slint/sixtyfps_compiler/expression_tree.rs
Simon Hausmann fa95064363 Fix resource embedding across component boundaries
When referencing an image a repeated element and were targeting a
configuration that requires resource embedding, then that image would
not embedded.

This was due to the fact that we didn't recurse into sub-components in
the resource collection phase and the generators made a per-component
embedding decision. The field responsible for that was also not
propagated to sub-components.

This patch addresses these two bugs by cleaning up the entire mechanism:

The compiler first generates the new ResourceReference::AbsolutePath for
all img!"foo.png" expressions. If the compiler is configured to embed
resources, then the embed_resources pass will traverse all
sub-components and expressions in them to change them to
ResourceReference::EmbeddedData with a unique integer id. Simultaenously
all the resources to be embedded get also collected in the root
component, so that the build script as well as the generator can take
care of dependency handling and actual resource embedding.
2020-11-23 13:47:16 +01:00

924 lines
35 KiB
Rust

/* LICENSE BEGIN
This file is part of the SixtyFPS Project -- https://sixtyfps.io
Copyright (c) 2020 Olivier Goffart <olivier.goffart@sixtyfps.io>
Copyright (c) 2020 Simon Hausmann <simon.hausmann@sixtyfps.io>
SPDX-License-Identifier: GPL-3.0-only
This file is also available under commercial licensing terms.
Please contact info@sixtyfps.io for more information.
LICENSE END */
use crate::diagnostics::{BuildDiagnostics, Spanned, SpannedWithSourceFile};
use crate::langtype::{BuiltinElement, EnumerationValue, Type};
use crate::object_tree::*;
use crate::parser::{NodeOrTokenWithSourceFile, SyntaxNodeWithSourceFile};
use core::cell::RefCell;
use std::collections::HashMap;
use std::hash::Hash;
use std::rc::{Rc, Weak};
/// Reference to a property or signal of a given name within an element.
#[derive(Debug, Clone)]
pub struct NamedReference {
pub element: Weak<RefCell<Element>>,
pub name: String,
}
impl NamedReference {
pub fn new(element: &ElementRc, name: &str) -> Self {
Self { element: Rc::downgrade(element), name: name.to_owned() }
}
}
impl Eq for NamedReference {}
impl PartialEq for NamedReference {
fn eq(&self, other: &Self) -> bool {
self.name == other.name && Weak::ptr_eq(&self.element, &other.element)
}
}
impl Hash for NamedReference {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.name.hash(state);
self.element.as_ptr().hash(state);
}
}
#[derive(Debug, Clone)]
/// A function built into the run-time
pub enum BuiltinFunction {
GetWindowScaleFactor,
Debug,
Mod,
Round,
Ceil,
Floor,
SetFocusItem,
/// the "42".to_float()
StringToFloat,
/// the "42".is_float()
StringIsFloat,
}
#[derive(Debug, Clone)]
/// A builtin function which is handled by the compiler pass
pub enum BuiltinMacroFunction {
Min,
Max,
CubicBezier,
}
impl BuiltinFunction {
pub fn ty(&self) -> Type {
match self {
BuiltinFunction::GetWindowScaleFactor => {
Type::Function { return_type: Box::new(Type::Float32), args: vec![] }
}
BuiltinFunction::Debug => {
Type::Function { return_type: Box::new(Type::Void), args: vec![Type::String] }
}
BuiltinFunction::Mod => Type::Function {
return_type: Box::new(Type::Int32),
args: vec![Type::Int32, Type::Int32],
},
BuiltinFunction::Round | BuiltinFunction::Ceil | BuiltinFunction::Floor => {
Type::Function { return_type: Box::new(Type::Int32), args: vec![Type::Float32] }
}
BuiltinFunction::SetFocusItem => Type::Function {
return_type: Box::new(Type::Void),
args: vec![Type::ElementReference],
},
BuiltinFunction::StringToFloat => {
Type::Function { return_type: Box::new(Type::Float32), args: vec![Type::String] }
}
BuiltinFunction::StringIsFloat => {
Type::Function { return_type: Box::new(Type::Bool), args: vec![Type::String] }
}
}
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum OperatorClass {
ComparisonOp,
LogicalOp,
ArithmeticOp,
}
/// the class of for this (binary) operation
pub fn operator_class(op: char) -> OperatorClass {
match op {
'=' | '!' | '<' | '>' | '≤' | '≥' => OperatorClass::ComparisonOp,
'&' | '|' => OperatorClass::LogicalOp,
'+' | '-' | '/' | '*' => OperatorClass::ArithmeticOp,
_ => panic!("Invalid operator {:?}", op),
}
}
macro_rules! declare_units {
($( $(#[$m:meta])* $ident:ident = $string:literal -> $ty:ident $(* $factor:expr)? ,)*) => {
/// The units that can be used after numbers in the language
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Unit {
$($(#[$m])* $ident,)*
}
impl std::fmt::Display for Unit {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
$(Self::$ident => write!(f, $string), )*
}
}
}
impl std::str::FromStr for Unit {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
$($string => Ok(Self::$ident), )*
_ => Err(())
}
}
}
impl Unit {
pub fn ty(self) -> Type {
match self {
$(Self::$ident => Type::$ty, )*
}
}
pub fn normalize(self, x: f64) -> f64 {
match self {
$(Self::$ident => x $(* $factor as f64)?, )*
}
}
}
};
}
declare_units! {
/// No unit was given
None = "" -> Float32,
///
Percent = "%" -> Percent,
// Lengths or Coord
/// Physical pixels
Phx = "phx" -> Length,
/// Logical pixels
Px = "px" -> LogicalLength,
/// Centimeters
Cm = "cm" -> LogicalLength * 37.8,
/// Milimeters
Mm = "mm" -> LogicalLength * 3.78,
/// inches
In = "in" -> LogicalLength * 96,
/// Points
Pt = "pt" -> LogicalLength * 96/72,
// durations
/// Seconds
S = "s" -> Duration * 1000,
/// Milliseconds
Ms = "ms" -> Duration,
}
impl Default for Unit {
fn default() -> Self {
Self::None
}
}
/// The Expression is hold by properties, so it should not hold any strong references to node from the object_tree
#[derive(Debug, Clone)]
pub enum Expression {
/// Something went wrong (and an error will be reported)
Invalid,
/// We haven't done the lookup yet
Uncompiled(SyntaxNodeWithSourceFile),
/// Special expression that can be the value of a two way binding
///
/// The named reference is what it is aliased to, and the optional Expression is
/// the initialization expression, if any. That expression can be a TwoWayBinding as well
TwoWayBinding(NamedReference, Option<Box<Expression>>),
/// A string literal. The .0 is the content of the string, without the quotes
StringLiteral(String),
/// Number
NumberLiteral(f64, Unit),
///
BoolLiteral(bool),
/// Reference to the signal <name> in the <element>
///
/// Note: if we are to separate expression and statement, we probably do not need to have signal reference within expressions
SignalReference(NamedReference),
/// Reference to the signal <name> in the <element>
PropertyReference(NamedReference),
/// Reference to a function built into the run-time, implemented natively
BuiltinFunctionReference(BuiltinFunction),
/// A MemberFunction expression exists only for a short time, for example for `item.focus()` to be translated to
/// a regular FunctionCall expression where the base becomes the first argument.
MemberFunction {
base: Box<Expression>,
base_node: NodeOrTokenWithSourceFile,
member: Box<Expression>,
},
/// Reference to a macro understood by the compiler.
/// These should be transformed to other expression before reaching generation
BuiltinMacroReference(BuiltinMacroFunction, NodeOrTokenWithSourceFile),
/// A reference to a specific element. This isn't possible to create in .60 syntax itself, but intermediate passes may generate this
/// type of expression.
ElementReference(Weak<RefCell<Element>>),
/// Reference to the index variable of a repeater
///
/// Example: `idx` in `for xxx[idx] in ...`. The element is the reference to the
/// element that is repeated
RepeaterIndexReference {
element: Weak<RefCell<Element>>,
},
/// Reference to the model variable of a repeater
///
/// Example: `xxx` in `for xxx[idx] in ...`. The element is the reference to the
/// element that is repeated
RepeaterModelReference {
element: Weak<RefCell<Element>>,
},
/// Reference the parameter at the given index of the current function.
FunctionParameterReference {
index: usize,
ty: Type,
},
/// Should be directly within a CodeBlock expression, and store the value of the expression in a local variable
StoreLocalVariable {
name: String,
value: Box<Expression>,
},
/// a reference to the local variable with the given name. The type system should ensure that a variable has been stored
/// with this name and this type before in one of the statement of an enclosing codeblock
ReadLocalVariable {
name: String,
ty: Type,
},
/// Access to a field of the given name within a object.
ObjectAccess {
/// This expression should have Type::Object type
base: Box<Expression>,
name: String,
},
/// Cast an expression to the given type
Cast {
from: Box<Expression>,
to: Type,
},
/// a code block with different expression
CodeBlock(Vec<Expression>),
/// A function call
FunctionCall {
function: Box<Expression>,
arguments: Vec<Expression>,
},
/// A SelfAssignment or an Assignment. When op is '=' this is a signel assignment.
SelfAssignment {
lhs: Box<Expression>,
rhs: Box<Expression>,
/// '+', '-', '/', '*', or '='
op: char,
},
BinaryExpression {
lhs: Box<Expression>,
rhs: Box<Expression>,
/// '+', '-', '/', '*', '=', '!', '<', '>', '≤', '≥', '&', '|'
op: char,
},
UnaryOp {
sub: Box<Expression>,
/// '+', '-', '!'
op: char,
},
ResourceReference(ResourceReference),
Condition {
condition: Box<Expression>,
true_expr: Box<Expression>,
false_expr: Box<Expression>,
},
Array {
element_ty: Type,
values: Vec<Expression>,
},
Object {
ty: Type,
values: HashMap<String, Expression>,
},
PathElements {
elements: Path,
},
EasingCurve(EasingCurve),
EnumerationValue(EnumerationValue),
}
impl Default for Expression {
fn default() -> Self {
Expression::Invalid
}
}
impl Expression {
/// Return the type of this property
pub fn ty(&self) -> Type {
match self {
Expression::Invalid => Type::Invalid,
Expression::Uncompiled(_) => Type::Invalid,
Expression::StringLiteral(_) => Type::String,
Expression::NumberLiteral(_, unit) => unit.ty(),
Expression::BoolLiteral(_) => Type::Bool,
Expression::TwoWayBinding(NamedReference { element, name }, _) => {
element.upgrade().unwrap().borrow().lookup_property(name)
}
Expression::SignalReference(NamedReference { element, name }) => {
element.upgrade().unwrap().borrow().lookup_property(name)
}
Expression::PropertyReference(NamedReference { element, name }) => {
element.upgrade().unwrap().borrow().lookup_property(name)
}
Expression::BuiltinFunctionReference(funcref) => funcref.ty(),
Expression::MemberFunction { member, .. } => member.ty(),
Expression::BuiltinMacroReference { .. } => Type::Invalid, // We don't know the type
Expression::ElementReference(_) => Type::ElementReference,
Expression::RepeaterIndexReference { .. } => Type::Int32,
Expression::RepeaterModelReference { element } => {
if let Expression::Cast { from, .. } = element
.upgrade()
.unwrap()
.borrow()
.repeated
.as_ref()
.map_or(&Expression::Invalid, |e| &e.model)
{
match from.ty() {
Type::Float32 | Type::Int32 => Type::Int32,
Type::Array(elem) => *elem,
_ => Type::Invalid,
}
} else {
Type::Invalid
}
}
Expression::FunctionParameterReference { ty, .. } => ty.clone(),
Expression::ObjectAccess { base, name } => match base.ty() {
Type::Object { fields, .. } => {
fields.get(name.as_str()).unwrap_or(&Type::Invalid).clone()
}
Type::Component(c) => c.root_element.borrow().lookup_property(name.as_str()),
_ => Type::Invalid,
},
Expression::Cast { to, .. } => to.clone(),
Expression::CodeBlock(sub) => sub.last().map_or(Type::Void, |e| e.ty()),
Expression::FunctionCall { function, .. } => match function.ty() {
Type::Function { return_type, .. } => *return_type,
_ => Type::Invalid,
},
Expression::SelfAssignment { .. } => Type::Void,
Expression::ResourceReference { .. } => Type::Resource,
Expression::Condition { condition: _, true_expr, false_expr } => {
let true_type = true_expr.ty();
let false_type = false_expr.ty();
if true_type == false_type {
true_type
} else {
Type::Invalid
}
}
Expression::BinaryExpression { op, lhs, rhs } => {
if operator_class(*op) == OperatorClass::ArithmeticOp {
macro_rules! unit_operations {
($($unit:ident)*) => {
match (*op, lhs.ty(), rhs.ty()) {
$(
('+', Type::$unit, Type::$unit) => Type::$unit,
('-', Type::$unit, Type::$unit) => Type::$unit,
('*', Type::$unit, _) => Type::$unit,
('*', _, Type::$unit) => Type::$unit,
('/', Type::$unit, Type::$unit) => Type::Float32,
('/', Type::$unit, _) => Type::$unit,
)*
('+', Type::String, Type::String) => Type::String,
_ => Type::Float32,
}
}
}
unit_operations!(Duration Length LogicalLength)
} else {
Type::Bool
}
}
Expression::UnaryOp { sub, .. } => sub.ty(),
Expression::Array { element_ty, .. } => Type::Array(Box::new(element_ty.clone())),
Expression::Object { ty, .. } => ty.clone(),
Expression::PathElements { .. } => Type::PathElements,
Expression::StoreLocalVariable { .. } => Type::Void,
Expression::ReadLocalVariable { ty, .. } => ty.clone(),
Expression::EasingCurve(_) => Type::Easing,
Expression::EnumerationValue(value) => Type::Enumeration(value.enumeration.clone()),
}
}
/// Call the visitor for each sub-expression. (note: this function does not recurse)
pub fn visit(&self, mut visitor: impl FnMut(&Self)) {
match self {
Expression::Invalid => {}
Expression::Uncompiled(_) => {}
Expression::TwoWayBinding(_, sub) => {
sub.as_deref().map(|e| visitor(e));
}
Expression::StringLiteral(_) => {}
Expression::NumberLiteral(_, _) => {}
Expression::BoolLiteral(_) => {}
Expression::SignalReference { .. } => {}
Expression::PropertyReference { .. } => {}
Expression::FunctionParameterReference { .. } => {}
Expression::BuiltinFunctionReference { .. } => {}
Expression::MemberFunction { base, member, .. } => {
visitor(&**base);
visitor(&**member);
}
Expression::BuiltinMacroReference { .. } => {}
Expression::ElementReference(_) => {}
Expression::ObjectAccess { base, .. } => visitor(&**base),
Expression::RepeaterIndexReference { .. } => {}
Expression::RepeaterModelReference { .. } => {}
Expression::Cast { from, .. } => visitor(&**from),
Expression::CodeBlock(sub) => {
sub.iter().for_each(visitor);
}
Expression::FunctionCall { function, arguments } => {
visitor(&**function);
arguments.iter().for_each(visitor);
}
Expression::SelfAssignment { lhs, rhs, .. } => {
visitor(&**lhs);
visitor(&**rhs);
}
Expression::ResourceReference { .. } => {}
Expression::Condition { condition, true_expr, false_expr } => {
visitor(&**condition);
visitor(&**true_expr);
visitor(&**false_expr);
}
Expression::BinaryExpression { lhs, rhs, .. } => {
visitor(&**lhs);
visitor(&**rhs);
}
Expression::UnaryOp { sub, .. } => visitor(&**sub),
Expression::Array { values, .. } => {
for x in values {
visitor(x);
}
}
Expression::Object { values, .. } => {
for (_, x) in values {
visitor(x);
}
}
Expression::PathElements { elements } => {
if let Path::Elements(elements) = elements {
for element in elements {
element.bindings.values().for_each(|binding| visitor(binding))
}
}
}
Expression::StoreLocalVariable { value, .. } => visitor(&**value),
Expression::ReadLocalVariable { .. } => {}
Expression::EasingCurve(_) => {}
Expression::EnumerationValue(_) => {}
}
}
pub fn visit_mut(&mut self, mut visitor: impl FnMut(&mut Self)) {
match self {
Expression::Invalid => {}
Expression::Uncompiled(_) => {}
Expression::TwoWayBinding(_, sub) => {
sub.as_deref_mut().map(|e| visitor(e));
}
Expression::StringLiteral(_) => {}
Expression::NumberLiteral(_, _) => {}
Expression::BoolLiteral(_) => {}
Expression::SignalReference { .. } => {}
Expression::PropertyReference { .. } => {}
Expression::FunctionParameterReference { .. } => {}
Expression::BuiltinFunctionReference { .. } => {}
Expression::MemberFunction { base, member, .. } => {
visitor(&mut **base);
visitor(&mut **member);
}
Expression::BuiltinMacroReference { .. } => {}
Expression::ElementReference(_) => {}
Expression::ObjectAccess { base, .. } => visitor(&mut **base),
Expression::RepeaterIndexReference { .. } => {}
Expression::RepeaterModelReference { .. } => {}
Expression::Cast { from, .. } => visitor(&mut **from),
Expression::CodeBlock(sub) => {
sub.iter_mut().for_each(visitor);
}
Expression::FunctionCall { function, arguments } => {
visitor(&mut **function);
arguments.iter_mut().for_each(visitor);
}
Expression::SelfAssignment { lhs, rhs, .. } => {
visitor(&mut **lhs);
visitor(&mut **rhs);
}
Expression::ResourceReference { .. } => {}
Expression::Condition { condition, true_expr, false_expr } => {
visitor(&mut **condition);
visitor(&mut **true_expr);
visitor(&mut **false_expr);
}
Expression::BinaryExpression { lhs, rhs, .. } => {
visitor(&mut **lhs);
visitor(&mut **rhs);
}
Expression::UnaryOp { sub, .. } => visitor(&mut **sub),
Expression::Array { values, .. } => {
for x in values {
visitor(x);
}
}
Expression::Object { values, .. } => {
for (_, x) in values {
visitor(x);
}
}
Expression::PathElements { elements } => {
if let Path::Elements(elements) = elements {
for element in elements {
element.bindings.values_mut().for_each(|binding| visitor(binding))
}
}
}
Expression::StoreLocalVariable { value, .. } => visitor(&mut **value),
Expression::ReadLocalVariable { .. } => {}
Expression::EasingCurve(_) => {}
Expression::EnumerationValue(_) => {}
}
}
/// Visit itself and each sub expression recursively
pub fn visit_recursive(&self, visitor: &mut dyn FnMut(&Self)) {
visitor(self);
self.visit(|e| e.visit_recursive(visitor));
}
pub fn is_constant(&self) -> bool {
match self {
Expression::Invalid => true,
Expression::Uncompiled(_) => false,
Expression::TwoWayBinding(..) => false,
Expression::StringLiteral(_) => true,
Expression::NumberLiteral(_, _) => true,
Expression::BoolLiteral(_) => true,
Expression::SignalReference { .. } => false,
Expression::PropertyReference { .. } => false,
Expression::BuiltinFunctionReference { .. } => false,
Expression::MemberFunction { .. } => false,
Expression::ElementReference(_) => false,
Expression::RepeaterIndexReference { .. } => false,
Expression::RepeaterModelReference { .. } => false,
Expression::FunctionParameterReference { .. } => false,
Expression::BuiltinMacroReference { .. } => false,
Expression::ObjectAccess { base, .. } => base.is_constant(),
Expression::Cast { from, to } => {
from.is_constant() && !matches!(to, Type::Length | Type::LogicalLength)
}
Expression::CodeBlock(sub) => sub.len() == 1 && sub.first().unwrap().is_constant(),
Expression::FunctionCall { .. } => false,
Expression::SelfAssignment { .. } => false,
Expression::ResourceReference { .. } => true,
Expression::Condition { .. } => false,
Expression::BinaryExpression { lhs, rhs, .. } => lhs.is_constant() && rhs.is_constant(),
Expression::UnaryOp { sub, .. } => sub.is_constant(),
Expression::Array { values, .. } => values.iter().all(Expression::is_constant),
Expression::Object { values, .. } => values.iter().all(|(_, v)| v.is_constant()),
Expression::PathElements { elements } => {
if let Path::Elements(elements) = elements {
elements
.iter()
.all(|element| element.bindings.values().all(|v| v.is_constant()))
} else {
true
}
}
Expression::StoreLocalVariable { .. } => false,
Expression::ReadLocalVariable { .. } => false,
Expression::EasingCurve(_) => true,
Expression::EnumerationValue(_) => true,
}
}
/// Create a conversion node if needed, or throw an error if the type is not matching
pub fn maybe_convert_to(
self,
target_type: Type,
symmetric_parent_property: Option<(Type, NamedReference)>,
node: &impl SpannedWithSourceFile,
diag: &mut BuildDiagnostics,
) -> Expression {
let ty = self.ty();
if ty == target_type || target_type == Type::Void || target_type == Type::Invalid {
self
} else if ty.can_convert(&target_type) {
let from = match (ty, &target_type) {
(Type::Length, Type::LogicalLength) => Expression::BinaryExpression {
lhs: Box::new(self),
rhs: Box::new(Expression::FunctionCall {
function: Box::new(Expression::BuiltinFunctionReference(
BuiltinFunction::GetWindowScaleFactor,
)),
arguments: vec![],
}),
op: '/',
},
(Type::LogicalLength, Type::Length) => Expression::BinaryExpression {
lhs: Box::new(self),
rhs: Box::new(Expression::FunctionCall {
function: Box::new(Expression::BuiltinFunctionReference(
BuiltinFunction::GetWindowScaleFactor,
)),
arguments: vec![],
}),
op: '*',
},
(Type::Percent, Type::Float32) => Expression::BinaryExpression {
lhs: Box::new(self),
rhs: Box::new(Expression::NumberLiteral(0.01, Unit::None)),
op: '*',
},
(Type::Object { fields: ref a, .. }, Type::Object { fields: b, name })
if a != b =>
{
if let Expression::Object { mut values, .. } = self {
let mut new_values = HashMap::new();
for (k, ty) in b {
let (k, e) = values.remove_entry(k).map_or_else(
|| (k.clone(), Expression::default_value_for_type(ty)),
|(k, e)| (k, e.maybe_convert_to(ty.clone(), None, node, diag)),
);
new_values.insert(k, e);
}
return Expression::Object { values: new_values, ty: target_type };
}
let var_name = "tmpobj";
let mut new_values = HashMap::new();
for (k, ty) in b {
let e = if a.contains_key(k) {
Expression::ObjectAccess {
base: Box::new(Expression::ReadLocalVariable {
name: var_name.into(),
ty: Type::Object { fields: a.clone(), name: name.clone() },
}),
name: k.clone(),
}
.maybe_convert_to(
ty.clone(),
None,
node,
diag,
)
} else {
Expression::default_value_for_type(ty)
};
new_values.insert(k.clone(), e);
}
return Expression::CodeBlock(vec![
Expression::StoreLocalVariable {
name: var_name.into(),
value: Box::new(self),
},
Expression::Object { values: new_values, ty: target_type },
]);
}
(Type::Object { .. }, Type::Component(c)) => {
let object_type_for_component = Type::Object {
fields: c
.root_element
.borrow()
.property_declarations
.iter()
.map(|(name, prop_decl)| {
(name.clone(), prop_decl.property_type.clone())
})
.collect(),
name: None,
};
self.maybe_convert_to(object_type_for_component, None, node, diag)
}
_ => self,
};
Expression::Cast { from: Box::new(from), to: target_type }
} else if ty == Type::Invalid || target_type == Type::Invalid {
self
} else if matches!((&ty, &target_type, &self), (Type::Array(a), Type::Array(b), Expression::Array{..})
if a.can_convert(b) || **a == Type::Invalid)
{
// Special case for converting array literals
match (self, target_type) {
(Expression::Array { values, .. }, Type::Array(target_type)) => Expression::Array {
values: values
.into_iter()
.map(|e| e.maybe_convert_to((*target_type).clone(), None, node, diag))
.collect(),
element_ty: *target_type,
},
_ => unreachable!(),
}
} else if matches!(
// Map `width: 10%` to `width: parent.width * 10%`
(&ty, &target_type, &symmetric_parent_property),
(Type::Percent, Type::Length, Some((Type::Length, _)))
) {
Expression::BinaryExpression {
lhs: Box::new(Expression::BinaryExpression {
lhs: Box::new(self),
rhs: Box::new(Expression::NumberLiteral(0.01, Unit::None)),
op: '*',
}),
rhs: Box::new(Expression::PropertyReference(symmetric_parent_property.unwrap().1)),
op: '*',
}
} else {
let mut message = format!("Cannot convert {} to {}", ty, target_type);
// Explicit error message for unit cnversion
if let Some(from_unit) = ty.default_unit() {
if matches!(&target_type, Type::Int32 | Type::Float32 | Type::String) {
message = format!(
"{}. Divide by 1{} to convert to a plain number.",
message, from_unit
);
}
} else if let Some(to_unit) = target_type.default_unit() {
if matches!(ty, Type::Int32 | Type::Float32) {
message = format!(
"{}. Use an unit, or multiply by 1{} to convert explicitly.",
message, to_unit
);
}
}
diag.push_error(message, node);
self
}
}
/// Return the default value for the given type
pub fn default_value_for_type(ty: &Type) -> Expression {
match ty {
Type::Invalid
| Type::Component(_)
| Type::Builtin(_)
| Type::Native(_)
| Type::Signal { .. }
| Type::Function { .. }
| Type::Void
| Type::ElementReference => Expression::Invalid,
Type::Float32 => Expression::NumberLiteral(0., Unit::None),
Type::Int32 => Expression::NumberLiteral(0., Unit::None),
Type::String => Expression::StringLiteral(String::new()),
Type::Color => Expression::Cast {
from: Box::new(Expression::NumberLiteral(0., Unit::None)),
to: Type::Color,
},
Type::Duration => Expression::NumberLiteral(0., Unit::Ms),
Type::Length => Expression::NumberLiteral(0., Unit::Phx),
Type::LogicalLength => Expression::NumberLiteral(0., Unit::Px),
Type::Percent => Expression::NumberLiteral(100., Unit::Percent),
// FIXME: Is that correct?
Type::Resource => {
Expression::ResourceReference(ResourceReference::AbsolutePath(String::new()))
}
Type::Bool => Expression::BoolLiteral(false),
Type::Model => Expression::Invalid,
Type::PathElements => Expression::PathElements { elements: Path::Elements(vec![]) },
Type::Array(element_ty) => {
Expression::Array { element_ty: (**element_ty).clone(), values: vec![] }
}
Type::Object { fields, .. } => Expression::Object {
ty: ty.clone(),
values: fields
.into_iter()
.map(|(k, v)| (k.clone(), Expression::default_value_for_type(v)))
.collect(),
},
Type::Easing => Expression::EasingCurve(EasingCurve::default()),
Type::Enumeration(enumeration) => {
Expression::EnumerationValue(enumeration.clone().default_value())
}
}
}
/// Return true if the expression is a "lvalue" that can be used as the left hand side of a `=` or `+=` or similar
pub fn is_rw(&self) -> bool {
match self {
Expression::PropertyReference(_) => true,
Expression::ObjectAccess { base, .. } => base.is_rw(),
Expression::RepeaterModelReference { .. } => true,
_ => false,
}
}
}
#[derive(Default, Debug, Clone, derive_more::Deref, derive_more::DerefMut)]
pub struct ExpressionSpanned {
#[deref]
#[deref_mut]
pub expression: Expression,
pub span: Option<(crate::diagnostics::SourceFile, crate::diagnostics::Span)>,
}
impl std::convert::From<Expression> for ExpressionSpanned {
fn from(expression: Expression) -> Self {
Self { expression, span: None }
}
}
impl ExpressionSpanned {
pub fn new_uncompiled(node: SyntaxNodeWithSourceFile) -> Self {
let span = node.source_file().map(|f| (f.clone(), node.span()));
Self { expression: Expression::Uncompiled(node.into()), span }
}
}
impl SpannedWithSourceFile for ExpressionSpanned {
fn source_file(&self) -> Option<&crate::diagnostics::SourceFile> {
self.span.as_ref().map(|x| &x.0)
}
}
impl Spanned for ExpressionSpanned {
fn span(&self) -> crate::diagnostics::Span {
self.span.as_ref().map(|x| x.1.clone()).unwrap_or_default()
}
}
pub type PathEvents = Vec<lyon::path::Event<lyon::math::Point, lyon::math::Point>>;
#[derive(Debug, Clone)]
pub enum Path {
Elements(Vec<PathElement>),
Events(PathEvents),
}
#[derive(Debug, Clone)]
pub struct PathElement {
pub element_type: Rc<BuiltinElement>,
pub bindings: HashMap<String, ExpressionSpanned>,
}
#[derive(Clone, Debug)]
pub enum EasingCurve {
Linear,
CubicBezier(f32, f32, f32, f32),
// CubicBesizerNonConst([Box<Expression>; 4]),
// Custom(Box<dyn Fn(f32)->f32>),
}
impl Default for EasingCurve {
fn default() -> Self {
Self::Linear
}
}
// The compiler generates ResourceReference::AbsolutePath for all references likg img!"foo.png"
// and the resource lowering path may change this to EmbeddedData if configured.
#[derive(Clone, Debug)]
pub enum ResourceReference {
AbsolutePath(String),
EmbeddedData(usize),
}