Bulk remove old code for legacy GPU node implementations (#2722)

* fix warning in node-macro

* remove crates `gpu-executor`, `gpu-compiler`, `compilation-client` and `compilation-server`

* remove `wgpu-executor::executor`

* .gitignore .idea/
This commit is contained in:
Firestar99 2025-06-18 13:43:10 +02:00 committed by Keavon Chambers
parent d721bca85f
commit 3489f9ddb1
33 changed files with 11 additions and 7380 deletions

View file

@ -1,19 +0,0 @@
[package]
name = "compilation-client"
version = "0.1.0"
edition = "2024"
license = "MIT OR Apache-2.0"
[dependencies]
# Local dependencies
graph-craft = { path = "../graph-craft", features = ["serde"] }
gpu-executor = { path = "../gpu-executor" }
wgpu-executor = { path = "../wgpu-executor" }
gpu-compiler-bin-wrapper = { path = "../gpu-compiler/gpu-compiler-bin-wrapper" }
# Workspace dependencies
graphene-core = { workspace = true }
dyn-any = { workspace = true }
anyhow = { workspace = true }
serde_json = { workspace = true }
reqwest = { workspace = true, features = ["blocking", "json", "rustls-tls"] }

View file

@ -1,28 +0,0 @@
use gpu_compiler_bin_wrapper::CompileRequest;
use graph_craft::Type;
use graph_craft::proto::ProtoNetwork;
use wgpu_executor::ShaderIO;
pub async fn compile(networks: Vec<ProtoNetwork>, inputs: Vec<Type>, outputs: Vec<Type>, io: ShaderIO) -> Result<Shader, reqwest::Error> {
let client = reqwest::Client::new();
let compile_request = CompileRequest::new(networks, inputs.clone(), outputs.clone(), io.clone());
let response = client.post("http://localhost:3000/compile/spirv").json(&compile_request).send();
let response = response.await?;
response.bytes().await.map(|b| Shader {
spirv_binary: b.chunks(4).map(|x| u32::from_le_bytes(x.try_into().unwrap())).collect(),
input_types: inputs,
output_types: outputs,
io,
})
}
// TODO: should we add the entry point as a field?
/// A compiled shader with type annotations.
#[derive(dyn_any::DynAny)]
pub struct Shader {
pub spirv_binary: Vec<u32>,
pub input_types: Vec<Type>,
pub output_types: Vec<Type>,
pub io: ShaderIO,
}

View file

@ -1,68 +0,0 @@
use gpu_compiler_bin_wrapper::CompileRequest;
use graph_craft::concrete;
use graph_craft::document::value::TaggedValue;
use graph_craft::document::*;
use graphene_core::Color;
use graphene_core::raster::adjustments::BlendMode;
use std::time::Duration;
use wgpu_executor::{ShaderIO, ShaderInput};
fn main() {
let client = reqwest::blocking::Client::new();
let network = add_network();
let compiler = graph_craft::graphene_compiler::Compiler {};
let proto_network = compiler.compile_single(network).unwrap();
let io = ShaderIO {
inputs: vec![
ShaderInput::StorageBuffer((), concrete!(Color)), // background image
ShaderInput::StorageBuffer((), concrete!(Color)), // foreground image
ShaderInput::StorageBuffer((), concrete!(u32)), // width/height of the foreground image
ShaderInput::OutputBuffer((), concrete!(Color)),
],
output: ShaderInput::OutputBuffer((), concrete!(Color)),
};
let compile_request = CompileRequest::new(vec![proto_network], vec![concrete!(Color), concrete!(Color), concrete!(u32)], vec![concrete!(Color)], io);
let response = client
.post("http://localhost:3000/compile/spirv")
.timeout(Duration::from_secs(30))
.json(&compile_request)
.send()
.unwrap();
println!("response: {response:?}");
}
fn add_network() -> NodeNetwork {
NodeNetwork {
exports: vec![NodeInput::node(NodeId(0), 0)],
nodes: [DocumentNode {
inputs: vec![NodeInput::Inline(InlineRust::new(
format!(
r#"graphene_core::raster::adjustments::BlendNode::new(
graphene_core::value::CopiedNode::new({}),
graphene_core::value::CopiedNode::new({}),
).eval((
i1[_global_index.x as usize],
if _global_index.x < i2[2] {{
i0[_global_index.x as usize]
}} else {{
Color::from_rgbaf32_unchecked(0., 0., 0., 0.)
}},
))"#,
TaggedValue::BlendMode(BlendMode::Normal).to_primitive_string(),
TaggedValue::F64(1.).to_primitive_string(),
),
concrete![Color],
))],
implementation: DocumentNodeImplementation::ProtoNode("graphene_core::value::CopiedNode".into()),
..Default::default()
}]
.into_iter()
.enumerate()
.map(|(id, node)| (NodeId(id as u64), node))
.collect(),
..Default::default()
}
}

View file

@ -1,20 +0,0 @@
[package]
name = "compilation-server"
version = "0.1.0"
edition = "2024"
license = "MIT OR Apache-2.0"
[dependencies]
# Local dependencies
graph-craft = { path = "../graph-craft", features = ["serde"] }
gpu-compiler-bin-wrapper = { path = "../gpu-compiler/gpu-compiler-bin-wrapper" }
tokio = { workspace = true, features = ["full"] }
axum = { workspace = true }
serde_json = { workspace = true }
serde = { workspace = true, features = ["derive"] }
tempfile = { workspace = true }
anyhow = { workspace = true }
futures = { workspace = true }
# Required dependencies
tower-http = { version = "0.6", features = ["cors"] }

View file

@ -1,48 +0,0 @@
use axum::Router;
use axum::extract::{Json, State};
use axum::http::StatusCode;
use axum::routing::{get, post};
use gpu_compiler_bin_wrapper::CompileRequest;
use std::collections::HashMap;
use std::sync::Arc;
use std::sync::RwLock;
use tower_http::cors::CorsLayer;
struct AppState {
compile_dir: tempfile::TempDir,
cache: RwLock<HashMap<CompileRequest, Result<Vec<u8>, StatusCode>>>,
}
#[tokio::main]
async fn main() {
let shared_state = Arc::new(AppState {
compile_dir: tempfile::tempdir().expect("failed to create tempdir"),
cache: Default::default(),
});
// build our application with a single route
let app = Router::new()
.route("/", get(|| async { "Hello from compilation server!" }))
.route("/compile", get(|| async { "Supported targets: spirv" }))
.route("/compile/spirv", post(post_compile_spirv))
.layer(CorsLayer::permissive())
.with_state(shared_state);
// run it with hyper on localhost:3000
let listener = tokio::net::TcpListener::bind("0.0.0.0:3000").await.unwrap();
axum::serve(listener, app).await.unwrap();
}
async fn post_compile_spirv(State(state): State<Arc<AppState>>, Json(compile_request): Json<CompileRequest>) -> Result<Vec<u8>, StatusCode> {
if let Some(result) = state.cache.read().unwrap().get(&compile_request) {
return result.clone();
}
let path = std::env::var("CARGO_MANIFEST_DIR").unwrap() + "/../gpu-compiler/Cargo.toml";
let result = compile_request.compile(state.compile_dir.path().to_str().expect("non utf8 tempdir path"), &path).map_err(|e| {
eprintln!("compilation failed: {e}");
StatusCode::INTERNAL_SERVER_ERROR
})?;
state.cache.write().unwrap().insert(compile_request, Ok(result.clone()));
Ok(result)
}

File diff suppressed because it is too large Load diff

View file

@ -1,40 +0,0 @@
[package]
name = "gpu-compiler"
version = "0.1.0"
edition = "2024"
license = "MIT OR Apache-2.0"
[features]
default = []
profiling = ["nvtx"]
serde = ["graphene-core/serde", "glam/serde"]
# NOTE: We can't use workspace dependencies in this crate because it uses a different toolchain
[dependencies]
# Local dependencies
graph-craft = { path = "../graph-craft", features = ["serde"] }
gpu-executor = { path = "../gpu-executor" }
graphene-core = { path = "../gcore", features = ["std", "alloc"] }
dyn-any = { path = "../../libraries/dyn-any", features = [
"log-bad-types",
"rc",
"glam",
] }
# Required dependencies
num-traits = { version = "0.2", default-features = false, features = ["i128"] }
log = "0.4"
serde = { version = "1.0", features = ["derive", "rc"] }
glam = { version = "0.29", default-features = false, features = ["serde"] }
base64 = "0.22"
bytemuck = { version = "1.13", features = ["derive"] }
tempfile = "3.6"
anyhow = "1.0"
serde_json = "1.0"
tera = { version = "1.17.1" }
spirv-builder = { version = "0.9", default-features = false, features = [
"use-installed-tools",
] }
# Optional dependencies
nvtx = { version = "1.3", optional = true }

View file

@ -1,21 +0,0 @@
[package]
name = "gpu-compiler-bin-wrapper"
version = "0.1.0"
edition = "2024"
license = "MIT OR Apache-2.0"
[features]
default = []
profiling = []
[dependencies]
# Local dependencies
graph-craft = { path = "../../graph-craft", features = ["serde", "wgpu"] }
gpu-executor = { path = "../../gpu-executor" }
wgpu-executor = { path = "../../wgpu-executor" }
# Workspace dependencies
log = { workspace = true }
anyhow = { workspace = true }
serde_json = { workspace = true }
serde = { workspace = true, features = ["derive"] }

View file

@ -1,68 +0,0 @@
use graph_craft::Type;
use graph_craft::proto::ProtoNetwork;
use std::io::Write;
use wgpu_executor::ShaderIO;
pub fn compile_spirv(request: &CompileRequest, compile_dir: Option<&str>, manifest_path: &str) -> anyhow::Result<Vec<u8>> {
let serialized_graph = serde_json::to_string(&graph_craft::graphene_compiler::CompileRequest {
networks: request.networks.clone(),
io: request.shader_io.clone(),
})?;
#[cfg(not(feature = "profiling"))]
let features = "";
#[cfg(feature = "profiling")]
let features = "profiling";
println!("calling cargo run!");
let non_cargo_env_vars = std::env::vars().filter(|(k, _)| k.starts_with("PATH")).collect::<Vec<_>>();
let mut cargo_command = std::process::Command::new("cargo")
.arg("run")
.arg("--release")
.arg("--manifest-path")
.arg(manifest_path)
.current_dir(manifest_path.replace("Cargo.toml", ""))
.env_clear()
.envs(non_cargo_env_vars)
.arg("--features")
.arg(features)
// TODO: handle None case properly
.arg(compile_dir.unwrap())
.stdin(std::process::Stdio::piped())
.stdout(std::process::Stdio::piped())
.spawn()?;
cargo_command.stdin.as_mut().unwrap().write_all(serialized_graph.as_bytes())?;
let output = cargo_command.wait_with_output()?;
if !output.status.success() {
return Err(anyhow::anyhow!("cargo failed: {}", String::from_utf8_lossy(&output.stderr)));
}
Ok(std::fs::read(compile_dir.unwrap().to_owned() + "/shader.spv")?)
}
#[derive(serde::Serialize, serde::Deserialize, Debug, Clone, PartialEq, Hash, Eq)]
pub struct CompileRequest {
networks: Vec<graph_craft::proto::ProtoNetwork>,
input_types: Vec<Type>,
output_types: Vec<Type>,
shader_io: ShaderIO,
}
impl CompileRequest {
pub fn new(networks: Vec<ProtoNetwork>, input_types: Vec<Type>, output_types: Vec<Type>, io: ShaderIO) -> Self {
// TODO: add type checking
// for (input, buffer) in input_types.iter().zip(io.inputs.iter()) {
// assert_eq!(input, &buffer.ty());
// }
// assert_eq!(output_type, io.output.ty());
Self {
networks,
input_types,
output_types,
shader_io: io,
}
}
pub fn compile(&self, compile_dir: &str, manifest_path: &str) -> anyhow::Result<Vec<u8>> {
compile_spirv(self, Some(compile_dir), manifest_path)
}
}

View file

@ -1,10 +0,0 @@
[toolchain]
channel = "nightly-2023-05-27"
components = [
"rust-src",
"rustc-dev",
"llvm-tools-preview",
"clippy",
"rustfmt",
"rustc",
]

View file

@ -1,259 +0,0 @@
use gpu_executor::{GPUConstant, ShaderIO, ShaderInput, SpirVCompiler};
use graph_craft::proto::*;
use graphene_core::Cow;
use std::path::{Path, PathBuf};
use tera::Context;
fn create_cargo_toml(metadata: &Metadata) -> Result<String, tera::Error> {
let mut tera = tera::Tera::default();
tera.add_raw_template("cargo_toml", include_str!("templates/Cargo-template.toml"))?;
let mut context = Context::new();
context.insert("name", &metadata.name);
context.insert("authors", &metadata.authors);
context.insert("gcore_path", &format!("{}{}", env!("CARGO_MANIFEST_DIR"), "/../gcore"));
tera.render("cargo_toml", &context)
}
pub struct Metadata {
name: String,
authors: Vec<String>,
}
impl Metadata {
pub fn new(name: String, authors: Vec<String>) -> Self {
Self { name, authors }
}
}
pub fn create_files(metadata: &Metadata, networks: &[ProtoNetwork], compile_dir: &Path, io: &ShaderIO) -> anyhow::Result<()> {
let src = compile_dir.join("src");
let cargo_file = compile_dir.join("Cargo.toml");
let cargo_toml = create_cargo_toml(metadata)?;
std::fs::write(cargo_file, cargo_toml)?;
let toolchain_file = compile_dir.join("rust-toolchain.toml");
let toolchain = include_str!("templates/rust-toolchain.toml");
std::fs::write(toolchain_file, toolchain)?;
// create src dir
match std::fs::create_dir(&src) {
Ok(_) => {}
Err(e) => {
if e.kind() != std::io::ErrorKind::AlreadyExists {
return Err(e.into());
}
}
}
let lib = src.join("lib.rs");
let shader = serialize_gpu(networks, io)?;
eprintln!("{shader}");
std::fs::write(lib, shader)?;
Ok(())
}
fn constant_attribute(constant: &GPUConstant) -> &'static str {
match constant {
GPUConstant::SubGroupId => "subgroup_id",
GPUConstant::SubGroupInvocationId => "subgroup_local_invocation_id",
GPUConstant::SubGroupSize => todo!(),
GPUConstant::NumSubGroups => "num_subgroups",
GPUConstant::WorkGroupId => "workgroup_id",
GPUConstant::WorkGroupInvocationId => "local_invocation_id",
GPUConstant::WorkGroupSize => todo!(),
GPUConstant::NumWorkGroups => "num_workgroups",
GPUConstant::GlobalInvocationId => "global_invocation_id",
GPUConstant::GlobalSize => todo!(),
}
}
pub fn construct_argument<T: gpu_executor::GpuExecutor>(input: &ShaderInput<T>, position: u32, binding_offset: u32) -> String {
let line = match input {
ShaderInput::Constant(constant) => format!("#[spirv({})] i{}: {}", constant_attribute(constant), position, constant.ty()),
ShaderInput::UniformBuffer(_, ty) => {
format!("#[spirv(uniform, descriptor_set = 0, binding = {})] i{}: &{}", position + binding_offset, position, ty,)
}
ShaderInput::StorageBuffer(_, ty) | ShaderInput::ReadBackBuffer(_, ty) => {
format!("#[spirv(storage_buffer, descriptor_set = 0, binding = {})] i{}: &[{}]", position + binding_offset, position, ty,)
}
ShaderInput::StorageTextureBuffer(_, ty) => {
format!("#[spirv(storage_buffer, descriptor_set = 0, binding = {})] i{}: &mut [{}]]", position + binding_offset, position, ty,)
}
ShaderInput::TextureView(_, _) => {
format!(
"#[spirv(texture, descriptor_set = 0, binding = {})] i{}: spirv_std::image::Image2d",
position + binding_offset,
position,
)
}
ShaderInput::TextureBuffer(_, _) => {
panic!("Texture Buffers cannot be used as inputs use TextureView instead")
}
ShaderInput::OutputBuffer(_, ty) => {
format!("#[spirv(storage_buffer, descriptor_set = 0, binding = {})] o{}: &mut[{}]", position + binding_offset, position, ty,)
}
ShaderInput::WorkGroupMemory(_, ty) => format!("#[spirv(workgroup_memory] i{}: {}", position, ty,),
};
line.replace("glam::u32::uvec3::UVec3", "spirv_std::glam::UVec3")
}
struct GpuCompiler {
compile_dir: PathBuf,
}
impl SpirVCompiler for GpuCompiler {
fn compile(&self, networks: &[ProtoNetwork], io: &ShaderIO) -> anyhow::Result<gpu_executor::Shader> {
let metadata = Metadata::new("project".to_owned(), vec!["test@example.com".to_owned()]);
create_files(&metadata, networks, &self.compile_dir, io)?;
let result = compile(&self.compile_dir)?;
let bytes = std::fs::read(result.module.unwrap_single())?;
let words = bytes.chunks(4).map(|chunk| u32::from_ne_bytes(chunk.try_into().unwrap())).collect::<Vec<_>>();
Ok(gpu_executor::Shader {
source: Cow::Owned(words),
name: "",
io: io.clone(),
})
}
}
pub fn serialize_gpu(networks: &[ProtoNetwork], io: &ShaderIO) -> anyhow::Result<String> {
fn nid(id: &u64) -> String {
format!("n{id:0x}")
}
dbg!(&io);
let mut inputs = io
.inputs
.iter()
.filter(|x| !x.is_output())
.enumerate()
.map(|(i, input)| construct_argument(input, i as u32, 0))
.collect::<Vec<_>>();
let offset = inputs.len() as u32;
inputs.extend(io.inputs.iter().filter(|x| x.is_output()).enumerate().map(|(i, input)| construct_argument(input, i as u32, offset)));
let mut nodes = Vec::new();
let mut input_nodes = Vec::new();
let mut output_nodes = Vec::new();
for network in networks {
dbg!(&network);
// assert_eq!(network.inputs.len(), io.inputs.iter().filter(|x| !x.is_output()).count());
#[derive(serde::Serialize, Debug)]
struct Node {
id: String,
index: usize,
fqn: String,
args: Vec<String>,
}
for (i, id) in network.inputs.iter().enumerate() {
let Some((_, node)) = network.nodes.iter().find(|(i, _)| i == id) else {
anyhow::bail!("Input node not found");
};
let fqn = &node.identifier.name;
let id = nid(id);
let node = Node {
id: id.clone(),
index: i + 2,
fqn: fqn.to_string().split('<').next().unwrap().to_owned(),
args: node.construction_args.new_function_args(),
};
dbg!(&node);
if !io.inputs[i].is_output() {
if input_nodes.iter().any(|x: &Node| x.id == id) {
continue;
}
input_nodes.push(node);
}
}
for (ref id, node) in network.nodes.iter() {
if network.inputs.contains(id) {
continue;
}
let fqn = &node.identifier.name;
let id = nid(id);
if nodes.iter().any(|x: &Node| x.id == id) {
continue;
}
nodes.push(Node {
id,
index: 0,
fqn: fqn.to_string().split("<").next().unwrap().to_owned(),
args: node.construction_args.new_function_args(),
});
}
let output = nid(&network.output);
output_nodes.push(output);
}
dbg!(&input_nodes);
let template = include_str!("templates/spirv-template.rs");
let mut tera = tera::Tera::default();
tera.add_raw_template("spirv", template)?;
let mut context = Context::new();
context.insert("inputs", &inputs);
context.insert("input_nodes", &input_nodes);
context.insert("output_nodes", &output_nodes);
context.insert("nodes", &nodes);
context.insert("compute_threads", "12, 8");
Ok(tera.render("spirv", &context)?)
}
use spirv_builder::{MetadataPrintout, SpirvBuilder, SpirvMetadata};
pub fn compile(dir: &Path) -> Result<spirv_builder::CompileResult, spirv_builder::SpirvBuilderError> {
dbg!(&dir);
let result = SpirvBuilder::new(dir, "spirv-unknown-vulkan1.2")
.print_metadata(MetadataPrintout::DependencyOnly)
.multimodule(false)
.preserve_bindings(true)
.release(true)
.spirv_metadata(SpirvMetadata::Full)
// .scalar_block_layout(true)
.relax_logical_pointer(true)
// .capability(spirv_builder::Capability::Float64)
// .capability(spirv_builder::Capability::VariablePointersStorageBuffer)
.extra_arg("no-early-report-zombies")
.extra_arg("no-infer-storage-classes")
.extra_arg("spirt-passes=qptr")
.build()?;
Ok(result)
}
#[cfg(test)]
mod test {
#[test]
fn test_create_cargo_toml() {
let cargo_toml = super::create_cargo_toml(&super::Metadata {
name: "project".to_owned(),
authors: vec!["Example <john.smith@example.com>".to_owned(), "smith.john@example.com".to_owned()],
});
let cargo_toml = cargo_toml.expect("Failed to build cargo toml template");
let lines = cargo_toml.split('\n').collect::<Vec<_>>();
let cargo_toml = lines[..lines.len() - 2].join("\n");
let reference = r#"[package]
name = "project-node"
version = "0.1.0"
authors = ["Example <john.smith@example.com>", "smith.john@example.com", ]
edition = "2024"
license = "MIT OR Apache-2.0"
publish = false
[lib]
crate-type = ["dylib", "lib"]
[patch.crates-io]
libm = { git = "https://github.com/rust-lang/libm", tag = "0.2.5" }
[dependencies]
spirv-std = { git = "https://github.com/EmbarkStudios/rust-gpu" , features= ["glam"]}"#;
assert_eq!(cargo_toml, reference);
}
}

View file

@ -1,25 +0,0 @@
use gpu_compiler as compiler;
use gpu_executor::CompileRequest;
use graph_craft::document::NodeNetwork;
use std::io::Write;
fn main() -> anyhow::Result<()> {
println!("Starting GPU Compiler!");
let mut stdin = std::io::stdin();
let mut stdout = std::io::stdout();
let compile_dir = std::env::args().nth(1).map(|x| std::path::PathBuf::from(&x)).unwrap_or(tempfile::tempdir()?.into_path());
let request: CompileRequest = serde_json::from_reader(&mut stdin)?;
dbg!(&compile_dir);
let metadata = compiler::Metadata::new("project".to_owned(), vec!["test@example.com".to_owned()]);
compiler::create_files(&metadata, &request.networks, &compile_dir, &request.io)?;
let result = compiler::compile(&compile_dir)?;
let bytes = std::fs::read(result.module.unwrap_single())?;
// TODO: properly resolve this
let spirv_path = compile_dir.join("shader.spv");
std::fs::write(&spirv_path, &bytes)?;
Ok(())
}

View file

@ -1,19 +0,0 @@
[package]
authors = [{% for author in authors %}"{{author}}", {% endfor %}]
name = "{{name}}-node"
version = "0.1.0"
edition = "2024"
license = "MIT OR Apache-2.0"
publish = false
[lib]
crate-type = ["dylib", "lib"]
[patch.crates-io]
libm = { git = "https://github.com/rust-lang/libm", tag = "0.2.5" }
[dependencies]
spirv-std = { version = "0.9" }
graphene-core = { path = "{{gcore_path}}", default-features = false, features = [
"gpu",
] }

View file

@ -1,10 +0,0 @@
[toolchain]
channel = "nightly-2023-05-27"
components = [
"rust-src",
"rustc-dev",
"llvm-tools-preview",
"clippy",
"rustfmt",
"rustc",
]

View file

@ -1,44 +0,0 @@
#![no_std]
#![feature(unchecked_math)]
#[cfg(target_arch = "spirv")]
extern crate spirv_std;
// #[cfg(target_arch = "spirv")]
// pub mod gpu {
// use super::*;
use spirv_std::spirv;
use spirv_std::glam;
use spirv_std::glam::{UVec3, Vec2, Mat2, BVec2};
#[allow(unused)]
#[spirv(compute(threads({{compute_threads}})))]
pub fn eval (
#[spirv(global_invocation_id)] _global_index: UVec3,
{% for input in inputs %}
{{input}},
{% endfor %}
) {
use graphene_core::{Node, NodeMut};
use graphene_core::raster::adjustments::{BlendMode, BlendNode};
use graphene_core::Color;
{% for input in input_nodes %}
let _i{{input.index}} = graphene_core::value::CopiedNode::new(*i{{input.index}});
let _{{input.id}} = {{input.fqn}}::new({% for arg in input.args %}{{arg}}, {% endfor %});
let {{input.id}} = graphene_core::structural::ComposeNode::new(_i{{input.index}}, _{{input.id}});
{% endfor %}
{% for node in nodes %}
let mut {{node.id}} = {{node.fqn}}::new({% for arg in node.args %}{{arg}}, {% endfor %});
{% endfor %}
{% for output in output_nodes %}
let v = {{output}}.eval(());
o{{loop.index0}}[(_global_index.y * i0 + _global_index.x) as usize] = v;
{% endfor %}
// TODO: Write output to buffer
}
// }

View file

@ -1,28 +0,0 @@
[package]
name = "gpu-executor"
version = "0.1.0"
edition = "2024"
license = "MIT OR Apache-2.0"
[features]
default = []
[dependencies]
# Local dependencies
node-macro = { path = "../node-macro" }
# Workspace dependencies
graphene-core = { workspace = true, features = ["std", "alloc", "gpu"] }
dyn-any = { workspace = true, features = ["log-bad-types", "rc", "glam"] }
num-traits = { workspace = true }
log = { workspace = true }
serde = { workspace = true }
glam = { workspace = true }
base64 = { workspace = true }
bytemuck = { workspace = true }
anyhow = { workspace = true }
futures = { workspace = true }
web-sys = { workspace = true, features = [
"HtmlCanvasElement",
"ImageBitmapRenderingContext",
] }

View file

@ -1,152 +0,0 @@
use bytemuck::{Pod, Zeroable};
use dyn_any::{StaticType, StaticTypeSized};
use glam::UVec3;
use graphene_core::raster::color::RGBA16F;
use graphene_core::raster::{Image, Pixel, SRGBA8};
use graphene_core::*;
use std::borrow::Cow;
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize, dyn_any::DynAny)]
pub enum ComputePassDimensions {
X(u32),
XY(u32, u32),
XYZ(u32, u32, u32),
}
impl ComputePassDimensions {
pub fn get(&self) -> (u32, u32, u32) {
match self {
ComputePassDimensions::X(x) => (*x, 1, 1),
ComputePassDimensions::XY(x, y) => (*x, *y, 1),
ComputePassDimensions::XYZ(x, y, z) => (*x, *y, *z),
}
}
}
pub trait Texture {
fn width(&self) -> u32;
fn height(&self) -> u32;
fn format(&self) -> TextureBufferType;
fn view<TextureView>(&self) -> TextureView;
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize)]
/// GPU constants that can be used as inputs to a shader.
pub enum GPUConstant {
SubGroupId,
SubGroupInvocationId,
SubGroupSize,
NumSubGroups,
WorkGroupId,
WorkGroupInvocationId,
WorkGroupSize,
NumWorkGroups,
GlobalInvocationId,
GlobalSize,
}
impl GPUConstant {
pub fn ty(&self) -> Type {
match self {
GPUConstant::SubGroupId => concrete!(u32),
GPUConstant::SubGroupInvocationId => concrete!(u32),
GPUConstant::SubGroupSize => concrete!(u32),
GPUConstant::NumSubGroups => concrete!(u32),
GPUConstant::WorkGroupId => concrete!(UVec3),
GPUConstant::WorkGroupInvocationId => concrete!(UVec3),
GPUConstant::WorkGroupSize => concrete!(u32),
GPUConstant::NumWorkGroups => concrete!(u32),
GPUConstant::GlobalInvocationId => concrete!(UVec3),
GPUConstant::GlobalSize => concrete!(UVec3),
}
}
}
pub struct StorageBufferOptions {
pub cpu_writable: bool,
pub gpu_writable: bool,
pub cpu_readable: bool,
pub storage: bool,
}
pub enum TextureBufferOptions {
Storage,
Texture,
Surface,
}
pub trait ToUniformBuffer: StaticType {
fn to_bytes(&self) -> Cow<[u8]>;
}
impl<T: StaticType + Pod + Zeroable> ToUniformBuffer for T {
fn to_bytes(&self) -> Cow<[u8]> {
Cow::Owned(bytemuck::bytes_of(self).into())
}
}
pub trait ToStorageBuffer: StaticType {
fn to_bytes(&self) -> Cow<[u8]>;
fn ty(&self) -> Type;
}
impl<T: Pod + Zeroable + StaticTypeSized> ToStorageBuffer for Vec<T> {
fn to_bytes(&self) -> Cow<[u8]> {
Cow::Borrowed(bytemuck::cast_slice(self.as_slice()))
}
fn ty(&self) -> Type {
concrete!(T)
}
}
pub trait TextureFormat {
fn format() -> TextureBufferType;
}
impl TextureFormat for Color {
fn format() -> TextureBufferType {
TextureBufferType::Rgba32Float
}
}
impl TextureFormat for SRGBA8 {
fn format() -> TextureBufferType {
TextureBufferType::Rgba8Srgb
}
}
impl TextureFormat for RGBA16F {
fn format() -> TextureBufferType {
TextureBufferType::Rgba16Float
}
}
// TODO use wgpu type
pub enum TextureBufferType {
Rgba32Float,
Rgba16Float,
Rgba8Srgb,
}
pub trait ToTextureBuffer: StaticType {
fn to_bytes(&self) -> Cow<[u8]>;
fn ty() -> Type;
fn format() -> TextureBufferType;
fn size(&self) -> (u32, u32);
}
impl<T: Pod + Zeroable + StaticTypeSized + Pixel + TextureFormat> ToTextureBuffer for Image<T>
where
T::Static: Pixel,
{
fn to_bytes(&self) -> Cow<[u8]> {
Cow::Borrowed(bytemuck::cast_slice(self.data.as_slice()))
}
fn ty() -> Type {
concrete!(T)
}
fn format() -> TextureBufferType {
T::format()
}
fn size(&self) -> (u32, u32) {
(self.width, self.height)
}
}

View file

@ -34,9 +34,3 @@ impl Compiler {
pub trait Executor<I, O> {
fn execute(&self, input: I) -> LocalFuture<Result<O, Box<dyn Error>>>;
}
#[derive(Clone, Debug, PartialEq, serde::Serialize, serde::Deserialize)]
#[cfg(feature = "wgpu")]
pub struct CompileRequest {
pub networks: Vec<ProtoNetwork>,
pub io: wgpu_executor::ShaderIO,
}

View file

@ -1,6 +1,4 @@
use crate::document::NodeNetwork;
use crate::graphene_compiler::Compiler;
use crate::proto::ProtoNetwork;
pub fn load_network(document_string: &str) -> NodeNetwork {
let document: serde_json::Value = serde_json::from_str(document_string).expect("Failed to parse document");
@ -8,11 +6,6 @@ pub fn load_network(document_string: &str) -> NodeNetwork {
serde_json::from_str::<NodeNetwork>(&document).expect("Failed to parse document")
}
pub fn compile(network: NodeNetwork) -> ProtoNetwork {
let compiler = Compiler {};
compiler.compile_single(network).unwrap()
}
pub fn load_from_name(name: &str) -> NodeNetwork {
let content = std::fs::read(format!("../../demo-artwork/{name}.graphite")).expect("failed to read file");
let content = std::str::from_utf8(&content).unwrap();

View file

@ -17,7 +17,6 @@ gpu = [
"graphene-std/gpu",
"graphene-core/gpu",
"wgpu-executor",
"gpu-executor",
]
[dependencies]
@ -50,7 +49,6 @@ clap = { version = "4.5.31", features = ["cargo", "derive"] }
# Optional local dependencies
wgpu-executor = { path = "../wgpu-executor", optional = true }
gpu-executor = { path = "../gpu-executor", optional = true }
# Optional workspace dependencies
wasm-bindgen = { workspace = true, optional = true }

View file

@ -8,12 +8,7 @@ license = "MIT OR Apache-2.0"
[features]
default = ["wasm", "imaginate"]
gpu = [
"graphene-core/gpu",
"gpu-compiler-bin-wrapper",
"compilation-client",
"gpu-executor",
]
gpu = [ "graphene-core/gpu" ]
wgpu = ["gpu", "dep:wgpu", "graph-craft/wgpu"]
wasm = ["wasm-bindgen", "web-sys", "js-sys"]
imaginate = ["image/png", "base64", "js-sys", "web-sys", "wasm-bindgen-futures"]
@ -59,11 +54,6 @@ image = { workspace = true, default-features = false, features = [
"jpeg",
] }
# Optional local dependencies
gpu-executor = { path = "../gpu-executor", optional = true }
gpu-compiler-bin-wrapper = { path = "../gpu-compiler/gpu-compiler-bin-wrapper", optional = true }
compilation-client = { path = "../compilation-client", optional = true }
# Optional workspace dependencies
base64 = { workspace = true, optional = true }
wgpu = { workspace = true, optional = true }

View file

@ -13,7 +13,6 @@ gpu = ["graphene-std/gpu", "graphene-core/gpu", "graphene-std/wgpu"]
# Local dependencies
graphene-std = { path = "../gstd", features = ["serde"] }
graph-craft = { path = "../graph-craft" }
gpu-executor = { path = "../gpu-executor" }
wgpu-executor = { path = "../wgpu-executor" }
# Workspace dependencies

View file

@ -19,8 +19,6 @@ use node_registry_macros::{async_node, into_node};
use once_cell::sync::Lazy;
use std::collections::HashMap;
use std::sync::Arc;
#[cfg(feature = "gpu")]
use wgpu_executor::ShaderInputFrame;
use wgpu_executor::{WgpuExecutor, WgpuSurface, WindowHandle};
// TODO: turn into hashmap
@ -110,12 +108,8 @@ fn node_registry() -> HashMap<ProtoNodeIdentifier, HashMap<NodeIOTypes, NodeCons
),
),
#[cfg(feature = "gpu")]
async_node!(graphene_core::memo::MemoNode<_, _>, input: Context, fn_params: [Context => ShaderInputFrame]),
#[cfg(feature = "gpu")]
async_node!(graphene_core::memo::MemoNode<_, _>, input: Context, fn_params: [Context => wgpu_executor::WgpuSurface]),
#[cfg(feature = "gpu")]
async_node!(graphene_core::memo::ImpureMemoNode<_, _, _>, input: Context, fn_params: [Context => ShaderInputFrame]),
#[cfg(feature = "gpu")]
async_node!(graphene_core::memo::ImpureMemoNode<_, _, _>, input: Context, fn_params: [Context => RasterDataTable<GPU>]),
#[cfg(feature = "gpu")]
async_node!(graphene_core::memo::MemoNode<_, _>, input: Context, fn_params: [Context => RasterDataTable<GPU>]),

View file

@ -474,7 +474,7 @@ fn parse_field(pat_ident: PatIdent, ty: Type, attrs: &[Attribute]) -> syn::Resul
}
let unit = extract_attribute(attrs, "unit")
.map(|attr| attr.parse_args::<LitStr>().map_err(|e| Error::new_spanned(attr, format!("Expected a unit type as string"))))
.map(|attr| attr.parse_args::<LitStr>().map_err(|_e| Error::new_spanned(attr, format!("Expected a unit type as string"))))
.transpose()?;
let number_display_decimal_places = extract_attribute(attrs, "display_decimal_places")

View file

@ -10,9 +10,6 @@ profiling = ["nvtx"]
passthrough = []
[dependencies]
# Local dependencies
gpu-executor = { path = "../gpu-executor" }
# Workspace dependencies
graphene-core = { workspace = true, features = ["std", "alloc", "gpu", "wgpu"] }
dyn-any = { workspace = true, features = ["log-bad-types", "rc", "glam"] }

View file

@ -1,250 +0,0 @@
use super::context::Context;
use bytemuck::Pod;
use dyn_any::StaticTypeSized;
use std::borrow::Cow;
use std::error::Error;
use std::pin::Pin;
use std::sync::Arc;
use wgpu::util::DeviceExt;
pub type LocalFuture<'n, T> = Pin<Box<dyn core::future::Future<Output = T> + 'n>>;
#[derive(Debug)]
pub struct GpuExecutor<'a, I: StaticTypeSized, O> {
context: Context,
entry_point: String,
shader: Cow<'a, [u32]>,
_phantom: std::marker::PhantomData<(I, O)>,
}
impl<'a, I: StaticTypeSized + Sync + Pod + Send, O: StaticTypeSized + Send + Sync + Pod> GpuExecutor<'a, I, O> {
pub fn new(context: Context, shader: Cow<'a, [u32]>, entry_point: String) -> anyhow::Result<Self> {
Ok(Self {
context,
entry_point,
shader,
_phantom: std::marker::PhantomData,
})
}
pub fn execute(&self, input: Vec<I>) -> LocalFuture<Result<Vec<O>, Box<dyn Error>>> {
let context = &self.context;
let future = execute_shader(context.device.clone(), context.queue.clone(), self.shader.to_vec(), input, self.entry_point.clone());
Box::pin(async move {
let result = future.await;
let result: Vec<O> = result.ok_or_else(|| String::from("Failed to execute shader"))?;
Ok(result)
})
}
}
async fn execute_shader<I: Pod + Send + Sync, O: Pod + Send + Sync>(device: Arc<wgpu::Device>, queue: Arc<wgpu::Queue>, shader: Vec<u32>, data: Vec<I>, entry_point: String) -> Option<Vec<O>> {
// Loads the shader from WGSL
dbg!(&shader);
// write shader to file
use std::io::Write;
let mut file = std::fs::File::create("/tmp/shader.spv").unwrap();
file.write_all(bytemuck::cast_slice(&shader)).unwrap();
let cs_module = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: None,
source: wgpu::ShaderSource::SpirV(shader.into()),
});
// Gets the size in bytes of the buffer.
let slice_size = data.len() * std::mem::size_of::<O>();
let size = slice_size as wgpu::BufferAddress;
// Instantiates buffer without data.
// `usage` of buffer specifies how it can be used:
// `BufferUsages::MAP_READ` allows it to be read (outside the shader).
// `BufferUsages::COPY_DST` allows it to be the destination of the copy.
let staging_buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: None,
size,
usage: wgpu::BufferUsages::MAP_READ | wgpu::BufferUsages::COPY_DST,
mapped_at_creation: false,
});
// Instantiates buffer with data (`numbers`).
// Usage allowing the buffer to be:
// A storage buffer (can be bound within a bind group and thus available to a shader).
// The destination of a copy.
// The source of a copy.
let storage_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Storage Buffer"),
contents: bytemuck::cast_slice(&data),
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_DST | wgpu::BufferUsages::COPY_SRC,
});
// Instantiates empty buffer for the result.
// Usage allowing the buffer to be:
// A storage buffer (can be bound within a bind group and thus available to a shader).
// The destination of a copy.
// The source of a copy.
let dest_buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("Destination Buffer"),
size,
usage: wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_SRC,
mapped_at_creation: false,
});
// A bind group defines how buffers are accessed by shaders.
// It is to WebGPU what a descriptor set is to Vulkan.
// `binding` here refers to the `binding` of a buffer in the shader (`layout(set = 0, binding = 0) buffer`).
// A pipeline specifies the operation of a shader
// Instantiates the pipeline.
let compute_pipeline = device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
label: None,
layout: None,
module: &cs_module,
entry_point: Some(entry_point.as_str()),
compilation_options: Default::default(),
cache: None,
});
// Instantiates the bind group, once again specifying the binding of buffers.
let bind_group_layout = compute_pipeline.get_bind_group_layout(0);
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: storage_buffer.as_entire_binding(),
},
wgpu::BindGroupEntry {
binding: 1,
resource: dest_buffer.as_entire_binding(),
},
],
});
// A command encoder executes one or many pipelines.
// It is to WebGPU what a command buffer is to Vulkan.
let mut encoder = device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
{
let mut cpass = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor { label: None, timestamp_writes: None });
cpass.set_pipeline(&compute_pipeline);
cpass.set_bind_group(0, Some(&bind_group), &[]);
cpass.insert_debug_marker("compute node network evaluation");
cpass.dispatch_workgroups(data.len().min(65535) as u32, 1, 1); // Number of cells to run, the (x,y,z) size of item being processed
}
// Sets adds copy operation to command encoder.
// Will copy data from storage buffer on GPU to staging buffer on CPU.
encoder.copy_buffer_to_buffer(&dest_buffer, 0, &staging_buffer, 0, size);
// Submits command encoder for processing
queue.submit(Some(encoder.finish()));
// Note that we're not calling `.await` here.
let buffer_slice = staging_buffer.slice(..);
// Sets the buffer up for mapping, sending over the result of the mapping back to us when it is finished.
let (sender, receiver) = futures_intrusive::channel::shared::oneshot_channel();
buffer_slice.map_async(wgpu::MapMode::Read, move |v| sender.send(v).unwrap());
// Poll the device in a blocking manner so that our future resolves.
// In an actual application, `device.poll(...)` should
// be called in an event loop or on another thread.
device.poll(wgpu::Maintain::Wait);
// Awaits until `buffer_future` can be read from
#[cfg(feature = "profiling")]
nvtx::range_push!("compute");
let result = receiver.receive().await;
#[cfg(feature = "profiling")]
nvtx::range_pop!();
if let Some(Ok(())) = result {
// Gets contents of buffer
let data = buffer_slice.get_mapped_range();
// Since contents are got in bytes, this converts these bytes back to u32
let result = bytemuck::cast_slice(&data).to_vec();
// With the current interface, we have to make sure all mapped views are dropped before we unmap the buffer
drop(data);
// Unmaps buffer from memory
staging_buffer.unmap();
// If you are familiar with C++ these 2 lines can be thought of similarly to `delete myPointer; myPointer = NULL;`.
// It effectively frees the memory.
// Returns data from buffer
Some(result)
} else {
panic!("failed to run compute on gpu!")
}
}
// TODO: Fix this test
// #[cfg(test)]
// mod test {
// use super::*;
//
// use graph_craft::concrete;
// use graph_craft::generic;
// use graph_craft::proto::*;
// #[test]
// fn add_on_gpu() {
// use crate::executor::Executor;
// let m = compiler::Metadata::new("project".to_owned(), vec!["test@example.com".to_owned()]);
// let network = inc_network();
// let temp_dir = tempfile::tempdir().expect("failed to create tempdir");
// let executor: GpuExecutor<u32, u32> = GpuExecutor::new(Context::new(), network, m, temp_dir.path()).unwrap();
// let data: Vec<_> = (0..1024).map(|x| x as u32).collect();
// let result = executor.execute(Box::new(data)).unwrap();
// let result = dyn_any::downcast::<Vec<u32>>(result).unwrap();
// for (i, r) in result.iter().enumerate() {
// assert_eq!(*r, i as u32 + 3);
// }
// }
// fn inc_network() -> ProtoNetwork {
// let mut construction_network = ProtoNetwork {
// inputs: vec![NodeId(10)],
// output: NodeId(1),
// nodes: [
// (
// NodeId(1),
// ProtoNode {
// identifier: ProtoNodeIdentifier::new("graphene_core::ops::IdentityNode", &[generic!("u32")]),
// input: ProtoNodeInput::Node(11),
// construction_args: ConstructionArgs::Nodes(vec![]),
// },
// ),
// (
// NodeId(10),
// ProtoNode {
// identifier: ProtoNodeIdentifier::new("graphene_core::structural::ConsNode", &[generic!("&ValueNode<u32>"), generic!("()")]),
// input: ProtoNodeInput::Network,
// construction_args: ConstructionArgs::Nodes(vec![14]),
// },
// ),
// (
// NodeId(11),
// ProtoNode {
// identifier: ProtoNodeIdentifier::new("graphene_core::ops::AddPairNode", &[generic!("u32"), generic!("u32")]),
// input: ProtoNodeInput::Node(10),
// construction_args: ConstructionArgs::Nodes(vec![]),
// },
// ),
// (
// NodeId(14),
// ProtoNode {
// identifier: ProtoNodeIdentifier::new("graphene_core::value::ValueNode", &[concrete!("u32")]),
// input: ProtoNodeInput::None,
// construction_args: ConstructionArgs::Value(Box::new(3_u32)),
// },
// ),
// ]
// .into_iter()
// .collect(),
// };
// construction_network.resolve_inputs();
// construction_network.reorder_ids();
// construction_network
// }
// }

View file

@ -1,41 +1,24 @@
mod context;
mod executor;
use anyhow::{Result, bail};
use anyhow::Result;
pub use context::Context;
use dyn_any::{DynAny, StaticType};
pub use executor::GpuExecutor;
use futures::Future;
use glam::{DAffine2, UVec2};
use gpu_executor::{ComputePassDimensions, GPUConstant, StorageBufferOptions, TextureBufferOptions, TextureBufferType, ToStorageBuffer, ToUniformBuffer};
use dyn_any::StaticType;
use glam::UVec2;
use graphene_core::application_io::{ApplicationIo, EditorApi, SurfaceHandle};
use graphene_core::instances::Instance;
use graphene_core::raster::{Image, SRGBA8};
use graphene_core::raster_types::{CPU, GPU, Raster, RasterDataTable};
use graphene_core::transform::{Footprint, Transform};
use graphene_core::{Color, Cow, Ctx, ExtractFootprint, Node, SurfaceFrame, Type};
use std::pin::Pin;
use graphene_core::{Color, Ctx};
use std::sync::Arc;
use vello::{AaConfig, AaSupport, RenderParams, Renderer, RendererOptions, Scene};
use wgpu::util::DeviceExt;
use wgpu::{Buffer, BufferDescriptor, Origin3d, ShaderModule, SurfaceConfiguration, SurfaceError, Texture, TextureAspect, TextureView};
#[cfg(target_arch = "wasm32")]
use web_sys::HtmlCanvasElement;
use wgpu::{Origin3d, SurfaceConfiguration, TextureAspect};
#[derive(dyn_any::DynAny)]
pub struct WgpuExecutor {
pub context: Context,
render_configuration: RenderConfiguration,
vello_renderer: futures::lock::Mutex<vello::Renderer>,
vello_renderer: futures::lock::Mutex<Renderer>,
}
impl std::fmt::Debug for WgpuExecutor {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("WgpuExecutor")
.field("context", &self.context)
.field("render_configuration", &self.render_configuration)
.finish()
f.debug_struct("WgpuExecutor").field("context", &self.context).finish()
}
}
@ -54,72 +37,12 @@ impl graphene_core::application_io::Size for Surface {
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
struct Vertex {
position: [f32; 3],
tex_coords: [f32; 2],
}
impl Vertex {
fn desc() -> wgpu::VertexBufferLayout<'static> {
use std::mem;
wgpu::VertexBufferLayout {
array_stride: mem::size_of::<Vertex>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float32x3,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float32x2,
},
],
}
}
}
const VERTICES: &[Vertex] = &[
Vertex {
position: [-1., 1., 0.],
tex_coords: [0., 0.],
}, // A
Vertex {
position: [-1., -1., 0.],
tex_coords: [0., 1.],
}, // B
Vertex {
position: [1., 1., 0.],
tex_coords: [1., 0.],
}, // C
Vertex {
position: [1., -1., 0.],
tex_coords: [1., 1.],
}, // D
];
const INDICES: &[u16] = &[0, 1, 2, 2, 1, 3];
#[derive(Debug, DynAny)]
#[repr(transparent)]
pub struct CommandBuffer(wgpu::CommandBuffer);
#[derive(Debug, DynAny)]
#[repr(transparent)]
pub struct ShaderModuleWrapper(ShaderModule);
pub type ShaderHandle = ShaderModuleWrapper;
pub type BufferHandle = Buffer;
pub type TextureHandle = Texture;
pub struct Surface {
pub inner: wgpu::Surface<'static>,
resolution: UVec2,
}
#[cfg(target_arch = "wasm32")]
pub type Window = HtmlCanvasElement;
pub type Window = web_sys::HtmlCanvasElement;
#[cfg(not(target_arch = "wasm32"))]
pub type Window = Arc<winit::window::Window>;
@ -129,10 +52,6 @@ unsafe impl StaticType for Surface {
pub use graphene_core::renderer::RenderContext;
// pub trait SpirVCompiler {
// fn compile(&self, network: &[ProtoNetwork], io: &ShaderIO) -> Result<Shader>;
// }
impl WgpuExecutor {
pub async fn render_vello_scene(&self, scene: &Scene, surface: &WgpuSurface, width: u32, height: u32, context: &RenderContext, background: Color) -> Result<()> {
let surface = &surface.surface.inner;
@ -184,338 +103,6 @@ impl WgpuExecutor {
Ok(())
}
pub fn load_shader(&self, shader: Shader) -> Result<ShaderHandle> {
#[cfg(not(feature = "passthrough"))]
let shader_module = self.context.device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some(shader.name),
source: wgpu::ShaderSource::SpirV(shader.source),
});
#[cfg(feature = "passthrough")]
let shader_module = unsafe {
self.context.device.create_shader_module_spirv(&wgpu::ShaderModuleDescriptorSpirV {
label: Some(shader.name),
source: shader.source,
})
};
Ok(ShaderModuleWrapper(shader_module))
}
pub fn create_uniform_buffer<T: ToUniformBuffer>(&self, data: T) -> Result<WgpuShaderInput> {
let bytes = data.to_bytes();
let buffer = self.context.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: None,
contents: bytes.as_ref(),
usage: wgpu::BufferUsages::UNIFORM,
});
Ok(ShaderInput::UniformBuffer(buffer, Type::new::<T>()))
}
pub fn create_storage_buffer<T: ToStorageBuffer>(&self, data: T, options: StorageBufferOptions) -> Result<WgpuShaderInput> {
let bytes = data.to_bytes();
let mut usage = wgpu::BufferUsages::empty();
if options.storage {
usage |= wgpu::BufferUsages::STORAGE;
}
if options.gpu_writable {
usage |= wgpu::BufferUsages::COPY_SRC | wgpu::BufferUsages::COPY_DST;
}
if options.cpu_readable {
usage |= wgpu::BufferUsages::MAP_READ | wgpu::BufferUsages::COPY_DST;
}
if options.cpu_writable {
usage |= wgpu::BufferUsages::MAP_WRITE | wgpu::BufferUsages::COPY_SRC;
}
log::warn!("Creating storage buffer with usage {:?} and len: {}", usage, bytes.len());
let buffer = self.context.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: None,
contents: bytes.as_ref(),
usage,
});
Ok(ShaderInput::StorageBuffer(buffer, data.ty()))
}
pub fn create_texture_buffer<T: gpu_executor::ToTextureBuffer>(&self, data: T, options: TextureBufferOptions) -> Result<WgpuShaderInput> {
let bytes = data.to_bytes();
let usage = match options {
TextureBufferOptions::Storage => wgpu::TextureUsages::STORAGE_BINDING | wgpu::TextureUsages::COPY_DST | wgpu::TextureUsages::COPY_SRC,
TextureBufferOptions::Texture => wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST | wgpu::TextureUsages::COPY_SRC,
TextureBufferOptions::Surface => wgpu::TextureUsages::RENDER_ATTACHMENT,
};
let format = match T::format() {
TextureBufferType::Rgba32Float => wgpu::TextureFormat::Rgba32Float,
TextureBufferType::Rgba16Float => wgpu::TextureFormat::Rgba16Float,
TextureBufferType::Rgba8Srgb => wgpu::TextureFormat::Rgba8UnormSrgb,
};
let buffer = self.context.device.create_texture_with_data(
self.context.queue.as_ref(),
&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width: data.size().0,
height: data.size().1,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format,
usage,
view_formats: &[format],
},
wgpu::util::TextureDataOrder::LayerMajor,
bytes.as_ref(),
);
match options {
TextureBufferOptions::Storage => Ok(ShaderInput::StorageTextureBuffer(buffer, T::ty())),
TextureBufferOptions::Texture => Ok(ShaderInput::TextureBuffer(buffer, T::ty())),
TextureBufferOptions::Surface => Ok(ShaderInput::TextureBuffer(buffer, T::ty())),
}
}
pub fn create_output_buffer(&self, len: usize, ty: Type, cpu_readable: bool) -> Result<WgpuShaderInput> {
log::warn!("Creating output buffer with len: {len}");
let create_buffer = |usage| {
Ok::<_, anyhow::Error>(self.context.device.create_buffer(&BufferDescriptor {
label: None,
size: len as u64 * ty.size().ok_or_else(|| anyhow::anyhow!("Cannot create buffer of type {ty:?}"))? as u64,
usage,
mapped_at_creation: false,
}))
};
let buffer = match cpu_readable {
true => ShaderInput::ReadBackBuffer(create_buffer(wgpu::BufferUsages::COPY_DST | wgpu::BufferUsages::MAP_READ)?, ty),
false => ShaderInput::OutputBuffer(create_buffer(wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_SRC)?, ty),
};
Ok(buffer)
}
pub fn create_compute_pass(&self, layout: &PipelineLayout, read_back: Option<Arc<WgpuShaderInput>>, instances: ComputePassDimensions) -> Result<CommandBuffer> {
let compute_pipeline = self.context.device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
label: None,
layout: None,
module: &layout.shader.0,
entry_point: Some(layout.entry_point.as_str()),
compilation_options: Default::default(),
cache: None,
});
let bind_group_layout = compute_pipeline.get_bind_group_layout(0);
let entries = layout
.bind_group
.buffers
.iter()
.chain(std::iter::once(&layout.output_buffer))
.flat_map(|input| input.binding())
.enumerate()
.map(|(i, buffer)| wgpu::BindGroupEntry {
binding: i as u32,
resource: match buffer {
BindingType::UniformBuffer(buf) => buf.as_entire_binding(),
BindingType::StorageBuffer(buf) => buf.as_entire_binding(),
BindingType::TextureView(buf) => wgpu::BindingResource::TextureView(buf),
},
})
.collect::<Vec<_>>();
let bind_group = self.context.device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &bind_group_layout,
entries: entries.as_slice(),
});
let mut encoder = self.context.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("compute encoder") });
{
let dimensions = instances.get();
let mut cpass = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor { label: None, timestamp_writes: None });
cpass.set_pipeline(&compute_pipeline);
cpass.set_bind_group(0, Some(&bind_group), &[]);
cpass.insert_debug_marker("compute node network evaluation");
cpass.push_debug_group("compute shader");
cpass.dispatch_workgroups(dimensions.0, dimensions.1, dimensions.2); // Number of cells to run, the (x,y,z) size of item being processed
cpass.pop_debug_group();
}
// Sets adds copy operation to command encoder.
// Will copy data from storage buffer on GPU to staging buffer on CPU.
if let Some(buffer) = read_back {
let ShaderInput::ReadBackBuffer(output, _ty) = buffer.as_ref() else {
bail!("Tried to read back from a non read back buffer");
};
let size = output.size();
let ShaderInput::OutputBuffer(output_buffer, ty) = layout.output_buffer.as_ref() else {
bail!("Tried to read back from a non output buffer");
};
assert_eq!(size, output_buffer.size());
assert_eq!(ty, &layout.output_buffer.ty());
encoder.copy_buffer_to_buffer(output_buffer, 0, output, 0, size);
}
// Submits command encoder for processing
Ok(CommandBuffer(encoder.finish()))
}
pub fn create_render_pass(&self, _footprint: Footprint, texture: ShaderInputFrame, canvas: Arc<SurfaceHandle<Surface>>) -> Result<()> {
let transform = texture.transform;
let texture = texture.shader_input.texture().expect("Expected texture input");
let texture_view = texture.create_view(&wgpu::TextureViewDescriptor {
format: Some(wgpu::TextureFormat::Rgba16Float),
..Default::default()
});
let surface = &canvas.as_ref().surface.inner;
let surface_caps = surface.get_capabilities(&self.context.adapter);
if surface_caps.formats.is_empty() {
log::warn!("No surface formats available");
return Ok(());
}
// TODO:
let resolution = transform.decompose_scale().as_uvec2();
let surface_format = wgpu::TextureFormat::Bgra8Unorm;
let config = SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: resolution.x,
height: resolution.y,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
surface.configure(&self.context.device, &config);
let result = surface.get_current_texture();
let output = match result {
Err(SurfaceError::Timeout) => {
log::warn!("Timeout when getting current texture");
return Ok(());
}
Err(SurfaceError::Lost) => {
log::warn!("Surface lost");
// surface.configure(&self.context.device, &new_config);
return Ok(());
}
Err(SurfaceError::OutOfMemory) => {
log::warn!("Out of memory");
return Ok(());
}
Err(SurfaceError::Outdated) => {
log::warn!("Surface outdated");
// surface.configure(&self.context.device, &new_config);
return Ok(());
}
Ok(surface) => surface,
};
let view = output.texture.create_view(&wgpu::TextureViewDescriptor {
format: Some(wgpu::TextureFormat::Bgra8Unorm),
..Default::default()
});
let output_texture_bind_group = self.context.device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.render_configuration.texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&texture_view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&self.render_configuration.sampler),
},
],
label: Some("output_texture_bind_group"),
});
let mut encoder = self.context.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder") });
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color::RED),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
timestamp_writes: None,
occlusion_query_set: None,
});
render_pass.set_pipeline(&self.render_configuration.render_pipeline);
render_pass.set_bind_group(0, Some(&output_texture_bind_group), &[]);
render_pass.set_vertex_buffer(0, self.render_configuration.vertex_buffer.slice(..));
render_pass.set_index_buffer(self.render_configuration.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
render_pass.draw_indexed(0..self.render_configuration.num_indices, 0, 0..1);
render_pass.insert_debug_marker("render node network");
}
let encoder = encoder.finish();
#[cfg(feature = "profiling")]
nvtx::range_push!("render");
self.context.queue.submit(Some(encoder));
#[cfg(feature = "profiling")]
nvtx::range_pop!();
log::trace!("Submitted render pass");
output.present();
Ok(())
}
pub fn execute_compute_pipeline(&self, encoder: CommandBuffer) -> Result<()> {
self.context.queue.submit(Some(encoder.0));
Ok(())
}
pub fn read_output_buffer(&self, buffer: Arc<WgpuShaderInput>) -> Pin<Box<dyn Future<Output = Result<Vec<u8>>> + Send>> {
Box::pin(async move {
let ShaderInput::ReadBackBuffer(buffer, _) = buffer.as_ref() else {
bail!("Tried to read a non readback buffer")
};
let buffer_slice = buffer.slice(..);
// Sets the buffer up for mapping, sending over the result of the mapping back to us when it is finished.
let (sender, receiver) = futures_intrusive::channel::shared::oneshot_channel();
buffer_slice.map_async(wgpu::MapMode::Read, move |v| sender.send(v).unwrap());
// Wait for the mapping to finish.
#[cfg(feature = "profiling")]
nvtx::range_push!("compute");
let result = receiver.receive().await;
#[cfg(feature = "profiling")]
nvtx::range_pop!();
if result.is_none_or(|x| x.is_err()) {
bail!("failed to run compute on gpu!")
}
// Gets contents of buffer
let data = buffer_slice.get_mapped_range();
// Since contents are got in bytes, this converts these bytes back to u32
let result = bytemuck::cast_slice(&data).to_vec();
// With the current interface, we have to make sure all mapped views are
// dropped before we unmap the buffer.
drop(data);
buffer.unmap(); // Unmaps buffer from memory
// Returns data from buffer
Ok(result)
})
}
pub fn create_texture_view(&self, texture: WgpuShaderInput) -> Result<WgpuShaderInput> {
// Ok(ShaderInput::TextureView(texture.create_view(&wgpu::TextureViewDescriptor::default()), ) )
let ShaderInput::TextureBuffer(texture, ty) = &texture else {
bail!("Tried to create a texture view from a non texture");
};
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
Ok(ShaderInput::TextureView(view, ty.clone()))
}
#[cfg(target_arch = "wasm32")]
pub fn create_surface(&self, canvas: graphene_core::WasmSurfaceHandle) -> Result<SurfaceHandle<Surface>> {
let surface = self.context.instance.create_surface(wgpu::SurfaceTarget::Canvas(canvas.surface))?;
@ -544,117 +131,6 @@ impl WgpuExecutor {
impl WgpuExecutor {
pub async fn new() -> Option<Self> {
let context = Context::new().await?;
println!("wgpu executor created");
let texture_bind_group_layout = context.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: false },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::NonFiltering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let sampler = context.device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Nearest,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
..Default::default()
});
let shader = context.device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
});
let render_pipeline_layout = context.device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[&texture_bind_group_layout],
push_constant_ranges: &[],
});
let render_pipeline = context.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: Some("vs_main"),
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: Some("fs_main"),
targets: &[Some(wgpu::ColorTargetState {
format: wgpu::TextureFormat::Bgra8Unorm,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent::REPLACE,
alpha: wgpu::BlendComponent::REPLACE,
}),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: None,
// Setting this to anything other than Fill requires Features::POLYGON_MODE_LINE
// or Features::POLYGON_MODE_POINT
polygon_mode: wgpu::PolygonMode::Fill,
// Requires Features::DEPTH_CLIP_CONTROL
unclipped_depth: false,
// Requires Features::CONSERVATIVE_RASTERIZATION
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
// If the pipeline will be used with a multiview render pass, this
// indicates how many array layers the attachments will have.
multiview: None,
cache: None,
});
let vertex_buffer = context.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(VERTICES),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = context.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(INDICES),
usage: wgpu::BufferUsages::INDEX,
});
let num_indices = INDICES.len() as u32;
let render_configuration = RenderConfiguration {
vertex_buffer,
index_buffer,
num_indices,
render_pipeline,
texture_bind_group_layout,
sampler,
};
let vello_renderer = Renderer::new(
&context.device,
@ -670,209 +146,11 @@ impl WgpuExecutor {
Some(Self {
context,
render_configuration,
vello_renderer: vello_renderer.into(),
})
}
}
#[derive(Debug)]
struct RenderConfiguration {
vertex_buffer: wgpu::Buffer,
index_buffer: wgpu::Buffer,
num_indices: u32,
render_pipeline: wgpu::RenderPipeline,
texture_bind_group_layout: wgpu::BindGroupLayout,
sampler: wgpu::Sampler,
}
pub type WgpuShaderInput = ShaderInput<BufferHandle, TextureHandle, TextureView>;
pub type AbstractShaderInput = ShaderInput<(), (), ()>;
#[derive(Clone, Debug, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize)]
/// All the possible inputs to a shader.
pub enum ShaderInput<BufferHandle, TextureHandle, TextureView> {
UniformBuffer(BufferHandle, Type),
StorageBuffer(BufferHandle, Type),
TextureBuffer(TextureHandle, Type),
StorageTextureBuffer(TextureHandle, Type),
TextureView(TextureView, Type),
/// A struct representing a work group memory buffer. This cannot be accessed by the CPU.
WorkGroupMemory(usize, Type),
Constant(GPUConstant),
OutputBuffer(BufferHandle, Type),
ReadBackBuffer(BufferHandle, Type),
}
unsafe impl<T: 'static, U: 'static, V: 'static> StaticType for ShaderInput<T, U, V> {
type Static = ShaderInput<T, U, V>;
}
pub enum BindingType<'a> {
UniformBuffer(&'a BufferHandle),
StorageBuffer(&'a BufferHandle),
TextureView(&'a TextureView),
}
/// Extract the buffer handle from a shader input.
impl ShaderInput<BufferHandle, TextureHandle, TextureView> {
pub fn binding(&self) -> Option<BindingType> {
match self {
ShaderInput::UniformBuffer(buffer, _) => Some(BindingType::UniformBuffer(buffer)),
ShaderInput::StorageBuffer(buffer, _) => Some(BindingType::StorageBuffer(buffer)),
ShaderInput::WorkGroupMemory(_, _) => None,
ShaderInput::Constant(_) => None,
ShaderInput::TextureBuffer(_, _) => None,
ShaderInput::StorageTextureBuffer(_, _) => None,
ShaderInput::TextureView(tex, _) => Some(BindingType::TextureView(tex)),
ShaderInput::OutputBuffer(buffer, _) => Some(BindingType::StorageBuffer(buffer)),
ShaderInput::ReadBackBuffer(buffer, _) => Some(BindingType::StorageBuffer(buffer)),
}
}
pub fn buffer(&self) -> Option<&BufferHandle> {
match self {
ShaderInput::UniformBuffer(buffer, _) => Some(buffer),
ShaderInput::StorageBuffer(buffer, _) => Some(buffer),
ShaderInput::WorkGroupMemory(_, _) => None,
ShaderInput::Constant(_) => None,
ShaderInput::TextureBuffer(_, _) => None,
ShaderInput::StorageTextureBuffer(_, _) => None,
ShaderInput::TextureView(_tex, _) => None,
ShaderInput::OutputBuffer(buffer, _) => Some(buffer),
ShaderInput::ReadBackBuffer(buffer, _) => Some(buffer),
}
}
pub fn texture(&self) -> Option<&TextureHandle> {
match self {
ShaderInput::UniformBuffer(_, _) => None,
ShaderInput::StorageBuffer(_, _) => None,
ShaderInput::WorkGroupMemory(_, _) => None,
ShaderInput::Constant(_) => None,
ShaderInput::TextureBuffer(tex, _) => Some(tex),
ShaderInput::StorageTextureBuffer(tex, _) => Some(tex),
ShaderInput::TextureView(_, _) => None,
ShaderInput::OutputBuffer(_, _) => None,
ShaderInput::ReadBackBuffer(_, _) => None,
}
}
}
impl<T, U, V> ShaderInput<T, U, V> {
pub fn ty(&self) -> Type {
match self {
ShaderInput::UniformBuffer(_, ty) => ty.clone(),
ShaderInput::StorageBuffer(_, ty) => ty.clone(),
ShaderInput::WorkGroupMemory(_, ty) => ty.clone(),
ShaderInput::Constant(c) => c.ty(),
ShaderInput::TextureBuffer(_, ty) => ty.clone(),
ShaderInput::StorageTextureBuffer(_, ty) => ty.clone(),
ShaderInput::TextureView(_, ty) => ty.clone(),
ShaderInput::OutputBuffer(_, ty) => ty.clone(),
ShaderInput::ReadBackBuffer(_, ty) => ty.clone(),
}
}
pub fn is_output(&self) -> bool {
matches!(self, ShaderInput::OutputBuffer(_, _))
}
}
pub struct Shader<'a> {
pub source: Cow<'a, [u32]>,
pub name: &'a str,
pub io: ShaderIO,
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize, dyn_any::DynAny)]
pub struct ShaderIO {
pub inputs: Vec<AbstractShaderInput>,
pub output: AbstractShaderInput,
}
/// Collection of all arguments that are passed to the shader.
#[derive(DynAny)]
pub struct Bindgroup {
pub buffers: Vec<Arc<WgpuShaderInput>>,
}
/// A struct representing a compute pipeline.
#[derive(DynAny, Clone)]
pub struct PipelineLayout {
pub shader: Arc<ShaderHandle>,
pub entry_point: String,
pub bind_group: Arc<Bindgroup>,
pub output_buffer: Arc<WgpuShaderInput>,
}
/// Extracts arguments from the function arguments and wraps them in a node.
pub struct ShaderInputNode<T> {
data: T,
}
impl<'i, T: 'i> Node<'i, ()> for ShaderInputNode<T> {
type Output = &'i T;
fn eval(&'i self, _: ()) -> Self::Output {
&self.data
}
}
impl<T> ShaderInputNode<T> {
pub fn new(data: T) -> Self {
Self { data }
}
}
#[node_macro::node(category(""))]
async fn uniform<'a: 'n, T: ToUniformBuffer + Send + 'n>(_: impl Ctx, #[implementations(f32, DAffine2)] data: T, executor: &'a WgpuExecutor) -> WgpuShaderInput {
executor.create_uniform_buffer(data).unwrap()
}
#[node_macro::node(category(""))]
async fn storage<'a: 'n, T: ToStorageBuffer + Send + 'n>(_: impl Ctx, #[implementations(Vec<u8>)] data: T, executor: &'a WgpuExecutor) -> WgpuShaderInput {
executor
.create_storage_buffer(
data,
StorageBufferOptions {
cpu_writable: false,
gpu_writable: true,
cpu_readable: false,
storage: true,
},
)
.unwrap()
}
#[node_macro::node(category(""))]
async fn create_output_buffer<'a: 'n>(_: impl Ctx + 'a, size: usize, executor: &'a WgpuExecutor, ty: Type) -> Arc<WgpuShaderInput> {
Arc::new(executor.create_output_buffer(size, ty, true).unwrap())
}
#[node_macro::node(skip_impl)]
async fn create_compute_pass<'a: 'n>(_: impl Ctx + 'a, layout: PipelineLayout, executor: &'a WgpuExecutor, output: WgpuShaderInput, instances: ComputePassDimensions) -> CommandBuffer {
executor.create_compute_pass(&layout, Some(output.into()), instances).unwrap()
}
#[node_macro::node(category("Debug: GPU"))]
async fn create_pipeline_layout(
_: impl Ctx,
shader: impl Node<(), Output = ShaderHandle>,
entry_point: String,
bind_group: impl Node<(), Output = Bindgroup>,
output_buffer: Arc<WgpuShaderInput>,
) -> PipelineLayout {
PipelineLayout {
shader: shader.eval(()).await.into(),
entry_point,
bind_group: bind_group.eval(()).await.into(),
output_buffer,
}
}
#[node_macro::node(category(""))]
async fn read_output_buffer<'a: 'n>(_: impl Ctx + 'a, buffer: Arc<WgpuShaderInput>, executor: &'a WgpuExecutor, _compute_pass: ()) -> Vec<u8> {
executor.read_output_buffer(buffer).await.unwrap()
}
pub type WindowHandle = Arc<SurfaceHandle<Window>>;
#[node_macro::node(skip_impl)]
@ -881,63 +159,3 @@ fn create_gpu_surface<'a: 'n, Io: ApplicationIo<Executor = WgpuExecutor, Surface
let executor = editor_api.application_io.as_ref()?.gpu_executor()?;
Some(Arc::new(executor.create_surface(canvas).ok()?))
}
#[derive(DynAny, Clone, Debug)]
pub struct ShaderInputFrame {
shader_input: Arc<WgpuShaderInput>,
transform: DAffine2,
}
#[node_macro::node(category(""))]
async fn render_texture<'a: 'n>(
_: impl Ctx + 'a,
footprint: Footprint,
image: impl Node<Footprint, Output = ShaderInputFrame>,
surface: Option<WgpuSurface>,
executor: &'a WgpuExecutor,
) -> SurfaceFrame {
let surface = surface.unwrap();
let surface_id = surface.window_id;
let image = image.eval(footprint).await;
let transform = image.transform;
executor.create_render_pass(footprint, image, surface).unwrap();
SurfaceFrame {
surface_id,
transform,
resolution: footprint.resolution,
}
}
#[node_macro::node(category(""))]
async fn upload_texture<'a: 'n>(_: impl ExtractFootprint + Ctx, input: RasterDataTable<CPU>, executor: &'a WgpuExecutor) -> RasterDataTable<GPU> {
let mut result_table = RasterDataTable::<GPU>::default();
for instance in input.instance_ref_iter() {
let image = instance.instance;
let new_data: Vec<SRGBA8> = image.data.iter().map(|x| (*x).into()).collect();
let new_image = Image {
width: image.width,
height: image.height,
data: new_data,
base64_string: None,
};
let shader_input = executor.create_texture_buffer(new_image, TextureBufferOptions::Texture).unwrap();
let texture = match shader_input {
ShaderInput::TextureBuffer(buffer, _) => buffer,
ShaderInput::StorageTextureBuffer(buffer, _) => buffer,
_ => unreachable!("Unsupported ShaderInput type"),
};
result_table.push(Instance {
instance: Raster::new_gpu(texture.into()),
transform: *instance.transform,
alpha_blending: *instance.alpha_blending,
source_node_id: *instance.source_node_id,
});
}
result_table
}

View file

@ -1,43 +0,0 @@
// Vertex shader
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) tex_coords: vec2<f32>,
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) tex_coords: vec2<f32>,
}
@vertex
fn vs_main(
model: VertexInput,
) -> VertexOutput {
var out: VertexOutput;
out.tex_coords = model.tex_coords;
out.clip_position = vec4<f32>(model.position, 1.0);
return out;
}
// Fragment shader
@group(0) @binding(0)
var t_diffuse: texture_2d<f32>;
@group(0)@binding(1)
var s_diffuse: sampler;
fn linearToSRGB(color: vec3<f32>) -> vec3<f32> {
let a = 0.055;
return select(pow(color, vec3<f32>(1.0 / 2.2)) * (1.0 + a) - a,
color / 12.92,
color <= vec3<f32>(0.0031308));
}
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
var color = textureSample(t_diffuse, s_diffuse, in.tex_coords);
var linearColor = color.rgb;
var srgbColor = linearToSRGB(linearColor);
return vec4<f32>(srgbColor, color.a);
}