slint/sixtyfps_compiler/expression_tree.rs
Olivier Goffart deaa0fddb0 WIP layout: split vertical and horizontal cache
Split the vertical and horizontal pass into different property cache
This will allow to implement "height for with"

This patch does not port the Rust or C++ binding yet
2021-06-16 15:14:07 +02:00

1290 lines
50 KiB
Rust

/* LICENSE BEGIN
This file is part of the SixtyFPS Project -- https://sixtyfps.io
Copyright (c) 2020 Olivier Goffart <olivier.goffart@sixtyfps.io>
Copyright (c) 2020 Simon Hausmann <simon.hausmann@sixtyfps.io>
SPDX-License-Identifier: GPL-3.0-only
This file is also available under commercial licensing terms.
Please contact info@sixtyfps.io for more information.
LICENSE END */
use crate::diagnostics::{BuildDiagnostics, SourceLocation, Spanned};
use crate::langtype::{BuiltinElement, Enumeration, EnumerationValue, Type};
use crate::object_tree::*;
use crate::parser::{NodeOrToken, SyntaxNode};
use core::cell::RefCell;
use std::collections::HashMap;
use std::rc::{Rc, Weak};
// FIXME remove the pub
pub use crate::namedreference::NamedReference;
#[derive(Debug, Clone)]
/// A function built into the run-time
pub enum BuiltinFunction {
GetWindowScaleFactor,
Debug,
Mod,
Round,
Ceil,
Floor,
Abs,
Sqrt,
Cos,
Sin,
Tan,
ACos,
ASin,
ATan,
SetFocusItem,
ShowPopupWindow,
/// the "42".to_float()
StringToFloat,
/// the "42".is_float()
StringIsFloat,
ColorBrighter,
ColorDarker,
Rgb,
ImplicitLayoutInfo,
RegisterCustomFontByPath,
RegisterCustomFontByMemory,
}
#[derive(Debug, Clone)]
/// A builtin function which is handled by the compiler pass
pub enum BuiltinMacroFunction {
Min,
Max,
CubicBezier,
Rgb,
Debug,
}
impl BuiltinFunction {
pub fn ty(&self) -> Type {
match self {
BuiltinFunction::GetWindowScaleFactor => Type::Function {
return_type: Box::new(Type::UnitProduct(vec![(Unit::Phx, 1), (Unit::Px, -1)])),
args: vec![],
},
BuiltinFunction::Debug => {
Type::Function { return_type: Box::new(Type::Void), args: vec![Type::String] }
}
BuiltinFunction::Mod => Type::Function {
return_type: Box::new(Type::Int32),
args: vec![Type::Int32, Type::Int32],
},
BuiltinFunction::Round | BuiltinFunction::Ceil | BuiltinFunction::Floor => {
Type::Function { return_type: Box::new(Type::Int32), args: vec![Type::Float32] }
}
BuiltinFunction::Sqrt | BuiltinFunction::Abs => {
Type::Function { return_type: Box::new(Type::Float32), args: vec![Type::Float32] }
}
BuiltinFunction::Cos | BuiltinFunction::Sin | BuiltinFunction::Tan => {
Type::Function { return_type: Box::new(Type::Float32), args: vec![Type::Angle] }
}
BuiltinFunction::ACos | BuiltinFunction::ASin | BuiltinFunction::ATan => {
Type::Function { return_type: Box::new(Type::Angle), args: vec![Type::Float32] }
}
BuiltinFunction::SetFocusItem => Type::Function {
return_type: Box::new(Type::Void),
args: vec![Type::ElementReference],
},
BuiltinFunction::ShowPopupWindow => Type::Function {
return_type: Box::new(Type::Void),
args: vec![Type::ElementReference],
},
BuiltinFunction::StringToFloat => {
Type::Function { return_type: Box::new(Type::Float32), args: vec![Type::String] }
}
BuiltinFunction::StringIsFloat => {
Type::Function { return_type: Box::new(Type::Bool), args: vec![Type::String] }
}
BuiltinFunction::ImplicitLayoutInfo => Type::Function {
return_type: Box::new(crate::layout::layout_info_type()),
args: vec![
Type::ElementReference,
// FIXME: we shouldn't be declaring the enum here
Type::Enumeration(Rc::new(Enumeration {
name: "Orientation".into(),
values: vec!["Horizontal".into(), "Vertical".into()],
default_value: 0,
})),
],
},
BuiltinFunction::ColorBrighter => Type::Function {
return_type: Box::new(Type::Color),
args: vec![Type::Color, Type::Float32],
},
BuiltinFunction::ColorDarker => Type::Function {
return_type: Box::new(Type::Color),
args: vec![Type::Color, Type::Float32],
},
BuiltinFunction::Rgb => Type::Function {
return_type: Box::new(Type::Color),
args: vec![Type::Int32, Type::Int32, Type::Int32, Type::Float32],
},
BuiltinFunction::RegisterCustomFontByPath => {
Type::Function { return_type: Box::new(Type::Void), args: vec![Type::String] }
}
BuiltinFunction::RegisterCustomFontByMemory => {
Type::Function { return_type: Box::new(Type::Void), args: vec![Type::Int32] }
}
}
}
/// It is pure if the return value only depends on its argument and has no side effect
fn is_pure(&self) -> bool {
match self {
BuiltinFunction::GetWindowScaleFactor => false,
// Even if it is not pure, we optimize it away anyway
BuiltinFunction::Debug => true,
BuiltinFunction::Mod
| BuiltinFunction::Round
| BuiltinFunction::Ceil
| BuiltinFunction::Floor
| BuiltinFunction::Abs
| BuiltinFunction::Sqrt
| BuiltinFunction::Cos
| BuiltinFunction::Sin
| BuiltinFunction::Tan
| BuiltinFunction::ACos
| BuiltinFunction::ASin
| BuiltinFunction::ATan => true,
BuiltinFunction::SetFocusItem => false,
BuiltinFunction::ShowPopupWindow => false,
BuiltinFunction::StringToFloat | BuiltinFunction::StringIsFloat => true,
BuiltinFunction::ColorBrighter | BuiltinFunction::ColorDarker => true,
BuiltinFunction::Rgb => true,
BuiltinFunction::ImplicitLayoutInfo => false,
BuiltinFunction::RegisterCustomFontByPath
| BuiltinFunction::RegisterCustomFontByMemory => false,
}
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum OperatorClass {
ComparisonOp,
LogicalOp,
ArithmeticOp,
}
/// the class of for this (binary) operation
pub fn operator_class(op: char) -> OperatorClass {
match op {
'=' | '!' | '<' | '>' | '≤' | '≥' => OperatorClass::ComparisonOp,
'&' | '|' => OperatorClass::LogicalOp,
'+' | '-' | '/' | '*' => OperatorClass::ArithmeticOp,
_ => panic!("Invalid operator {:?}", op),
}
}
macro_rules! declare_units {
($( $(#[$m:meta])* $ident:ident = $string:literal -> $ty:ident $(* $factor:expr)? ,)*) => {
/// The units that can be used after numbers in the language
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum Unit {
$($(#[$m])* $ident,)*
}
impl std::fmt::Display for Unit {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
$(Self::$ident => write!(f, $string), )*
}
}
}
impl std::str::FromStr for Unit {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
$($string => Ok(Self::$ident), )*
_ => Err(())
}
}
}
impl Unit {
pub fn ty(self) -> Type {
match self {
$(Self::$ident => Type::$ty, )*
}
}
pub fn normalize(self, x: f64) -> f64 {
match self {
$(Self::$ident => x $(* $factor as f64)?, )*
}
}
}
};
}
declare_units! {
/// No unit was given
None = "" -> Float32,
///
Percent = "%" -> Percent,
// Lengths or Coord
/// Physical pixels
Phx = "phx" -> PhysicalLength,
/// Logical pixels
Px = "px" -> LogicalLength,
/// Centimeters
Cm = "cm" -> LogicalLength * 37.8,
/// Milimeters
Mm = "mm" -> LogicalLength * 3.78,
/// inches
In = "in" -> LogicalLength * 96,
/// Points
Pt = "pt" -> LogicalLength * 96./72.,
// durations
/// Seconds
S = "s" -> Duration * 1000,
/// Milliseconds
Ms = "ms" -> Duration,
// angles
/// Degree
Deg = "deg" -> Angle,
/// Gradians
Grad = "grad" -> Angle * 400./360.,
/// Turns
Turn = "turn" -> Angle * 1./360.,
/// Radians
Rad = "rad" -> Angle * std::f32::consts::TAU/360.,
}
impl Default for Unit {
fn default() -> Self {
Self::None
}
}
/// The Expression is hold by properties, so it should not hold any strong references to node from the object_tree
#[derive(Debug, Clone)]
pub enum Expression {
/// Something went wrong (and an error will be reported)
Invalid,
/// We haven't done the lookup yet
Uncompiled(SyntaxNode),
/// Special expression that can be the value of a two way binding
///
/// The named reference is what it is aliased to, and the optional Expression is
/// the initialization expression, if any. That expression can be a TwoWayBinding as well
TwoWayBinding(NamedReference, Option<Box<Expression>>),
/// A string literal. The .0 is the content of the string, without the quotes
StringLiteral(String),
/// Number
NumberLiteral(f64, Unit),
///
BoolLiteral(bool),
/// Reference to the callback <name> in the <element>
///
/// Note: if we are to separate expression and statement, we probably do not need to have callback reference within expressions
CallbackReference(NamedReference),
/// Reference to the callback <name> in the <element>
PropertyReference(NamedReference),
/// Reference to a function built into the run-time, implemented natively
BuiltinFunctionReference(BuiltinFunction, Option<SourceLocation>),
/// A MemberFunction expression exists only for a short time, for example for `item.focus()` to be translated to
/// a regular FunctionCall expression where the base becomes the first argument.
MemberFunction {
base: Box<Expression>,
base_node: Option<NodeOrToken>,
member: Box<Expression>,
},
/// Reference to a macro understood by the compiler.
/// These should be transformed to other expression before reaching generation
BuiltinMacroReference(BuiltinMacroFunction, Option<NodeOrToken>),
/// A reference to a specific element. This isn't possible to create in .60 syntax itself, but intermediate passes may generate this
/// type of expression.
ElementReference(Weak<RefCell<Element>>),
/// Reference to the index variable of a repeater
///
/// Example: `idx` in `for xxx[idx] in ...`. The element is the reference to the
/// element that is repeated
RepeaterIndexReference {
element: Weak<RefCell<Element>>,
},
/// Reference to the model variable of a repeater
///
/// Example: `xxx` in `for xxx[idx] in ...`. The element is the reference to the
/// element that is repeated
RepeaterModelReference {
element: Weak<RefCell<Element>>,
},
/// Reference the parameter at the given index of the current function.
FunctionParameterReference {
index: usize,
ty: Type,
},
/// Should be directly within a CodeBlock expression, and store the value of the expression in a local variable
StoreLocalVariable {
name: String,
value: Box<Expression>,
},
/// a reference to the local variable with the given name. The type system should ensure that a variable has been stored
/// with this name and this type before in one of the statement of an enclosing codeblock
ReadLocalVariable {
name: String,
ty: Type,
},
/// Access to a field of the given name within a struct.
StructFieldAccess {
/// This expression should have [`Type::Struct`] type
base: Box<Expression>,
name: String,
},
/// Cast an expression to the given type
Cast {
from: Box<Expression>,
to: Type,
},
/// a code block with different expression
CodeBlock(Vec<Expression>),
/// A function call
FunctionCall {
function: Box<Expression>,
arguments: Vec<Expression>,
source_location: Option<SourceLocation>,
},
/// A SelfAssignment or an Assignment. When op is '=' this is a signel assignment.
SelfAssignment {
lhs: Box<Expression>,
rhs: Box<Expression>,
/// '+', '-', '/', '*', or '='
op: char,
},
BinaryExpression {
lhs: Box<Expression>,
rhs: Box<Expression>,
/// '+', '-', '/', '*', '=', '!', '<', '>', '≤', '≥', '&', '|'
op: char,
},
UnaryOp {
sub: Box<Expression>,
/// '+', '-', '!'
op: char,
},
ImageReference(ImageReference),
Condition {
condition: Box<Expression>,
true_expr: Box<Expression>,
false_expr: Box<Expression>,
},
Array {
element_ty: Type,
values: Vec<Expression>,
},
Struct {
ty: Type,
values: HashMap<String, Expression>,
},
PathElements {
elements: Path,
},
EasingCurve(EasingCurve),
LinearGradient {
angle: Box<Expression>,
/// First expression in the tuple is a color, second expression is the stop position
stops: Vec<(Expression, Expression)>,
},
EnumerationValue(EnumerationValue),
ReturnStatement(Option<Box<Expression>>),
LayoutCacheAccess {
layout_cache_prop: NamedReference,
index: usize,
/// When set, this is the index within a repeater, and the index is then the location of another offset.
/// So this looks like `layout_cache_prop[layout_cache_prop[index] + repeater_index]`
repeater_index: Option<Box<Expression>>,
},
/// Compute the LayoutInfo for the given layout.
/// The orientation is the orientation of the cache, not the orientation of the layout
ComputeLayoutInfo(crate::layout::Layout, crate::layout::Orientation),
SolveLayout(crate::layout::Layout, crate::layout::Orientation),
}
impl Default for Expression {
fn default() -> Self {
Expression::Invalid
}
}
impl Expression {
/// Return the type of this property
pub fn ty(&self) -> Type {
match self {
Expression::Invalid => Type::Invalid,
Expression::Uncompiled(_) => Type::Invalid,
Expression::StringLiteral(_) => Type::String,
Expression::NumberLiteral(_, unit) => unit.ty(),
Expression::BoolLiteral(_) => Type::Bool,
Expression::TwoWayBinding(nr, _) => nr.ty(),
Expression::CallbackReference(nr) => nr.ty(),
Expression::PropertyReference(nr) => nr.ty(),
Expression::BuiltinFunctionReference(funcref, _) => funcref.ty(),
Expression::MemberFunction { member, .. } => member.ty(),
Expression::BuiltinMacroReference { .. } => Type::Invalid, // We don't know the type
Expression::ElementReference(_) => Type::ElementReference,
Expression::RepeaterIndexReference { .. } => Type::Int32,
Expression::RepeaterModelReference { element } => {
if let Expression::Cast { from, .. } = element
.upgrade()
.unwrap()
.borrow()
.repeated
.as_ref()
.map_or(&Expression::Invalid, |e| &e.model)
{
match from.ty() {
Type::Float32 | Type::Int32 => Type::Int32,
Type::Array(elem) => *elem,
_ => Type::Invalid,
}
} else {
Type::Invalid
}
}
Expression::FunctionParameterReference { ty, .. } => ty.clone(),
Expression::StructFieldAccess { base, name } => match base.ty() {
Type::Struct { fields, .. } => {
fields.get(name.as_str()).unwrap_or(&Type::Invalid).clone()
}
Type::Component(c) => c.root_element.borrow().lookup_property(name).property_type,
_ => Type::Invalid,
},
Expression::Cast { to, .. } => to.clone(),
Expression::CodeBlock(sub) => sub.last().map_or(Type::Void, |e| e.ty()),
Expression::FunctionCall { function, .. } => match function.ty() {
Type::Function { return_type, .. } => *return_type,
Type::Callback { return_type, .. } => return_type.map_or(Type::Void, |x| *x),
_ => Type::Invalid,
},
Expression::SelfAssignment { .. } => Type::Void,
Expression::ImageReference { .. } => Type::Image,
Expression::Condition { condition: _, true_expr, false_expr } => {
let true_type = true_expr.ty();
let false_type = false_expr.ty();
if true_type == false_type {
true_type
} else {
Type::Invalid
}
}
Expression::BinaryExpression { op, lhs, rhs } => {
if operator_class(*op) != OperatorClass::ArithmeticOp {
Type::Bool
} else if *op == '+' || *op == '-' {
let (rhs_ty, lhs_ty) = (rhs.ty(), lhs.ty());
if rhs_ty == lhs_ty {
rhs_ty
} else {
Type::Invalid
}
} else {
debug_assert!(*op == '*' || *op == '/');
let unit_vec = |ty| {
if let Type::UnitProduct(v) = ty {
v.clone()
} else if let Some(u) = ty.default_unit() {
vec![(u, 1)]
} else {
vec![]
}
};
let mut l_units = unit_vec(lhs.ty());
let mut r_units = unit_vec(rhs.ty());
if *op == '/' {
for (_, power) in &mut r_units {
*power = -*power;
}
}
for (unit, power) in r_units {
if let Some((_, p)) = l_units.iter_mut().find(|(u, _)| *u == unit) {
*p += power;
} else {
l_units.push((unit, power));
}
}
// normalize the vector by removing empty and sorting
l_units.retain(|(_, p)| *p != 0);
l_units.sort_unstable_by(|(u1, p1), (u2, p2)| match p2.cmp(p1) {
std::cmp::Ordering::Equal => u1.cmp(u2),
x => x,
});
if l_units.is_empty() {
Type::Float32
} else if l_units.len() == 1 && l_units[0].1 == 1 {
l_units[0].0.ty()
} else {
Type::UnitProduct(l_units)
}
}
}
Expression::UnaryOp { sub, .. } => sub.ty(),
Expression::Array { element_ty, .. } => Type::Array(Box::new(element_ty.clone())),
Expression::Struct { ty, .. } => ty.clone(),
Expression::PathElements { .. } => Type::PathElements,
Expression::StoreLocalVariable { .. } => Type::Void,
Expression::ReadLocalVariable { ty, .. } => ty.clone(),
Expression::EasingCurve(_) => Type::Easing,
Expression::LinearGradient { .. } => Type::Brush,
Expression::EnumerationValue(value) => Type::Enumeration(value.enumeration.clone()),
// invalid because the expression is unreachable
Expression::ReturnStatement(_) => Type::Invalid,
Expression::LayoutCacheAccess { .. } => Type::LogicalLength,
Expression::ComputeLayoutInfo(..) => crate::layout::layout_info_type(),
Expression::SolveLayout(..) => Type::LayoutCache,
}
}
/// Call the visitor for each sub-expression. (note: this function does not recurse)
pub fn visit(&self, mut visitor: impl FnMut(&Self)) {
match self {
Expression::Invalid => {}
Expression::Uncompiled(_) => {}
Expression::TwoWayBinding(_, sub) => {
if let Some(e) = sub.as_deref() {
visitor(e)
}
}
Expression::StringLiteral(_) => {}
Expression::NumberLiteral(_, _) => {}
Expression::BoolLiteral(_) => {}
Expression::CallbackReference { .. } => {}
Expression::PropertyReference { .. } => {}
Expression::FunctionParameterReference { .. } => {}
Expression::BuiltinFunctionReference { .. } => {}
Expression::MemberFunction { base, member, .. } => {
visitor(&**base);
visitor(&**member);
}
Expression::BuiltinMacroReference { .. } => {}
Expression::ElementReference(_) => {}
Expression::StructFieldAccess { base, .. } => visitor(&**base),
Expression::RepeaterIndexReference { .. } => {}
Expression::RepeaterModelReference { .. } => {}
Expression::Cast { from, .. } => visitor(&**from),
Expression::CodeBlock(sub) => {
sub.iter().for_each(visitor);
}
Expression::FunctionCall { function, arguments, source_location: _ } => {
visitor(&**function);
arguments.iter().for_each(visitor);
}
Expression::SelfAssignment { lhs, rhs, .. } => {
visitor(&**lhs);
visitor(&**rhs);
}
Expression::ImageReference { .. } => {}
Expression::Condition { condition, true_expr, false_expr } => {
visitor(&**condition);
visitor(&**true_expr);
visitor(&**false_expr);
}
Expression::BinaryExpression { lhs, rhs, .. } => {
visitor(&**lhs);
visitor(&**rhs);
}
Expression::UnaryOp { sub, .. } => visitor(&**sub),
Expression::Array { values, .. } => {
for x in values {
visitor(x);
}
}
Expression::Struct { values, .. } => {
for x in values.values() {
visitor(x);
}
}
Expression::PathElements { elements } => {
if let Path::Elements(elements) = elements {
for element in elements {
element.bindings.values().for_each(|binding| visitor(binding))
}
}
}
Expression::StoreLocalVariable { value, .. } => visitor(&**value),
Expression::ReadLocalVariable { .. } => {}
Expression::EasingCurve(_) => {}
Expression::LinearGradient { angle, stops } => {
visitor(&angle);
for (c, s) in stops {
visitor(c);
visitor(s);
}
}
Expression::EnumerationValue(_) => {}
Expression::ReturnStatement(expr) => {
expr.as_deref().map(visitor);
}
Expression::LayoutCacheAccess { repeater_index, .. } => {
repeater_index.as_deref().map(visitor);
}
Expression::ComputeLayoutInfo(..) => {}
Expression::SolveLayout(..) => {}
}
}
pub fn visit_mut(&mut self, mut visitor: impl FnMut(&mut Self)) {
match self {
Expression::Invalid => {}
Expression::Uncompiled(_) => {}
Expression::TwoWayBinding(_, sub) => {
if let Some(e) = sub.as_deref_mut() {
visitor(e)
}
}
Expression::StringLiteral(_) => {}
Expression::NumberLiteral(_, _) => {}
Expression::BoolLiteral(_) => {}
Expression::CallbackReference { .. } => {}
Expression::PropertyReference { .. } => {}
Expression::FunctionParameterReference { .. } => {}
Expression::BuiltinFunctionReference { .. } => {}
Expression::MemberFunction { base, member, .. } => {
visitor(&mut **base);
visitor(&mut **member);
}
Expression::BuiltinMacroReference { .. } => {}
Expression::ElementReference(_) => {}
Expression::StructFieldAccess { base, .. } => visitor(&mut **base),
Expression::RepeaterIndexReference { .. } => {}
Expression::RepeaterModelReference { .. } => {}
Expression::Cast { from, .. } => visitor(&mut **from),
Expression::CodeBlock(sub) => {
sub.iter_mut().for_each(visitor);
}
Expression::FunctionCall { function, arguments, source_location: _ } => {
visitor(&mut **function);
arguments.iter_mut().for_each(visitor);
}
Expression::SelfAssignment { lhs, rhs, .. } => {
visitor(&mut **lhs);
visitor(&mut **rhs);
}
Expression::ImageReference { .. } => {}
Expression::Condition { condition, true_expr, false_expr } => {
visitor(&mut **condition);
visitor(&mut **true_expr);
visitor(&mut **false_expr);
}
Expression::BinaryExpression { lhs, rhs, .. } => {
visitor(&mut **lhs);
visitor(&mut **rhs);
}
Expression::UnaryOp { sub, .. } => visitor(&mut **sub),
Expression::Array { values, .. } => {
for x in values {
visitor(x);
}
}
Expression::Struct { values, .. } => {
for x in values.values_mut() {
visitor(x);
}
}
Expression::PathElements { elements } => {
if let Path::Elements(elements) = elements {
for element in elements {
element.bindings.values_mut().for_each(|binding| visitor(binding))
}
}
}
Expression::StoreLocalVariable { value, .. } => visitor(&mut **value),
Expression::ReadLocalVariable { .. } => {}
Expression::EasingCurve(_) => {}
Expression::LinearGradient { angle, stops } => {
visitor(&mut *angle);
for (c, s) in stops {
visitor(c);
visitor(s);
}
}
Expression::EnumerationValue(_) => {}
Expression::ReturnStatement(expr) => {
expr.as_deref_mut().map(visitor);
}
Expression::LayoutCacheAccess { repeater_index, .. } => {
repeater_index.as_deref_mut().map(visitor);
}
Expression::ComputeLayoutInfo(..) => {}
Expression::SolveLayout(..) => {}
}
}
/// Visit itself and each sub expression recursively
pub fn visit_recursive(&self, visitor: &mut dyn FnMut(&Self)) {
visitor(self);
self.visit(|e| e.visit_recursive(visitor));
}
pub fn is_constant(&self) -> bool {
match self {
Expression::Invalid => true,
Expression::Uncompiled(_) => false,
Expression::TwoWayBinding(nr, expr) => {
nr.is_constant() && expr.as_ref().map_or(true, |e| e.is_constant())
}
Expression::StringLiteral(_) => true,
Expression::NumberLiteral(_, _) => true,
Expression::BoolLiteral(_) => true,
Expression::CallbackReference { .. } => false,
Expression::PropertyReference(nr) => nr.is_constant(),
Expression::BuiltinFunctionReference(func, _) => func.is_pure(),
Expression::MemberFunction { .. } => false,
Expression::ElementReference(_) => false,
Expression::RepeaterIndexReference { .. } => false,
Expression::RepeaterModelReference { .. } => false,
Expression::FunctionParameterReference { .. } => false,
Expression::BuiltinMacroReference { .. } => true,
Expression::StructFieldAccess { base, .. } => base.is_constant(),
Expression::Cast { from, .. } => from.is_constant(),
Expression::CodeBlock(sub) => sub.len() == 1 && sub.first().unwrap().is_constant(),
Expression::FunctionCall { function, arguments, .. } => {
// Assume that constant function are, in fact, pure
function.is_constant() && arguments.iter().all(|a| a.is_constant())
}
Expression::SelfAssignment { .. } => false,
Expression::ImageReference { .. } => true,
Expression::Condition { condition, false_expr, true_expr } => {
condition.is_constant() && false_expr.is_constant() && true_expr.is_constant()
}
Expression::BinaryExpression { lhs, rhs, .. } => lhs.is_constant() && rhs.is_constant(),
Expression::UnaryOp { sub, .. } => sub.is_constant(),
Expression::Array { values, .. } => values.iter().all(Expression::is_constant),
Expression::Struct { values, .. } => values.iter().all(|(_, v)| v.is_constant()),
Expression::PathElements { elements } => {
if let Path::Elements(elements) = elements {
elements
.iter()
.all(|element| element.bindings.values().all(|v| v.is_constant()))
} else {
true
}
}
Expression::StoreLocalVariable { .. } => false,
// we should somehow find out if this is constant or not
Expression::ReadLocalVariable { .. } => false,
Expression::EasingCurve(_) => true,
Expression::LinearGradient { angle, stops } => {
angle.is_constant() && stops.iter().all(|(c, s)| c.is_constant() && s.is_constant())
}
Expression::EnumerationValue(_) => true,
Expression::ReturnStatement(expr) => {
expr.as_ref().map_or(true, |expr| expr.is_constant())
}
// TODO: detect constant property within layouts
Expression::LayoutCacheAccess { .. } => false,
Expression::ComputeLayoutInfo(..) => false,
Expression::SolveLayout(..) => false,
}
}
/// Create a conversion node if needed, or throw an error if the type is not matching
pub fn maybe_convert_to(
self,
target_type: Type,
node: &impl Spanned,
diag: &mut BuildDiagnostics,
) -> Expression {
let ty = self.ty();
if ty == target_type
|| target_type == Type::Void
|| target_type == Type::Invalid
|| ty == Type::Invalid
{
self
} else if ty.can_convert(&target_type) {
let from = match (ty, &target_type) {
(Type::Percent, Type::Float32) => Expression::BinaryExpression {
lhs: Box::new(self),
rhs: Box::new(Expression::NumberLiteral(0.01, Unit::None)),
op: '*',
},
(Type::Struct { fields: ref a, .. }, Type::Struct { fields: b, name, node: n })
if a != b =>
{
if let Expression::Struct { mut values, .. } = self {
let mut new_values = HashMap::new();
for (k, ty) in b {
let (k, e) = values.remove_entry(k).map_or_else(
|| (k.clone(), Expression::default_value_for_type(ty)),
|(k, e)| (k, e.maybe_convert_to(ty.clone(), node, diag)),
);
new_values.insert(k, e);
}
return Expression::Struct { values: new_values, ty: target_type };
}
let var_name = "tmpobj";
let mut new_values = HashMap::new();
for (k, ty) in b {
let e = if a.contains_key(k) {
Expression::StructFieldAccess {
base: Box::new(Expression::ReadLocalVariable {
name: var_name.into(),
ty: Type::Struct {
fields: a.clone(),
name: name.clone(),
node: n.clone(),
},
}),
name: k.clone(),
}
.maybe_convert_to(ty.clone(), node, diag)
} else {
Expression::default_value_for_type(ty)
};
new_values.insert(k.clone(), e);
}
return Expression::CodeBlock(vec![
Expression::StoreLocalVariable {
name: var_name.into(),
value: Box::new(self),
},
Expression::Struct { values: new_values, ty: target_type },
]);
}
(Type::Struct { .. }, Type::Component(c)) => {
let struct_type_for_component = Type::Struct {
fields: c
.root_element
.borrow()
.property_declarations
.iter()
.map(|(name, prop_decl)| {
(name.clone(), prop_decl.property_type.clone())
})
.collect(),
name: None,
node: None,
};
self.maybe_convert_to(struct_type_for_component, node, diag)
}
(a, b) => match (a.as_unit_product(), b.as_unit_product()) {
(Some(a), Some(b)) => {
if let Some(power) = crate::langtype::unit_product_length_conversion(&a, &b)
{
let op = if power < 0 { '*' } else { '/' };
let mut result = self;
for _ in 0..power.abs() {
result = Expression::BinaryExpression {
lhs: Box::new(result),
rhs: Box::new(Expression::FunctionCall {
function: Box::new(Expression::BuiltinFunctionReference(
BuiltinFunction::GetWindowScaleFactor,
Some(node.to_source_location()),
)),
arguments: vec![],
source_location: Some(node.to_source_location()),
}),
op,
}
}
result
} else {
self
}
}
_ => self,
},
};
Expression::Cast { from: Box::new(from), to: target_type }
} else if matches!((&ty, &target_type, &self), (Type::Array(a), Type::Array(b), Expression::Array{..})
if a.can_convert(b) || **a == Type::Invalid)
{
// Special case for converting array literals
match (self, target_type) {
(Expression::Array { values, .. }, Type::Array(target_type)) => Expression::Array {
values: values
.into_iter()
.map(|e| e.maybe_convert_to((*target_type).clone(), node, diag))
.collect(),
element_ty: *target_type,
},
_ => unreachable!(),
}
} else {
let mut message = format!("Cannot convert {} to {}", ty, target_type);
// Explicit error message for unit cnversion
if let Some(from_unit) = ty.default_unit() {
if matches!(&target_type, Type::Int32 | Type::Float32 | Type::String) {
message = format!(
"{}. Divide by 1{} to convert to a plain number.",
message, from_unit
);
}
} else if let Some(to_unit) = target_type.default_unit() {
if matches!(ty, Type::Int32 | Type::Float32) {
if let Expression::NumberLiteral(value, Unit::None) = self {
if value == 0. {
// Allow conversion from literal 0 to any unit
return Expression::NumberLiteral(0., to_unit);
}
}
message = format!(
"{}. Use an unit, or multiply by 1{} to convert explicitly.",
message, to_unit
);
}
}
diag.push_error(message, node);
self
}
}
/// Return the default value for the given type
pub fn default_value_for_type(ty: &Type) -> Expression {
match ty {
Type::Invalid
| Type::Component(_)
| Type::Builtin(_)
| Type::Native(_)
| Type::Callback { .. }
| Type::Function { .. }
| Type::Void
| Type::InferredProperty
| Type::InferredCallback
| Type::ElementReference
| Type::LayoutCache => Expression::Invalid,
Type::Float32 => Expression::NumberLiteral(0., Unit::None),
Type::Int32 => Expression::NumberLiteral(0., Unit::None),
Type::String => Expression::StringLiteral(String::new()),
Type::Color => Expression::Cast {
from: Box::new(Expression::NumberLiteral(0., Unit::None)),
to: Type::Color,
},
Type::Duration => Expression::NumberLiteral(0., Unit::Ms),
Type::Angle => Expression::NumberLiteral(0., Unit::Deg),
Type::PhysicalLength => Expression::NumberLiteral(0., Unit::Phx),
Type::LogicalLength => Expression::NumberLiteral(0., Unit::Px),
Type::Percent => Expression::NumberLiteral(100., Unit::Percent),
// FIXME: Is that correct?
Type::Image => Expression::ImageReference(ImageReference::AbsolutePath(String::new())),
Type::Bool => Expression::BoolLiteral(false),
Type::Model => Expression::Invalid,
Type::PathElements => Expression::PathElements { elements: Path::Elements(vec![]) },
Type::Array(element_ty) => {
Expression::Array { element_ty: (**element_ty).clone(), values: vec![] }
}
Type::Struct { fields, .. } => Expression::Struct {
ty: ty.clone(),
values: fields
.iter()
.map(|(k, v)| (k.clone(), Expression::default_value_for_type(v)))
.collect(),
},
Type::Easing => Expression::EasingCurve(EasingCurve::default()),
Type::Brush => Expression::Cast {
from: Box::new(Expression::default_value_for_type(&Type::Color)),
to: Type::Brush,
},
Type::Enumeration(enumeration) => {
Expression::EnumerationValue(enumeration.clone().default_value())
}
Type::UnitProduct(_) => Expression::Cast {
from: Box::new(Expression::NumberLiteral(0., Unit::None)),
to: ty.clone(),
},
}
}
/// Try to mark this expression to a lvalue that can be assigned to.
///
/// Return true if the expression is a "lvalue" that can be used as the left hand side of a `=` or `+=` or similar
pub fn try_set_rw(&mut self) -> bool {
match self {
Expression::PropertyReference(nr) => {
nr.element()
.borrow()
.property_analysis
.borrow_mut()
.entry(nr.name().to_owned())
.or_default()
.is_set = true;
true
}
Expression::StructFieldAccess { base, .. } => base.try_set_rw(),
Expression::RepeaterModelReference { .. } => true,
_ => false,
}
}
}
/// The expression in the Element::binding hash table
#[derive(Debug, Clone, derive_more::Deref, derive_more::DerefMut)]
pub struct BindingExpression {
#[deref]
#[deref_mut]
pub expression: Expression,
/// The location of this expression in the source code
pub span: Option<SourceLocation>,
/// How deep is this binding declared in the hierarchy. When two binding are conflicting
/// for the same priority (because of two way binding), the lower priority wins.
/// The priority starts at 1, and each level of inlining adds one to the priority.
/// 0 means the expression was added by some passes and it is not explicit in the source code
pub priority: i32,
/// The analysis information. None before it is computed
pub analysis: RefCell<Option<BindingAnalysis>>,
}
impl std::convert::From<Expression> for BindingExpression {
fn from(expression: Expression) -> Self {
Self { expression, span: None, priority: 0, analysis: Default::default() }
}
}
impl BindingExpression {
pub fn new_uncompiled(node: SyntaxNode) -> Self {
Self {
expression: Expression::Uncompiled(node.clone()),
span: Some(node.to_source_location()),
priority: 1,
analysis: Default::default(),
}
}
pub fn new_with_span(expression: Expression, span: SourceLocation) -> Self {
Self { expression, span: Some(span), priority: 0, analysis: Default::default() }
}
}
impl Spanned for BindingExpression {
fn span(&self) -> crate::diagnostics::Span {
self.span.as_ref().map(|x| x.span()).unwrap_or_default()
}
fn source_file(&self) -> Option<&crate::diagnostics::SourceFile> {
self.span.as_ref().and_then(|x| x.source_file())
}
}
#[derive(Default, Debug, Clone)]
pub struct BindingAnalysis {
/// true if that binding is part of a binding loop that already has been reported.
pub is_in_binding_loop: bool,
/// true if the binding is a constant value that can be set without creating a binding at runtime
pub is_const: bool,
}
pub type PathEvents = Vec<lyon_path::Event<lyon_path::math::Point, lyon_path::math::Point>>;
#[derive(Debug, Clone)]
pub enum Path {
Elements(Vec<PathElement>),
Events(PathEvents),
}
#[derive(Debug, Clone)]
pub struct PathElement {
pub element_type: Rc<BuiltinElement>,
pub bindings: HashMap<String, BindingExpression>,
}
#[derive(Clone, Debug)]
pub enum EasingCurve {
Linear,
CubicBezier(f32, f32, f32, f32),
// CubicBesizerNonConst([Box<Expression>; 4]),
// Custom(Box<dyn Fn(f32)->f32>),
}
impl Default for EasingCurve {
fn default() -> Self {
Self::Linear
}
}
// The compiler generates ResourceReference::AbsolutePath for all references likg @image-url("foo.png")
// and the resource lowering path may change this to EmbeddedData if configured.
#[derive(Clone, Debug)]
pub enum ImageReference {
None,
AbsolutePath(String),
EmbeddedData(usize),
}
/// Print the expression as a .60 code (not nessecarily valid .60)
pub fn pretty_print(f: &mut dyn std::fmt::Write, expression: &Expression) -> std::fmt::Result {
match expression {
Expression::Invalid => write!(f, "<invalid>"),
Expression::Uncompiled(u) => write!(f, "{:?}", u),
Expression::TwoWayBinding(a, b) => {
write!(f, "<=>{:?}", a)?;
if let Some(b) = b {
write!(f, ":")?;
pretty_print(f, b)?;
}
Ok(())
}
Expression::StringLiteral(s) => write!(f, "{:?}", s),
Expression::NumberLiteral(vl, unit) => write!(f, "{}{}", vl, unit),
Expression::BoolLiteral(b) => write!(f, "{:?}", b),
Expression::CallbackReference(a) => write!(f, "{:?}", a),
Expression::PropertyReference(a) => write!(f, "{:?}", a),
Expression::BuiltinFunctionReference(a, _) => write!(f, "{:?}", a),
Expression::MemberFunction { base, base_node: _, member } => {
pretty_print(f, base)?;
write!(f, ".")?;
pretty_print(f, member)
}
Expression::BuiltinMacroReference(a, _) => write!(f, "{:?}", a),
Expression::ElementReference(a) => write!(f, "{:?}", a),
Expression::RepeaterIndexReference { element } => {
crate::namedreference::pretty_print_element_ref(f, element)
}
Expression::RepeaterModelReference { element } => {
crate::namedreference::pretty_print_element_ref(f, element)?;
write!(f, ".@model")
}
Expression::FunctionParameterReference { index, ty: _ } => write!(f, "_arg_{}", index),
Expression::StoreLocalVariable { name, value } => {
write!(f, "{} = ", name)?;
pretty_print(f, value)
}
Expression::ReadLocalVariable { name, ty: _ } => write!(f, "{}", name),
Expression::StructFieldAccess { base, name } => {
pretty_print(f, base)?;
write!(f, ".{}", name)
}
Expression::Cast { from, to } => {
write!(f, "(")?;
pretty_print(f, from)?;
write!(f, "/* as {} */)", to)
}
Expression::CodeBlock(c) => {
write!(f, "{{ ")?;
for e in c {
pretty_print(f, e)?;
write!(f, "; ")?;
}
write!(f, "}}")
}
Expression::FunctionCall { function, arguments, source_location: _ } => {
pretty_print(f, function)?;
write!(f, "(")?;
for e in arguments {
pretty_print(f, e)?;
write!(f, ", ")?;
}
write!(f, ")")
}
Expression::SelfAssignment { lhs, rhs, op } => {
pretty_print(f, lhs)?;
write!(f, " {}= ", if *op == '=' { ' ' } else { *op })?;
pretty_print(f, rhs)
}
Expression::BinaryExpression { lhs, rhs, op } => {
write!(f, "(")?;
pretty_print(f, lhs)?;
match *op {
'=' | '!' => write!(f, " {}= ", op)?,
_ => write!(f, " {} ", op)?,
};
pretty_print(f, rhs)?;
write!(f, ")")
}
Expression::UnaryOp { sub, op } => {
write!(f, "{}", op)?;
pretty_print(f, sub)
}
Expression::ImageReference(a) => write!(f, "{:?}", a),
Expression::Condition { condition, true_expr, false_expr } => {
write!(f, "if (")?;
pretty_print(f, condition)?;
write!(f, ") {{ ")?;
pretty_print(f, true_expr)?;
write!(f, " }} else {{ ")?;
pretty_print(f, false_expr)?;
write!(f, " }}")
}
Expression::Array { element_ty: _, values } => {
write!(f, "[")?;
for e in values {
pretty_print(f, e)?;
write!(f, ", ")?;
}
write!(f, "]")
}
Expression::Struct { ty: _, values } => {
write!(f, "{{ ")?;
for (name, e) in values {
write!(f, "{}: ", name)?;
pretty_print(f, e)?;
write!(f, ", ")?;
}
write!(f, " }}")
}
Expression::PathElements { elements } => write!(f, "{:?}", elements),
Expression::EasingCurve(e) => write!(f, "{:?}", e),
Expression::LinearGradient { angle, stops } => {
write!(f, "@linear-gradient(")?;
pretty_print(f, &angle)?;
for (c, s) in stops {
write!(f, ", ")?;
pretty_print(f, &c)?;
write!(f, " ")?;
pretty_print(f, &s)?;
}
write!(f, ")")
}
Expression::EnumerationValue(e) => match e.enumeration.values.get(e.value as usize) {
Some(val) => write!(f, "{}.{}", e.enumeration.name, val),
None => write!(f, "{}.{}", e.enumeration.name, e.value),
},
Expression::ReturnStatement(e) => {
write!(f, "return ")?;
e.as_ref().map(|e| pretty_print(f, e)).unwrap_or(Ok(()))
}
Expression::LayoutCacheAccess { layout_cache_prop, index, repeater_index } => {
write!(
f,
"{:?}[{}{}]",
layout_cache_prop,
index,
if repeater_index.is_some() { " + $index" } else { "" }
)
}
Expression::ComputeLayoutInfo(..) => write!(f, "layout_info(..)"),
Expression::SolveLayout(..) => write!(f, "solve_layout(..)"),
}
}