slint/internal/compiler/generator.rs
Milian Wolff 69c68b22b2 Also wrap langtype::Type::Struct in an Rc
This makes copying such types much cheaper and will allow us to
intern common struct types in the future too. This further
drops the sample cost for langtype.rs from ~6.6% down to 4.0%.

We are now also able to share/intern common struct types.

Before:
```
  Time (mean ± σ):      1.073 s ±  0.021 s    [User: 0.759 s, System: 0.215 s]
  Range (min … max):    1.034 s …  1.105 s    10 runs

        allocations:            3074261
```

After:
```
  Time (mean ± σ):      1.034 s ±  0.026 s    [User: 0.733 s, System: 0.201 s]
  Range (min … max):    1.000 s …  1.078 s    10 runs

        allocations:            2917476
```
2024-10-28 09:39:54 +01:00

546 lines
19 KiB
Rust

// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0
/*!
The module responsible for the code generation.
There is one sub module for every language
*/
// cSpell: ignore deque subcomponent
use std::collections::{BTreeSet, HashSet, VecDeque};
use std::rc::{Rc, Weak};
use crate::expression_tree::{BindingExpression, Expression};
use crate::langtype::ElementType;
use crate::namedreference::NamedReference;
use crate::object_tree::{Component, Document, ElementRc};
use crate::CompilerConfiguration;
#[cfg(feature = "cpp")]
pub mod cpp;
#[cfg(feature = "rust")]
pub mod rust;
#[derive(Clone, Debug, PartialEq)]
pub enum OutputFormat {
#[cfg(feature = "cpp")]
Cpp(cpp::Config),
#[cfg(feature = "rust")]
Rust,
Interpreter,
Llr,
}
impl OutputFormat {
pub fn guess_from_extension(path: &std::path::Path) -> Option<Self> {
match path.extension().and_then(|ext| ext.to_str()) {
#[cfg(feature = "cpp")]
Some("cpp") | Some("cxx") | Some("h") | Some("hpp") => {
Some(Self::Cpp(cpp::Config::default()))
}
#[cfg(feature = "rust")]
Some("rs") => Some(Self::Rust),
_ => None,
}
}
}
impl std::str::FromStr for OutputFormat {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
#[cfg(feature = "cpp")]
"cpp" => Ok(Self::Cpp(cpp::Config::default())),
#[cfg(feature = "rust")]
"rust" => Ok(Self::Rust),
"llr" => Ok(Self::Llr),
_ => Err(format!("Unknown output format {}", s)),
}
}
}
pub fn generate(
format: OutputFormat,
destination: &mut impl std::io::Write,
doc: &Document,
compiler_config: &CompilerConfiguration,
) -> std::io::Result<()> {
#![allow(unused_variables)]
#![allow(unreachable_code)]
match format {
#[cfg(feature = "cpp")]
OutputFormat::Cpp(config) => {
let output = cpp::generate(doc, config, compiler_config)?;
write!(destination, "{}", output)?;
}
#[cfg(feature = "rust")]
OutputFormat::Rust => {
let output = rust::generate(doc, compiler_config);
write!(destination, "{}", output)?;
}
OutputFormat::Interpreter => {
return Err(std::io::Error::new(
std::io::ErrorKind::Other,
"Unsupported output format: The interpreter is not a valid output format yet.",
)); // Perhaps byte code in the future?
}
OutputFormat::Llr => {
let root = crate::llr::lower_to_item_tree::lower_to_item_tree(doc, compiler_config);
let mut output = String::new();
crate::llr::pretty_print::pretty_print(&root, &mut output).unwrap();
write!(destination, "{output}")?;
}
}
Ok(())
}
/// A reference to this trait is passed to the [`build_item_tree`] function.
/// It can be used to build the array for the item tree.
pub trait ItemTreeBuilder {
/// Some state that contains the code on how to access some particular component
type SubComponentState: Clone;
fn push_repeated_item(
&mut self,
item: &crate::object_tree::ElementRc,
repeater_count: u32,
parent_index: u32,
component_state: &Self::SubComponentState,
);
fn push_component_placeholder_item(
&mut self,
item: &crate::object_tree::ElementRc,
container_count: u32, // Must start at repeater.len()!
parent_index: u32,
component_state: &Self::SubComponentState,
);
fn push_native_item(
&mut self,
item: &ElementRc,
children_offset: u32,
parent_index: u32,
component_state: &Self::SubComponentState,
);
/// Called when a component is entered, this allow to change the component_state.
/// The returned SubComponentState will be used for all the items within that component
fn enter_component(
&mut self,
item: &ElementRc,
sub_component: &Rc<Component>,
children_offset: u32,
component_state: &Self::SubComponentState,
) -> Self::SubComponentState;
/// Called before the children of a component are entered.
fn enter_component_children(
&mut self,
item: &ElementRc,
repeater_count: u32,
component_state: &Self::SubComponentState,
sub_component_state: &Self::SubComponentState,
);
}
/// Visit each item in order in which they should appear in the children tree array.
pub fn build_item_tree<T: ItemTreeBuilder>(
root_component: &Rc<Component>,
initial_state: &T::SubComponentState,
builder: &mut T,
) {
if let Some(sub_component) = root_component.root_element.borrow().sub_component() {
assert!(root_component.root_element.borrow().children.is_empty());
let sub_compo_state =
builder.enter_component(&root_component.root_element, sub_component, 1, initial_state);
builder.enter_component_children(
&root_component.root_element,
0,
initial_state,
&sub_compo_state,
);
build_item_tree::<T>(sub_component, &sub_compo_state, builder);
} else {
let mut repeater_count = 0;
let mut container_count =
repeater_count_in_sub_component(&root_component.root_element) as u32;
visit_item(
initial_state,
&root_component.root_element,
1,
&mut repeater_count,
&mut container_count,
0,
builder,
);
visit_children(
initial_state,
&root_component.root_element.borrow().children,
root_component,
&root_component.root_element,
0,
0,
1,
1,
&mut repeater_count,
&mut container_count,
builder,
);
}
// Size of the element's children and grand-children including
// sub-component children, needed to allocate the correct amount of
// index spaces for sub-components.
fn item_sub_tree_size(e: &ElementRc) -> usize {
let mut count = e.borrow().children.len();
if let Some(sub_component) = e.borrow().sub_component() {
count += item_sub_tree_size(&sub_component.root_element);
}
for i in &e.borrow().children {
count += item_sub_tree_size(i);
}
count
}
// Number of repeaters in this sub component
fn repeater_count_in_sub_component(e: &ElementRc) -> usize {
let mut count = if e.borrow().repeated.is_some() { 0 } else { 1 };
for i in &e.borrow().children {
count += repeater_count_in_sub_component(i);
}
count
}
fn visit_children<T: ItemTreeBuilder>(
state: &T::SubComponentState,
children: &[ElementRc],
_component: &Rc<Component>,
parent_item: &ElementRc,
parent_index: u32,
relative_parent_index: u32,
children_offset: u32,
relative_children_offset: u32,
repeater_count: &mut u32,
container_count: &mut u32,
builder: &mut T,
) {
debug_assert_eq!(
relative_parent_index,
*parent_item.borrow().item_index.get().unwrap_or(&parent_index)
);
// Suppose we have this:
// ```
// Button := Rectangle { /* some repeater here*/ }
// StandardButton := Button { /* no children */ }
// App := Dialog { StandardButton { /* no children */ }}
// ```
// The inlining pass ensures that *if* `StandardButton` had children, `Button` would be inlined, but that's not the case here.
//
// We are in the stage of visiting the Dialog's children and we'll end up visiting the Button's Rectangle because visit_item()
// on the StandardButton - a Dialog's child - follows all the way to the Rectangle as native item. We've also determine that
// StandardButton is a sub-component and we'll call visit_children() on it. Now we are here. However as `StandardButton` has no children,
// and therefore we would never recurse into `Button`'s children and thus miss the repeater. That is what this condition attempts to
// detect and chain the children visitation.
if children.is_empty() {
if let Some(nested_subcomponent) = parent_item.borrow().sub_component() {
let sub_component_state = builder.enter_component(
parent_item,
nested_subcomponent,
children_offset,
state,
);
visit_children(
&sub_component_state,
&nested_subcomponent.root_element.borrow().children,
nested_subcomponent,
&nested_subcomponent.root_element,
parent_index,
relative_parent_index,
children_offset,
relative_children_offset,
repeater_count,
container_count,
builder,
);
return;
}
}
let mut offset = children_offset + children.len() as u32;
let mut sub_component_states = VecDeque::new();
for child in children.iter() {
if let Some(sub_component) = child.borrow().sub_component() {
let sub_component_state =
builder.enter_component(child, sub_component, offset, state);
visit_item(
&sub_component_state,
&sub_component.root_element,
offset,
repeater_count,
container_count,
parent_index,
builder,
);
sub_component_states.push_back(sub_component_state);
} else {
visit_item(
state,
child,
offset,
repeater_count,
container_count,
parent_index,
builder,
);
}
offset += item_sub_tree_size(child) as u32;
}
let mut offset = children_offset + children.len() as u32;
let mut relative_offset = relative_children_offset + children.len() as u32;
let mut index = children_offset;
let mut relative_index = relative_children_offset;
for e in children.iter() {
if let Some(sub_component) = e.borrow().sub_component() {
let sub_tree_state = sub_component_states.pop_front().unwrap();
builder.enter_component_children(e, *repeater_count, state, &sub_tree_state);
visit_children(
&sub_tree_state,
&sub_component.root_element.borrow().children,
sub_component,
&sub_component.root_element,
index,
0,
offset,
1,
repeater_count,
container_count,
builder,
);
} else {
visit_children(
state,
&e.borrow().children,
_component,
e,
index,
relative_index,
offset,
relative_offset,
repeater_count,
container_count,
builder,
);
}
index += 1;
relative_index += 1;
let size = item_sub_tree_size(e) as u32;
offset += size;
relative_offset += size;
}
}
fn visit_item<T: ItemTreeBuilder>(
component_state: &T::SubComponentState,
item: &ElementRc,
children_offset: u32,
repeater_count: &mut u32,
container_count: &mut u32,
parent_index: u32,
builder: &mut T,
) {
if item.borrow().is_component_placeholder {
builder.push_component_placeholder_item(
item,
*container_count,
parent_index,
component_state,
);
} else if item.borrow().repeated.is_some() {
builder.push_repeated_item(item, *repeater_count, parent_index, component_state);
*repeater_count += 1;
} else {
let mut item = item.clone();
let mut component_state = component_state.clone();
while let Some((base, state)) = {
let base = item.borrow().sub_component().map(|c| {
(
c.root_element.clone(),
builder.enter_component(&item, c, children_offset, &component_state),
)
});
base
} {
item = base;
component_state = state;
}
builder.push_native_item(&item, children_offset, parent_index, &component_state)
}
}
}
/// Will call the `handle_property` callback for every property that needs to be initialized.
/// This function makes sure to call them in order so that if constant binding need to access
/// constant properties, these are already initialized
pub fn handle_property_bindings_init(
component: &Rc<Component>,
mut handle_property: impl FnMut(&ElementRc, &str, &BindingExpression),
) {
fn handle_property_inner(
component: &Weak<Component>,
elem: &ElementRc,
prop_name: &str,
binding_expression: &BindingExpression,
handle_property: &mut impl FnMut(&ElementRc, &str, &BindingExpression),
processed: &mut HashSet<NamedReference>,
) {
if elem.borrow().is_component_placeholder {
return; // This element does not really exist!
}
let nr = NamedReference::new(elem, prop_name);
if processed.contains(&nr) {
return;
}
processed.insert(nr);
if binding_expression.analysis.as_ref().map_or(false, |a| a.is_const) {
// We must first handle all dependent properties in case it is a constant property
binding_expression.expression.visit_recursive(&mut |e| {
if let Expression::PropertyReference(nr) = e {
let elem = nr.element();
if Weak::ptr_eq(&elem.borrow().enclosing_component, component) {
if let Some(be) = elem.borrow().bindings.get(nr.name()) {
handle_property_inner(
component,
&elem,
nr.name(),
&be.borrow(),
handle_property,
processed,
);
}
}
}
})
}
handle_property(elem, prop_name, binding_expression);
}
let mut processed = HashSet::new();
crate::object_tree::recurse_elem(&component.root_element, &(), &mut |elem: &ElementRc, ()| {
for (prop_name, binding_expression) in &elem.borrow().bindings {
handle_property_inner(
&Rc::downgrade(component),
elem,
prop_name,
&binding_expression.borrow(),
&mut handle_property,
&mut processed,
);
}
});
}
/// Call the given function for each constant property in the Component so one can set
/// `set_constant` on it.
pub fn for_each_const_properties(component: &Rc<Component>, mut f: impl FnMut(&ElementRc, &str)) {
crate::object_tree::recurse_elem(&component.root_element, &(), &mut |elem: &ElementRc, ()| {
if elem.borrow().repeated.is_some() || elem.borrow().is_component_placeholder {
return;
}
let mut e = elem.clone();
let mut all_prop = BTreeSet::new();
loop {
all_prop.extend(
e.borrow()
.property_declarations
.iter()
.filter(|(_, x)| {
x.property_type.is_property_type() &&
!matches!( &x.property_type, crate::langtype::Type::Struct(s) if s.name.as_ref().map_or(false, |name| name.ends_with("::StateInfo")))
})
.map(|(k, _)| k.clone()),
);
match &e.clone().borrow().base_type {
ElementType::Component(c) => {
e = c.root_element.clone();
}
ElementType::Native(n) => {
let mut n = n;
loop {
all_prop.extend(
n.properties
.iter()
.filter(|(k, x)| {
x.ty.is_property_type()
&& !k.starts_with("viewport-")
&& k.as_str() != "commands"
})
.map(|(k, _)| k.clone()),
);
match n.parent.as_ref() {
Some(p) => n = p,
None => break,
}
}
break;
}
ElementType::Builtin(_) => {
unreachable!("builtin element should have been resolved")
}
ElementType::Global | ElementType::Error => break,
}
}
for c in all_prop {
if NamedReference::new(elem, &c).is_constant() {
f(elem, &c);
}
}
});
}
/// Convert a ascii kebab string to pascal case
pub fn to_pascal_case(str: &str) -> String {
let mut result = Vec::with_capacity(str.len());
let mut next_upper = true;
for x in str.as_bytes() {
if *x == b'-' {
next_upper = true;
} else if next_upper {
result.push(x.to_ascii_uppercase());
next_upper = false;
} else {
result.push(*x);
}
}
String::from_utf8(result).unwrap()
}
/// Convert a ascii pascal case string to kebab case
pub fn to_kebab_case(str: &str) -> String {
let mut result = Vec::with_capacity(str.len());
for x in str.as_bytes() {
if x.is_ascii_uppercase() {
if !result.is_empty() {
result.push(b'-');
}
result.push(x.to_ascii_lowercase());
} else {
result.push(*x);
}
}
String::from_utf8(result).unwrap()
}
#[test]
fn case_conversions() {
assert_eq!(to_kebab_case("HelloWorld"), "hello-world");
assert_eq!(to_pascal_case("hello-world"), "HelloWorld");
}