slint/internal/compiler/llr/expression.rs
Olivier Goffart d0ed0438ce
LLR: peliminary support for multiple public components
There currently still can only be one because the passes expect that,
but now the LLR and generator should be ready to accept multiple public
component later
2024-06-15 14:44:11 +02:00

801 lines
30 KiB
Rust

// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0
use super::PropertyReference;
use crate::expression_tree::{BuiltinFunction, MinMaxOp, OperatorClass};
use crate::langtype::Type;
use crate::layout::Orientation;
use core::num::NonZeroUsize;
use itertools::Either;
use std::collections::HashMap;
#[derive(Debug, Clone)]
pub enum Expression {
/// A string literal. The .0 is the content of the string, without the quotes
StringLiteral(String),
/// Number
NumberLiteral(f64),
/// Bool
BoolLiteral(bool),
/// Reference to a property (which can also be a callback) or an element (property name is empty then).
PropertyReference(PropertyReference),
/// Reference the parameter at the given index of the current function.
FunctionParameterReference {
index: usize,
//ty: Type,
},
/// Should be directly within a CodeBlock expression, and store the value of the expression in a local variable
StoreLocalVariable {
name: String,
value: Box<Expression>,
},
/// a reference to the local variable with the given name. The type system should ensure that a variable has been stored
/// with this name and this type before in one of the statement of an enclosing codeblock
ReadLocalVariable {
name: String,
ty: Type,
},
/// Access to a field of the given name within a struct.
StructFieldAccess {
/// This expression should have [`Type::Struct`] type
base: Box<Expression>,
name: String,
},
/// Access to a index within an array.
ArrayIndex {
/// This expression should have [`Type::Array`] type
array: Box<Expression>,
index: Box<Expression>,
},
/// Cast an expression to the given type
Cast {
from: Box<Expression>,
to: Type,
},
/// a code block with different expression
CodeBlock(Vec<Expression>),
/// A function call
BuiltinFunctionCall {
function: BuiltinFunction,
arguments: Vec<Expression>,
},
CallBackCall {
callback: PropertyReference,
arguments: Vec<Expression>,
},
FunctionCall {
function: PropertyReference,
arguments: Vec<Expression>,
},
/// A BuiltinFunctionCall, but the function is not yet in the `BuiltinFunction` enum
/// TODO: merge in BuiltinFunctionCall
ExtraBuiltinFunctionCall {
return_ty: Type,
function: String,
arguments: Vec<Expression>,
},
/// An assignment of a value to a property
PropertyAssignment {
property: PropertyReference,
value: Box<Expression>,
},
/// an assignment of a value to the model data
ModelDataAssignment {
// how deep in the parent hierarchy we go
level: usize,
value: Box<Expression>,
},
/// An assignment done with the `foo[idx] = ...`
ArrayIndexAssignment {
array: Box<Expression>,
index: Box<Expression>,
value: Box<Expression>,
},
BinaryExpression {
lhs: Box<Expression>,
rhs: Box<Expression>,
/// '+', '-', '/', '*', '=', '!', '<', '>', '≤', '≥', '&', '|'
op: char,
},
UnaryOp {
sub: Box<Expression>,
/// '+', '-', '!'
op: char,
},
ImageReference {
resource_ref: crate::expression_tree::ImageReference,
nine_slice: Option<[u16; 4]>,
},
Condition {
condition: Box<Expression>,
true_expr: Box<Expression>,
false_expr: Box<Expression>,
},
Array {
element_ty: Type,
values: Vec<Expression>,
/// When true, this should be converted to a model. When false, this should stay as a slice
as_model: bool,
},
Struct {
ty: Type,
values: HashMap<String, Expression>,
},
EasingCurve(crate::expression_tree::EasingCurve),
LinearGradient {
angle: Box<Expression>,
/// First expression in the tuple is a color, second expression is the stop position
stops: Vec<(Expression, Expression)>,
},
RadialGradient {
/// First expression in the tuple is a color, second expression is the stop position
stops: Vec<(Expression, Expression)>,
},
EnumerationValue(crate::langtype::EnumerationValue),
LayoutCacheAccess {
layout_cache_prop: PropertyReference,
index: usize,
/// When set, this is the index within a repeater, and the index is then the location of another offset.
/// So this looks like `layout_cache_prop[layout_cache_prop[index] + repeater_index]`
repeater_index: Option<Box<Expression>>,
},
/// Will call the sub_expression, with the cell variable set to the
/// array of BoxLayoutCellData from the elements
BoxLayoutFunction {
/// The local variable (as read with [`Self::ReadLocalVariable`]) that contains the sell
cells_variable: String,
/// The name for the local variable that contains the repeater indices
repeater_indices: Option<String>,
/// Either an expression of type BoxLayoutCellData, or an index to the repeater
elements: Vec<Either<Expression, u32>>,
orientation: Orientation,
sub_expression: Box<Expression>,
},
ComputeDialogLayoutCells {
/// The local variable where the slice of cells is going to be stored
cells_variable: String,
roles: Box<Expression>,
/// This is an Expression::Array
unsorted_cells: Box<Expression>,
},
MinMax {
ty: Type,
op: MinMaxOp,
lhs: Box<Expression>,
rhs: Box<Expression>,
},
}
impl Expression {
pub fn default_value_for_type(ty: &Type) -> Option<Self> {
Some(match ty {
Type::Invalid
| Type::Callback { .. }
| Type::ComponentFactory
| Type::Function { .. }
| Type::Void
| Type::InferredProperty
| Type::InferredCallback
| Type::ElementReference
| Type::LayoutCache => return None,
Type::Float32
| Type::Duration
| Type::Int32
| Type::Angle
| Type::PhysicalLength
| Type::LogicalLength
| Type::Rem
| Type::UnitProduct(_) => Expression::NumberLiteral(0.),
Type::Percent => Expression::NumberLiteral(1.),
Type::String => Expression::StringLiteral(String::new()),
Type::Color => {
Expression::Cast { from: Box::new(Expression::NumberLiteral(0.)), to: ty.clone() }
}
Type::Image => Expression::ImageReference {
resource_ref: crate::expression_tree::ImageReference::None,
nine_slice: None,
},
Type::Bool => Expression::BoolLiteral(false),
Type::Model => return None,
Type::PathData => return None,
Type::Array(element_ty) => Expression::Array {
element_ty: (**element_ty).clone(),
values: vec![],
as_model: true,
},
Type::Struct { fields, .. } => Expression::Struct {
ty: ty.clone(),
values: fields
.iter()
.map(|(k, v)| Some((k.clone(), Expression::default_value_for_type(v)?)))
.collect::<Option<_>>()?,
},
Type::Easing => Expression::EasingCurve(crate::expression_tree::EasingCurve::default()),
Type::Brush => Expression::Cast {
from: Box::new(Expression::default_value_for_type(&Type::Color)?),
to: Type::Brush,
},
Type::Enumeration(enumeration) => {
Expression::EnumerationValue(enumeration.clone().default_value())
}
})
}
pub fn ty(&self, ctx: &dyn TypeResolutionContext) -> Type {
match self {
Self::StringLiteral(_) => Type::String,
Self::NumberLiteral(_) => Type::Float32,
Self::BoolLiteral(_) => Type::Bool,
Self::PropertyReference(prop) => ctx.property_ty(prop).clone(),
Self::FunctionParameterReference { index } => ctx.arg_type(*index).clone(),
Self::StoreLocalVariable { .. } => Type::Void,
Self::ReadLocalVariable { ty, .. } => ty.clone(),
Self::StructFieldAccess { base, name } => match base.ty(ctx) {
Type::Struct { fields, .. } => fields[name].clone(),
_ => unreachable!(),
},
Self::ArrayIndex { array, .. } => match array.ty(ctx) {
Type::Array(ty) => *ty,
_ => unreachable!(),
},
Self::Cast { to, .. } => to.clone(),
Self::CodeBlock(sub) => sub.last().map_or(Type::Void, |e| e.ty(ctx)),
Self::BuiltinFunctionCall { function, .. } => match function.ty() {
Type::Function { return_type, .. } => *return_type,
_ => unreachable!(),
},
Self::CallBackCall { callback, .. } => {
if let Type::Callback { return_type, .. } = ctx.property_ty(callback) {
return_type.as_ref().map_or(Type::Void, |x| (**x).clone())
} else {
Type::Invalid
}
}
Self::FunctionCall { function, .. } => ctx.property_ty(function).clone(),
Self::ExtraBuiltinFunctionCall { return_ty, .. } => return_ty.clone(),
Self::PropertyAssignment { .. } => Type::Void,
Self::ModelDataAssignment { .. } => Type::Void,
Self::ArrayIndexAssignment { .. } => Type::Void,
Self::BinaryExpression { lhs, rhs: _, op } => {
if crate::expression_tree::operator_class(*op) != OperatorClass::ArithmeticOp {
Type::Bool
} else {
lhs.ty(ctx)
}
}
Self::UnaryOp { sub, .. } => sub.ty(ctx),
Self::ImageReference { .. } => Type::Image,
Self::Condition { false_expr, .. } => false_expr.ty(ctx),
Self::Array { element_ty, .. } => Type::Array(element_ty.clone().into()),
Self::Struct { ty, .. } => ty.clone(),
Self::EasingCurve(_) => Type::Easing,
Self::LinearGradient { .. } => Type::Brush,
Self::RadialGradient { .. } => Type::Brush,
Self::EnumerationValue(e) => Type::Enumeration(e.enumeration.clone()),
Self::LayoutCacheAccess { .. } => Type::LogicalLength,
Self::BoxLayoutFunction { sub_expression, .. } => sub_expression.ty(ctx),
Self::ComputeDialogLayoutCells { .. } => {
Type::Array(super::lower_expression::grid_layout_cell_data_ty().into())
}
Self::MinMax { ty, .. } => ty.clone(),
}
}
}
macro_rules! visit_impl {
($self:ident, $visitor:ident, $as_ref:ident, $iter:ident, $values:ident) => {
match $self {
Expression::StringLiteral(_) => {}
Expression::NumberLiteral(_) => {}
Expression::BoolLiteral(_) => {}
Expression::PropertyReference(_) => {}
Expression::FunctionParameterReference { .. } => {}
Expression::StoreLocalVariable { value, .. } => $visitor(value),
Expression::ReadLocalVariable { .. } => {}
Expression::StructFieldAccess { base, .. } => $visitor(base),
Expression::ArrayIndex { array, index } => {
$visitor(array);
$visitor(index);
}
Expression::Cast { from, .. } => $visitor(from),
Expression::CodeBlock(b) => b.$iter().for_each($visitor),
Expression::BuiltinFunctionCall { arguments, .. }
| Expression::CallBackCall { arguments, .. }
| Expression::FunctionCall { arguments, .. } => arguments.$iter().for_each($visitor),
Expression::ExtraBuiltinFunctionCall { arguments, .. } => {
arguments.$iter().for_each($visitor)
}
Expression::PropertyAssignment { value, .. } => $visitor(value),
Expression::ModelDataAssignment { value, .. } => $visitor(value),
Expression::ArrayIndexAssignment { array, index, value } => {
$visitor(array);
$visitor(index);
$visitor(value);
}
Expression::BinaryExpression { lhs, rhs, .. } => {
$visitor(lhs);
$visitor(rhs);
}
Expression::UnaryOp { sub, .. } => {
$visitor(sub);
}
Expression::ImageReference { .. } => {}
Expression::Condition { condition, true_expr, false_expr } => {
$visitor(condition);
$visitor(true_expr);
$visitor(false_expr);
}
Expression::Array { values, .. } => values.$iter().for_each($visitor),
Expression::Struct { values, .. } => values.$values().for_each($visitor),
Expression::EasingCurve(_) => {}
Expression::LinearGradient { angle, stops } => {
$visitor(angle);
for (a, b) in stops {
$visitor(a);
$visitor(b);
}
}
Expression::RadialGradient { stops } => {
for (a, b) in stops {
$visitor(a);
$visitor(b);
}
}
Expression::EnumerationValue(_) => {}
Expression::LayoutCacheAccess { repeater_index, .. } => {
if let Some(repeater_index) = repeater_index {
$visitor(repeater_index);
}
}
Expression::BoxLayoutFunction { elements, sub_expression, .. } => {
$visitor(sub_expression);
elements.$iter().filter_map(|x| x.$as_ref().left()).for_each($visitor);
}
Expression::ComputeDialogLayoutCells { roles, unsorted_cells, .. } => {
$visitor(roles);
$visitor(unsorted_cells);
}
Expression::MinMax { ty: _, op: _, lhs, rhs } => {
$visitor(lhs);
$visitor(rhs);
}
}
};
}
impl Expression {
/// Call the visitor for each sub-expression (not recursive)
pub fn visit(&self, mut visitor: impl FnMut(&Self)) {
visit_impl!(self, visitor, as_ref, iter, values)
}
/// Call the visitor for each sub-expression (not recursive)
pub fn visit_mut(&mut self, mut visitor: impl FnMut(&mut Self)) {
visit_impl!(self, visitor, as_mut, iter_mut, values_mut)
}
/// Visit itself and each sub expression recursively
pub fn visit_recursive(&self, visitor: &mut dyn FnMut(&Self)) {
visitor(self);
self.visit(|e| e.visit_recursive(visitor));
}
}
pub trait TypeResolutionContext {
/// The type of the property.
///
/// For reference to function, this is the return type
fn property_ty(&self, _: &PropertyReference) -> &Type;
// The type of the specified argument when evaluating a callback
fn arg_type(&self, _index: usize) -> &Type {
unimplemented!()
}
}
pub struct ParentCtx<'a, T = ()> {
pub ctx: &'a EvaluationContext<'a, T>,
// Index of the repeater within the ctx.current_sub_component
pub repeater_index: Option<u32>,
}
impl<'a, T> Clone for ParentCtx<'a, T> {
fn clone(&self) -> Self {
*self
}
}
impl<'a, T> Copy for ParentCtx<'a, T> {}
impl<'a, T> ParentCtx<'a, T> {
pub fn new(ctx: &'a EvaluationContext<'a, T>, repeater_index: Option<u32>) -> Self {
Self { ctx, repeater_index }
}
}
#[derive(Clone)]
pub struct EvaluationContext<'a, T = ()> {
pub compilation_unit: &'a super::CompilationUnit,
pub current_sub_component: Option<&'a super::SubComponent>,
pub current_global: Option<&'a super::GlobalComponent>,
pub generator_state: T,
/// The repeater parent
pub parent: Option<ParentCtx<'a, T>>,
/// The callback argument types
pub argument_types: &'a [Type],
}
impl<'a, T> EvaluationContext<'a, T> {
pub fn new_sub_component(
compilation_unit: &'a super::CompilationUnit,
sub_component: &'a super::SubComponent,
generator_state: T,
parent: Option<ParentCtx<'a, T>>,
) -> Self {
Self {
compilation_unit,
current_sub_component: Some(sub_component),
current_global: None,
generator_state,
parent,
argument_types: &[],
}
}
pub fn new_global(
compilation_unit: &'a super::CompilationUnit,
global: &'a super::GlobalComponent,
generator_state: T,
) -> Self {
Self {
compilation_unit,
current_sub_component: None,
current_global: Some(global),
generator_state,
parent: None,
argument_types: &[],
}
}
pub(crate) fn property_info<'b>(&'b self, prop: &PropertyReference) -> PropertyInfoResult<'b> {
fn match_in_sub_component<'b>(
sc: &'b super::SubComponent,
prop: &PropertyReference,
map: ContextMap,
) -> PropertyInfoResult<'b> {
let property_decl =
if let PropertyReference::Local { property_index, sub_component_path } = &prop {
let mut sc = sc;
for i in sub_component_path {
sc = &sc.sub_components[*i].ty;
}
Some(&sc.properties[*property_index])
} else {
None
};
let animation = sc.animations.get(prop).map(|a| (a, map.clone()));
if let Some(a) = sc.prop_analysis.get(prop) {
let binding = a.property_init.map(|i| (&sc.property_init[i].1, map));
return PropertyInfoResult {
analysis: Some(&a.analysis),
binding,
animation,
property_decl,
};
}
let apply_animation = |mut r: PropertyInfoResult<'b>| -> PropertyInfoResult<'b> {
if animation.is_some() {
r.animation = animation
};
r
};
match prop {
PropertyReference::Local { sub_component_path, property_index } => {
if !sub_component_path.is_empty() {
let prop2 = PropertyReference::Local {
sub_component_path: sub_component_path[1..].to_vec(),
property_index: *property_index,
};
let idx = sub_component_path[0];
return apply_animation(match_in_sub_component(
&sc.sub_components[idx].ty,
&prop2,
map.deeper_in_sub_component(idx),
));
}
}
PropertyReference::InNativeItem { item_index, sub_component_path, prop_name } => {
if !sub_component_path.is_empty() {
let prop2 = PropertyReference::InNativeItem {
sub_component_path: sub_component_path[1..].to_vec(),
prop_name: prop_name.clone(),
item_index: *item_index,
};
let idx = sub_component_path[0];
return apply_animation(match_in_sub_component(
&sc.sub_components[idx].ty,
&prop2,
map.deeper_in_sub_component(idx),
));
}
}
_ => unreachable!(),
}
apply_animation(PropertyInfoResult { property_decl, ..Default::default() })
}
match prop {
PropertyReference::Local { property_index, .. } => {
if let Some(g) = self.current_global {
return PropertyInfoResult {
analysis: Some(&g.prop_analysis[*property_index]),
binding: g.init_values[*property_index]
.as_ref()
.map(|b| (b, ContextMap::Identity)),
animation: None,
property_decl: Some(&g.properties[*property_index]),
};
} else if let Some(sc) = self.current_sub_component.as_ref() {
return match_in_sub_component(sc, prop, ContextMap::Identity);
} else {
unreachable!()
}
}
PropertyReference::InNativeItem { .. } => {
return match_in_sub_component(
self.current_sub_component.as_ref().unwrap(),
prop,
ContextMap::Identity,
);
}
PropertyReference::Global { global_index, property_index } => {
let g = &self.compilation_unit.globals[*global_index];
return PropertyInfoResult {
analysis: Some(&g.prop_analysis[*property_index]),
animation: None,
binding: g
.init_values
.get(*property_index)
.and_then(Option::as_ref)
.map(|b| (b, ContextMap::InGlobal(*global_index))),
property_decl: Some(&g.properties[*property_index]),
};
}
PropertyReference::InParent { level, parent_reference } => {
let mut ctx = self;
for _ in 0..level.get() {
ctx = ctx.parent.as_ref().unwrap().ctx;
}
let mut ret = ctx.property_info(parent_reference);
match &mut ret.binding {
Some((_, m @ ContextMap::Identity)) => {
*m = ContextMap::InSubElement {
path: Default::default(),
parent: level.get(),
};
}
Some((_, ContextMap::InSubElement { parent, .. })) => {
*parent += level.get();
}
_ => {}
}
ret
}
PropertyReference::Function { .. } | PropertyReference::GlobalFunction { .. } => {
unreachable!()
}
}
}
}
impl<'a, T> TypeResolutionContext for EvaluationContext<'a, T> {
fn property_ty(&self, prop: &PropertyReference) -> &Type {
match prop {
PropertyReference::Local { sub_component_path, property_index } => {
if let Some(mut sub_component) = self.current_sub_component {
for i in sub_component_path {
sub_component = &sub_component.sub_components[*i].ty;
}
&sub_component.properties[*property_index].ty
} else if let Some(current_global) = self.current_global {
&current_global.properties[*property_index].ty
} else {
unreachable!()
}
}
PropertyReference::InNativeItem { sub_component_path, item_index, prop_name } => {
if prop_name == "elements" {
// The `Path::elements` property is not in the NativeClass
return &Type::PathData;
}
let mut sub_component = self.current_sub_component.unwrap();
for i in sub_component_path {
sub_component = &sub_component.sub_components[*i].ty;
}
sub_component.items[*item_index as usize].ty.lookup_property(prop_name).unwrap()
}
PropertyReference::InParent { level, parent_reference } => {
let mut ctx = self;
for _ in 0..level.get() {
ctx = ctx.parent.as_ref().unwrap().ctx;
}
ctx.property_ty(parent_reference)
}
PropertyReference::Global { global_index, property_index } => {
&self.compilation_unit.globals[*global_index].properties[*property_index].ty
}
PropertyReference::Function { sub_component_path, function_index } => {
if let Some(mut sub_component) = self.current_sub_component {
for i in sub_component_path {
sub_component = &sub_component.sub_components[*i].ty;
}
&sub_component.functions[*function_index].ret_ty
} else if let Some(current_global) = self.current_global {
&current_global.functions[*function_index].ret_ty
} else {
unreachable!()
}
}
PropertyReference::GlobalFunction { global_index, function_index } => {
&self.compilation_unit.globals[*global_index].functions[*function_index].ret_ty
}
}
}
fn arg_type(&self, index: usize) -> &Type {
&self.argument_types[index]
}
}
#[derive(Default)]
pub(crate) struct PropertyInfoResult<'a> {
pub analysis: Option<&'a crate::object_tree::PropertyAnalysis>,
pub binding: Option<(&'a super::BindingExpression, ContextMap)>,
pub animation: Option<(&'a Expression, ContextMap)>,
pub property_decl: Option<&'a super::Property>,
}
/// Maps between two evaluation context.
/// This allows to go from the current subcomponent's context, to the context
/// relative to the binding we want to inline
#[derive(Debug, Clone)]
pub(crate) enum ContextMap {
Identity,
InSubElement { path: Vec<usize>, parent: usize },
InGlobal(usize),
}
impl ContextMap {
fn deeper_in_sub_component(self, sub: usize) -> Self {
match self {
ContextMap::Identity => ContextMap::InSubElement { parent: 0, path: vec![sub] },
ContextMap::InSubElement { mut path, parent } => {
path.push(sub);
ContextMap::InSubElement { path, parent }
}
ContextMap::InGlobal(_) => panic!(),
}
}
pub fn map_property_reference(&self, p: &PropertyReference) -> PropertyReference {
match self {
ContextMap::Identity => p.clone(),
ContextMap::InSubElement { path, parent } => {
let map_sub_path = |sub_component_path: &[usize]| -> Vec<usize> {
path.iter().chain(sub_component_path.iter()).copied().collect()
};
let p2 = match p {
PropertyReference::Local { sub_component_path, property_index } => {
PropertyReference::Local {
sub_component_path: map_sub_path(sub_component_path),
property_index: *property_index,
}
}
PropertyReference::Function { sub_component_path, function_index } => {
PropertyReference::Function {
sub_component_path: map_sub_path(sub_component_path),
function_index: *function_index,
}
}
PropertyReference::InNativeItem {
sub_component_path,
item_index,
prop_name,
} => PropertyReference::InNativeItem {
item_index: *item_index,
prop_name: prop_name.clone(),
sub_component_path: map_sub_path(sub_component_path),
},
PropertyReference::InParent { level, parent_reference } => {
return PropertyReference::InParent {
level: (parent + level.get()).try_into().unwrap(),
parent_reference: parent_reference.clone(),
}
}
PropertyReference::Global { .. } | PropertyReference::GlobalFunction { .. } => {
return p.clone()
}
};
if let Some(level) = NonZeroUsize::new(*parent) {
PropertyReference::InParent { level, parent_reference: p2.into() }
} else {
p2
}
}
ContextMap::InGlobal(global_index) => match p {
PropertyReference::Local { sub_component_path, property_index } => {
assert!(sub_component_path.is_empty());
PropertyReference::Global {
global_index: *global_index,
property_index: *property_index,
}
}
g @ PropertyReference::Global { .. } => g.clone(),
_ => unreachable!(),
},
}
}
pub fn map_expression(&self, e: &mut Expression) {
match e {
Expression::PropertyReference(p)
| Expression::CallBackCall { callback: p, .. }
| Expression::PropertyAssignment { property: p, .. }
| Expression::LayoutCacheAccess { layout_cache_prop: p, .. } => {
*p = self.map_property_reference(p);
}
_ => (),
}
e.visit_mut(|e| self.map_expression(e))
}
pub fn map_context<'a>(&self, ctx: &EvaluationContext<'a>) -> EvaluationContext<'a> {
match self {
ContextMap::Identity => ctx.clone(),
ContextMap::InSubElement { path, parent } => {
let mut ctx = ctx;
for _ in 0..*parent {
ctx = ctx.parent.unwrap().ctx;
}
if path.is_empty() {
ctx.clone()
} else {
let mut e = ctx.current_sub_component.unwrap();
for i in path {
e = &e.sub_components[*i].ty;
}
EvaluationContext::new_sub_component(ctx.compilation_unit, e, (), None)
}
}
ContextMap::InGlobal(g) => EvaluationContext::new_global(
ctx.compilation_unit,
&ctx.compilation_unit.globals[*g],
(),
),
}
}
}