not yet initialized,
|
|
/// or the platform does not support event loop.
|
|
NoEventLoopProvider,
|
|
}
|
|
|
|
impl core::fmt::Display for EventLoopError {
|
|
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
|
match self {
|
|
EventLoopError::EventLoopTerminated => {
|
|
f.write_str("The event loop was already terminated")
|
|
}
|
|
EventLoopError::NoEventLoopProvider => {
|
|
f.write_str("The Slint platform does not provide an event loop")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for EventLoopError {}
|
|
|
|
/// The platform encountered a fatal error.
|
|
///
|
|
/// This error typically indicates an issue with initialization or connecting to the windowing system.
|
|
///
|
|
/// This can be constructed from a `String`:
|
|
/// ```rust
|
|
/// use slint::platform::PlatformError;
|
|
/// PlatformError::from(format!("Could not load resource {}", 1234));
|
|
/// ```
|
|
#[derive(Debug)]
|
|
#[non_exhaustive]
|
|
pub enum PlatformError {
|
|
/// No default platform was selected, or no platform could be initialized.
|
|
///
|
|
/// If you encounter this error, make sure to either selected trough the `backend-*` cargo features flags,
|
|
/// or call [`platform::set_platform()`](crate::platform::set_platform)
|
|
/// before running the event loop
|
|
NoPlatform,
|
|
/// The Slint Platform does not provide an event loop.
|
|
///
|
|
/// The [`Platform::run_event_loop`](crate::platform::Platform::run_event_loop)
|
|
/// is not implemented for the current platform.
|
|
NoEventLoopProvider,
|
|
|
|
/// There is already a platform set from another thread.
|
|
SetPlatformError(crate::platform::SetPlatformError),
|
|
|
|
/// Another platform-specific error occurred
|
|
Other(String),
|
|
/// Another platform-specific error occurred.
|
|
#[cfg(feature = "std")]
|
|
OtherError(Box<dyn std::error::Error + Send + Sync>),
|
|
}
|
|
|
|
impl core::fmt::Display for PlatformError {
|
|
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
|
|
match self {
|
|
PlatformError::NoPlatform => f.write_str(
|
|
"No default Slint platform was selected, and no Slint platform was initialized",
|
|
),
|
|
PlatformError::NoEventLoopProvider => {
|
|
f.write_str("The Slint platform does not provide an event loop")
|
|
}
|
|
PlatformError::SetPlatformError(_) => {
|
|
f.write_str("The Slint platform was initialized in another thread")
|
|
}
|
|
PlatformError::Other(str) => f.write_str(str),
|
|
#[cfg(feature = "std")]
|
|
PlatformError::OtherError(error) => error.fmt(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<String> for PlatformError {
|
|
fn from(value: String) -> Self {
|
|
Self::Other(value)
|
|
}
|
|
}
|
|
impl From<&str> for PlatformError {
|
|
fn from(value: &str) -> Self {
|
|
Self::Other(value.into())
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl From<Box<dyn std::error::Error + Send + Sync>> for PlatformError {
|
|
fn from(error: Box<dyn std::error::Error + Send + Sync>) -> Self {
|
|
Self::OtherError(error)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
impl std::error::Error for PlatformError {
|
|
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
|
|
match self {
|
|
PlatformError::OtherError(err) => Some(err.as_ref()),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[cfg(feature = "std")]
|
|
fn error_is_send() {
|
|
let _: Box<dyn std::error::Error + Send + Sync + 'static> = PlatformError::NoPlatform.into();
|
|
}
|
|
|
|
/// Sets the application id for use on Wayland or X11 with [xdg](https://specifications.freedesktop.org/desktop-entry-spec/latest/)
|
|
/// compliant window managers. This must be set before the window is shown, and has only an effect on Wayland or X11.
|
|
pub fn set_xdg_app_id(app_id: impl Into<SharedString>) -> Result<(), PlatformError> {
|
|
crate::context::with_global_context(
|
|
|| Err(crate::platform::PlatformError::NoPlatform),
|
|
|ctx| ctx.set_xdg_app_id(app_id.into()),
|
|
)
|
|
}
|