Bulk remove old code for legacy GPU node implementations (#2722)

* fix warning in node-macro

* remove crates `gpu-executor`, `gpu-compiler`, `compilation-client` and `compilation-server`

* remove `wgpu-executor::executor`

* .gitignore .idea/
This commit is contained in:
Firestar99 2025-06-18 13:43:10 +02:00 committed by Keavon Chambers
parent d721bca85f
commit 3489f9ddb1
33 changed files with 11 additions and 7380 deletions

View file

@ -1,41 +1,24 @@
mod context;
mod executor;
use anyhow::{Result, bail};
use anyhow::Result;
pub use context::Context;
use dyn_any::{DynAny, StaticType};
pub use executor::GpuExecutor;
use futures::Future;
use glam::{DAffine2, UVec2};
use gpu_executor::{ComputePassDimensions, GPUConstant, StorageBufferOptions, TextureBufferOptions, TextureBufferType, ToStorageBuffer, ToUniformBuffer};
use dyn_any::StaticType;
use glam::UVec2;
use graphene_core::application_io::{ApplicationIo, EditorApi, SurfaceHandle};
use graphene_core::instances::Instance;
use graphene_core::raster::{Image, SRGBA8};
use graphene_core::raster_types::{CPU, GPU, Raster, RasterDataTable};
use graphene_core::transform::{Footprint, Transform};
use graphene_core::{Color, Cow, Ctx, ExtractFootprint, Node, SurfaceFrame, Type};
use std::pin::Pin;
use graphene_core::{Color, Ctx};
use std::sync::Arc;
use vello::{AaConfig, AaSupport, RenderParams, Renderer, RendererOptions, Scene};
use wgpu::util::DeviceExt;
use wgpu::{Buffer, BufferDescriptor, Origin3d, ShaderModule, SurfaceConfiguration, SurfaceError, Texture, TextureAspect, TextureView};
#[cfg(target_arch = "wasm32")]
use web_sys::HtmlCanvasElement;
use wgpu::{Origin3d, SurfaceConfiguration, TextureAspect};
#[derive(dyn_any::DynAny)]
pub struct WgpuExecutor {
pub context: Context,
render_configuration: RenderConfiguration,
vello_renderer: futures::lock::Mutex<vello::Renderer>,
vello_renderer: futures::lock::Mutex<Renderer>,
}
impl std::fmt::Debug for WgpuExecutor {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("WgpuExecutor")
.field("context", &self.context)
.field("render_configuration", &self.render_configuration)
.finish()
f.debug_struct("WgpuExecutor").field("context", &self.context).finish()
}
}
@ -54,72 +37,12 @@ impl graphene_core::application_io::Size for Surface {
}
}
#[repr(C)]
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
struct Vertex {
position: [f32; 3],
tex_coords: [f32; 2],
}
impl Vertex {
fn desc() -> wgpu::VertexBufferLayout<'static> {
use std::mem;
wgpu::VertexBufferLayout {
array_stride: mem::size_of::<Vertex>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &[
wgpu::VertexAttribute {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float32x3,
},
wgpu::VertexAttribute {
offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float32x2,
},
],
}
}
}
const VERTICES: &[Vertex] = &[
Vertex {
position: [-1., 1., 0.],
tex_coords: [0., 0.],
}, // A
Vertex {
position: [-1., -1., 0.],
tex_coords: [0., 1.],
}, // B
Vertex {
position: [1., 1., 0.],
tex_coords: [1., 0.],
}, // C
Vertex {
position: [1., -1., 0.],
tex_coords: [1., 1.],
}, // D
];
const INDICES: &[u16] = &[0, 1, 2, 2, 1, 3];
#[derive(Debug, DynAny)]
#[repr(transparent)]
pub struct CommandBuffer(wgpu::CommandBuffer);
#[derive(Debug, DynAny)]
#[repr(transparent)]
pub struct ShaderModuleWrapper(ShaderModule);
pub type ShaderHandle = ShaderModuleWrapper;
pub type BufferHandle = Buffer;
pub type TextureHandle = Texture;
pub struct Surface {
pub inner: wgpu::Surface<'static>,
resolution: UVec2,
}
#[cfg(target_arch = "wasm32")]
pub type Window = HtmlCanvasElement;
pub type Window = web_sys::HtmlCanvasElement;
#[cfg(not(target_arch = "wasm32"))]
pub type Window = Arc<winit::window::Window>;
@ -129,10 +52,6 @@ unsafe impl StaticType for Surface {
pub use graphene_core::renderer::RenderContext;
// pub trait SpirVCompiler {
// fn compile(&self, network: &[ProtoNetwork], io: &ShaderIO) -> Result<Shader>;
// }
impl WgpuExecutor {
pub async fn render_vello_scene(&self, scene: &Scene, surface: &WgpuSurface, width: u32, height: u32, context: &RenderContext, background: Color) -> Result<()> {
let surface = &surface.surface.inner;
@ -184,338 +103,6 @@ impl WgpuExecutor {
Ok(())
}
pub fn load_shader(&self, shader: Shader) -> Result<ShaderHandle> {
#[cfg(not(feature = "passthrough"))]
let shader_module = self.context.device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some(shader.name),
source: wgpu::ShaderSource::SpirV(shader.source),
});
#[cfg(feature = "passthrough")]
let shader_module = unsafe {
self.context.device.create_shader_module_spirv(&wgpu::ShaderModuleDescriptorSpirV {
label: Some(shader.name),
source: shader.source,
})
};
Ok(ShaderModuleWrapper(shader_module))
}
pub fn create_uniform_buffer<T: ToUniformBuffer>(&self, data: T) -> Result<WgpuShaderInput> {
let bytes = data.to_bytes();
let buffer = self.context.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: None,
contents: bytes.as_ref(),
usage: wgpu::BufferUsages::UNIFORM,
});
Ok(ShaderInput::UniformBuffer(buffer, Type::new::<T>()))
}
pub fn create_storage_buffer<T: ToStorageBuffer>(&self, data: T, options: StorageBufferOptions) -> Result<WgpuShaderInput> {
let bytes = data.to_bytes();
let mut usage = wgpu::BufferUsages::empty();
if options.storage {
usage |= wgpu::BufferUsages::STORAGE;
}
if options.gpu_writable {
usage |= wgpu::BufferUsages::COPY_SRC | wgpu::BufferUsages::COPY_DST;
}
if options.cpu_readable {
usage |= wgpu::BufferUsages::MAP_READ | wgpu::BufferUsages::COPY_DST;
}
if options.cpu_writable {
usage |= wgpu::BufferUsages::MAP_WRITE | wgpu::BufferUsages::COPY_SRC;
}
log::warn!("Creating storage buffer with usage {:?} and len: {}", usage, bytes.len());
let buffer = self.context.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: None,
contents: bytes.as_ref(),
usage,
});
Ok(ShaderInput::StorageBuffer(buffer, data.ty()))
}
pub fn create_texture_buffer<T: gpu_executor::ToTextureBuffer>(&self, data: T, options: TextureBufferOptions) -> Result<WgpuShaderInput> {
let bytes = data.to_bytes();
let usage = match options {
TextureBufferOptions::Storage => wgpu::TextureUsages::STORAGE_BINDING | wgpu::TextureUsages::COPY_DST | wgpu::TextureUsages::COPY_SRC,
TextureBufferOptions::Texture => wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST | wgpu::TextureUsages::COPY_SRC,
TextureBufferOptions::Surface => wgpu::TextureUsages::RENDER_ATTACHMENT,
};
let format = match T::format() {
TextureBufferType::Rgba32Float => wgpu::TextureFormat::Rgba32Float,
TextureBufferType::Rgba16Float => wgpu::TextureFormat::Rgba16Float,
TextureBufferType::Rgba8Srgb => wgpu::TextureFormat::Rgba8UnormSrgb,
};
let buffer = self.context.device.create_texture_with_data(
self.context.queue.as_ref(),
&wgpu::TextureDescriptor {
label: None,
size: wgpu::Extent3d {
width: data.size().0,
height: data.size().1,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format,
usage,
view_formats: &[format],
},
wgpu::util::TextureDataOrder::LayerMajor,
bytes.as_ref(),
);
match options {
TextureBufferOptions::Storage => Ok(ShaderInput::StorageTextureBuffer(buffer, T::ty())),
TextureBufferOptions::Texture => Ok(ShaderInput::TextureBuffer(buffer, T::ty())),
TextureBufferOptions::Surface => Ok(ShaderInput::TextureBuffer(buffer, T::ty())),
}
}
pub fn create_output_buffer(&self, len: usize, ty: Type, cpu_readable: bool) -> Result<WgpuShaderInput> {
log::warn!("Creating output buffer with len: {len}");
let create_buffer = |usage| {
Ok::<_, anyhow::Error>(self.context.device.create_buffer(&BufferDescriptor {
label: None,
size: len as u64 * ty.size().ok_or_else(|| anyhow::anyhow!("Cannot create buffer of type {ty:?}"))? as u64,
usage,
mapped_at_creation: false,
}))
};
let buffer = match cpu_readable {
true => ShaderInput::ReadBackBuffer(create_buffer(wgpu::BufferUsages::COPY_DST | wgpu::BufferUsages::MAP_READ)?, ty),
false => ShaderInput::OutputBuffer(create_buffer(wgpu::BufferUsages::STORAGE | wgpu::BufferUsages::COPY_SRC)?, ty),
};
Ok(buffer)
}
pub fn create_compute_pass(&self, layout: &PipelineLayout, read_back: Option<Arc<WgpuShaderInput>>, instances: ComputePassDimensions) -> Result<CommandBuffer> {
let compute_pipeline = self.context.device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
label: None,
layout: None,
module: &layout.shader.0,
entry_point: Some(layout.entry_point.as_str()),
compilation_options: Default::default(),
cache: None,
});
let bind_group_layout = compute_pipeline.get_bind_group_layout(0);
let entries = layout
.bind_group
.buffers
.iter()
.chain(std::iter::once(&layout.output_buffer))
.flat_map(|input| input.binding())
.enumerate()
.map(|(i, buffer)| wgpu::BindGroupEntry {
binding: i as u32,
resource: match buffer {
BindingType::UniformBuffer(buf) => buf.as_entire_binding(),
BindingType::StorageBuffer(buf) => buf.as_entire_binding(),
BindingType::TextureView(buf) => wgpu::BindingResource::TextureView(buf),
},
})
.collect::<Vec<_>>();
let bind_group = self.context.device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &bind_group_layout,
entries: entries.as_slice(),
});
let mut encoder = self.context.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("compute encoder") });
{
let dimensions = instances.get();
let mut cpass = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor { label: None, timestamp_writes: None });
cpass.set_pipeline(&compute_pipeline);
cpass.set_bind_group(0, Some(&bind_group), &[]);
cpass.insert_debug_marker("compute node network evaluation");
cpass.push_debug_group("compute shader");
cpass.dispatch_workgroups(dimensions.0, dimensions.1, dimensions.2); // Number of cells to run, the (x,y,z) size of item being processed
cpass.pop_debug_group();
}
// Sets adds copy operation to command encoder.
// Will copy data from storage buffer on GPU to staging buffer on CPU.
if let Some(buffer) = read_back {
let ShaderInput::ReadBackBuffer(output, _ty) = buffer.as_ref() else {
bail!("Tried to read back from a non read back buffer");
};
let size = output.size();
let ShaderInput::OutputBuffer(output_buffer, ty) = layout.output_buffer.as_ref() else {
bail!("Tried to read back from a non output buffer");
};
assert_eq!(size, output_buffer.size());
assert_eq!(ty, &layout.output_buffer.ty());
encoder.copy_buffer_to_buffer(output_buffer, 0, output, 0, size);
}
// Submits command encoder for processing
Ok(CommandBuffer(encoder.finish()))
}
pub fn create_render_pass(&self, _footprint: Footprint, texture: ShaderInputFrame, canvas: Arc<SurfaceHandle<Surface>>) -> Result<()> {
let transform = texture.transform;
let texture = texture.shader_input.texture().expect("Expected texture input");
let texture_view = texture.create_view(&wgpu::TextureViewDescriptor {
format: Some(wgpu::TextureFormat::Rgba16Float),
..Default::default()
});
let surface = &canvas.as_ref().surface.inner;
let surface_caps = surface.get_capabilities(&self.context.adapter);
if surface_caps.formats.is_empty() {
log::warn!("No surface formats available");
return Ok(());
}
// TODO:
let resolution = transform.decompose_scale().as_uvec2();
let surface_format = wgpu::TextureFormat::Bgra8Unorm;
let config = SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: resolution.x,
height: resolution.y,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
surface.configure(&self.context.device, &config);
let result = surface.get_current_texture();
let output = match result {
Err(SurfaceError::Timeout) => {
log::warn!("Timeout when getting current texture");
return Ok(());
}
Err(SurfaceError::Lost) => {
log::warn!("Surface lost");
// surface.configure(&self.context.device, &new_config);
return Ok(());
}
Err(SurfaceError::OutOfMemory) => {
log::warn!("Out of memory");
return Ok(());
}
Err(SurfaceError::Outdated) => {
log::warn!("Surface outdated");
// surface.configure(&self.context.device, &new_config);
return Ok(());
}
Ok(surface) => surface,
};
let view = output.texture.create_view(&wgpu::TextureViewDescriptor {
format: Some(wgpu::TextureFormat::Bgra8Unorm),
..Default::default()
});
let output_texture_bind_group = self.context.device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.render_configuration.texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&texture_view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&self.render_configuration.sampler),
},
],
label: Some("output_texture_bind_group"),
});
let mut encoder = self.context.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder") });
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color::RED),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
timestamp_writes: None,
occlusion_query_set: None,
});
render_pass.set_pipeline(&self.render_configuration.render_pipeline);
render_pass.set_bind_group(0, Some(&output_texture_bind_group), &[]);
render_pass.set_vertex_buffer(0, self.render_configuration.vertex_buffer.slice(..));
render_pass.set_index_buffer(self.render_configuration.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
render_pass.draw_indexed(0..self.render_configuration.num_indices, 0, 0..1);
render_pass.insert_debug_marker("render node network");
}
let encoder = encoder.finish();
#[cfg(feature = "profiling")]
nvtx::range_push!("render");
self.context.queue.submit(Some(encoder));
#[cfg(feature = "profiling")]
nvtx::range_pop!();
log::trace!("Submitted render pass");
output.present();
Ok(())
}
pub fn execute_compute_pipeline(&self, encoder: CommandBuffer) -> Result<()> {
self.context.queue.submit(Some(encoder.0));
Ok(())
}
pub fn read_output_buffer(&self, buffer: Arc<WgpuShaderInput>) -> Pin<Box<dyn Future<Output = Result<Vec<u8>>> + Send>> {
Box::pin(async move {
let ShaderInput::ReadBackBuffer(buffer, _) = buffer.as_ref() else {
bail!("Tried to read a non readback buffer")
};
let buffer_slice = buffer.slice(..);
// Sets the buffer up for mapping, sending over the result of the mapping back to us when it is finished.
let (sender, receiver) = futures_intrusive::channel::shared::oneshot_channel();
buffer_slice.map_async(wgpu::MapMode::Read, move |v| sender.send(v).unwrap());
// Wait for the mapping to finish.
#[cfg(feature = "profiling")]
nvtx::range_push!("compute");
let result = receiver.receive().await;
#[cfg(feature = "profiling")]
nvtx::range_pop!();
if result.is_none_or(|x| x.is_err()) {
bail!("failed to run compute on gpu!")
}
// Gets contents of buffer
let data = buffer_slice.get_mapped_range();
// Since contents are got in bytes, this converts these bytes back to u32
let result = bytemuck::cast_slice(&data).to_vec();
// With the current interface, we have to make sure all mapped views are
// dropped before we unmap the buffer.
drop(data);
buffer.unmap(); // Unmaps buffer from memory
// Returns data from buffer
Ok(result)
})
}
pub fn create_texture_view(&self, texture: WgpuShaderInput) -> Result<WgpuShaderInput> {
// Ok(ShaderInput::TextureView(texture.create_view(&wgpu::TextureViewDescriptor::default()), ) )
let ShaderInput::TextureBuffer(texture, ty) = &texture else {
bail!("Tried to create a texture view from a non texture");
};
let view = texture.create_view(&wgpu::TextureViewDescriptor::default());
Ok(ShaderInput::TextureView(view, ty.clone()))
}
#[cfg(target_arch = "wasm32")]
pub fn create_surface(&self, canvas: graphene_core::WasmSurfaceHandle) -> Result<SurfaceHandle<Surface>> {
let surface = self.context.instance.create_surface(wgpu::SurfaceTarget::Canvas(canvas.surface))?;
@ -544,117 +131,6 @@ impl WgpuExecutor {
impl WgpuExecutor {
pub async fn new() -> Option<Self> {
let context = Context::new().await?;
println!("wgpu executor created");
let texture_bind_group_layout = context.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: false },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::NonFiltering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let sampler = context.device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Nearest,
min_filter: wgpu::FilterMode::Nearest,
mipmap_filter: wgpu::FilterMode::Nearest,
..Default::default()
});
let shader = context.device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
});
let render_pipeline_layout = context.device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[&texture_bind_group_layout],
push_constant_ranges: &[],
});
let render_pipeline = context.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: Some("vs_main"),
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: Some("fs_main"),
targets: &[Some(wgpu::ColorTargetState {
format: wgpu::TextureFormat::Bgra8Unorm,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent::REPLACE,
alpha: wgpu::BlendComponent::REPLACE,
}),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: None,
// Setting this to anything other than Fill requires Features::POLYGON_MODE_LINE
// or Features::POLYGON_MODE_POINT
polygon_mode: wgpu::PolygonMode::Fill,
// Requires Features::DEPTH_CLIP_CONTROL
unclipped_depth: false,
// Requires Features::CONSERVATIVE_RASTERIZATION
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
// If the pipeline will be used with a multiview render pass, this
// indicates how many array layers the attachments will have.
multiview: None,
cache: None,
});
let vertex_buffer = context.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(VERTICES),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = context.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(INDICES),
usage: wgpu::BufferUsages::INDEX,
});
let num_indices = INDICES.len() as u32;
let render_configuration = RenderConfiguration {
vertex_buffer,
index_buffer,
num_indices,
render_pipeline,
texture_bind_group_layout,
sampler,
};
let vello_renderer = Renderer::new(
&context.device,
@ -670,209 +146,11 @@ impl WgpuExecutor {
Some(Self {
context,
render_configuration,
vello_renderer: vello_renderer.into(),
})
}
}
#[derive(Debug)]
struct RenderConfiguration {
vertex_buffer: wgpu::Buffer,
index_buffer: wgpu::Buffer,
num_indices: u32,
render_pipeline: wgpu::RenderPipeline,
texture_bind_group_layout: wgpu::BindGroupLayout,
sampler: wgpu::Sampler,
}
pub type WgpuShaderInput = ShaderInput<BufferHandle, TextureHandle, TextureView>;
pub type AbstractShaderInput = ShaderInput<(), (), ()>;
#[derive(Clone, Debug, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize)]
/// All the possible inputs to a shader.
pub enum ShaderInput<BufferHandle, TextureHandle, TextureView> {
UniformBuffer(BufferHandle, Type),
StorageBuffer(BufferHandle, Type),
TextureBuffer(TextureHandle, Type),
StorageTextureBuffer(TextureHandle, Type),
TextureView(TextureView, Type),
/// A struct representing a work group memory buffer. This cannot be accessed by the CPU.
WorkGroupMemory(usize, Type),
Constant(GPUConstant),
OutputBuffer(BufferHandle, Type),
ReadBackBuffer(BufferHandle, Type),
}
unsafe impl<T: 'static, U: 'static, V: 'static> StaticType for ShaderInput<T, U, V> {
type Static = ShaderInput<T, U, V>;
}
pub enum BindingType<'a> {
UniformBuffer(&'a BufferHandle),
StorageBuffer(&'a BufferHandle),
TextureView(&'a TextureView),
}
/// Extract the buffer handle from a shader input.
impl ShaderInput<BufferHandle, TextureHandle, TextureView> {
pub fn binding(&self) -> Option<BindingType> {
match self {
ShaderInput::UniformBuffer(buffer, _) => Some(BindingType::UniformBuffer(buffer)),
ShaderInput::StorageBuffer(buffer, _) => Some(BindingType::StorageBuffer(buffer)),
ShaderInput::WorkGroupMemory(_, _) => None,
ShaderInput::Constant(_) => None,
ShaderInput::TextureBuffer(_, _) => None,
ShaderInput::StorageTextureBuffer(_, _) => None,
ShaderInput::TextureView(tex, _) => Some(BindingType::TextureView(tex)),
ShaderInput::OutputBuffer(buffer, _) => Some(BindingType::StorageBuffer(buffer)),
ShaderInput::ReadBackBuffer(buffer, _) => Some(BindingType::StorageBuffer(buffer)),
}
}
pub fn buffer(&self) -> Option<&BufferHandle> {
match self {
ShaderInput::UniformBuffer(buffer, _) => Some(buffer),
ShaderInput::StorageBuffer(buffer, _) => Some(buffer),
ShaderInput::WorkGroupMemory(_, _) => None,
ShaderInput::Constant(_) => None,
ShaderInput::TextureBuffer(_, _) => None,
ShaderInput::StorageTextureBuffer(_, _) => None,
ShaderInput::TextureView(_tex, _) => None,
ShaderInput::OutputBuffer(buffer, _) => Some(buffer),
ShaderInput::ReadBackBuffer(buffer, _) => Some(buffer),
}
}
pub fn texture(&self) -> Option<&TextureHandle> {
match self {
ShaderInput::UniformBuffer(_, _) => None,
ShaderInput::StorageBuffer(_, _) => None,
ShaderInput::WorkGroupMemory(_, _) => None,
ShaderInput::Constant(_) => None,
ShaderInput::TextureBuffer(tex, _) => Some(tex),
ShaderInput::StorageTextureBuffer(tex, _) => Some(tex),
ShaderInput::TextureView(_, _) => None,
ShaderInput::OutputBuffer(_, _) => None,
ShaderInput::ReadBackBuffer(_, _) => None,
}
}
}
impl<T, U, V> ShaderInput<T, U, V> {
pub fn ty(&self) -> Type {
match self {
ShaderInput::UniformBuffer(_, ty) => ty.clone(),
ShaderInput::StorageBuffer(_, ty) => ty.clone(),
ShaderInput::WorkGroupMemory(_, ty) => ty.clone(),
ShaderInput::Constant(c) => c.ty(),
ShaderInput::TextureBuffer(_, ty) => ty.clone(),
ShaderInput::StorageTextureBuffer(_, ty) => ty.clone(),
ShaderInput::TextureView(_, ty) => ty.clone(),
ShaderInput::OutputBuffer(_, ty) => ty.clone(),
ShaderInput::ReadBackBuffer(_, ty) => ty.clone(),
}
}
pub fn is_output(&self) -> bool {
matches!(self, ShaderInput::OutputBuffer(_, _))
}
}
pub struct Shader<'a> {
pub source: Cow<'a, [u32]>,
pub name: &'a str,
pub io: ShaderIO,
}
#[derive(Clone, Debug, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize, dyn_any::DynAny)]
pub struct ShaderIO {
pub inputs: Vec<AbstractShaderInput>,
pub output: AbstractShaderInput,
}
/// Collection of all arguments that are passed to the shader.
#[derive(DynAny)]
pub struct Bindgroup {
pub buffers: Vec<Arc<WgpuShaderInput>>,
}
/// A struct representing a compute pipeline.
#[derive(DynAny, Clone)]
pub struct PipelineLayout {
pub shader: Arc<ShaderHandle>,
pub entry_point: String,
pub bind_group: Arc<Bindgroup>,
pub output_buffer: Arc<WgpuShaderInput>,
}
/// Extracts arguments from the function arguments and wraps them in a node.
pub struct ShaderInputNode<T> {
data: T,
}
impl<'i, T: 'i> Node<'i, ()> for ShaderInputNode<T> {
type Output = &'i T;
fn eval(&'i self, _: ()) -> Self::Output {
&self.data
}
}
impl<T> ShaderInputNode<T> {
pub fn new(data: T) -> Self {
Self { data }
}
}
#[node_macro::node(category(""))]
async fn uniform<'a: 'n, T: ToUniformBuffer + Send + 'n>(_: impl Ctx, #[implementations(f32, DAffine2)] data: T, executor: &'a WgpuExecutor) -> WgpuShaderInput {
executor.create_uniform_buffer(data).unwrap()
}
#[node_macro::node(category(""))]
async fn storage<'a: 'n, T: ToStorageBuffer + Send + 'n>(_: impl Ctx, #[implementations(Vec<u8>)] data: T, executor: &'a WgpuExecutor) -> WgpuShaderInput {
executor
.create_storage_buffer(
data,
StorageBufferOptions {
cpu_writable: false,
gpu_writable: true,
cpu_readable: false,
storage: true,
},
)
.unwrap()
}
#[node_macro::node(category(""))]
async fn create_output_buffer<'a: 'n>(_: impl Ctx + 'a, size: usize, executor: &'a WgpuExecutor, ty: Type) -> Arc<WgpuShaderInput> {
Arc::new(executor.create_output_buffer(size, ty, true).unwrap())
}
#[node_macro::node(skip_impl)]
async fn create_compute_pass<'a: 'n>(_: impl Ctx + 'a, layout: PipelineLayout, executor: &'a WgpuExecutor, output: WgpuShaderInput, instances: ComputePassDimensions) -> CommandBuffer {
executor.create_compute_pass(&layout, Some(output.into()), instances).unwrap()
}
#[node_macro::node(category("Debug: GPU"))]
async fn create_pipeline_layout(
_: impl Ctx,
shader: impl Node<(), Output = ShaderHandle>,
entry_point: String,
bind_group: impl Node<(), Output = Bindgroup>,
output_buffer: Arc<WgpuShaderInput>,
) -> PipelineLayout {
PipelineLayout {
shader: shader.eval(()).await.into(),
entry_point,
bind_group: bind_group.eval(()).await.into(),
output_buffer,
}
}
#[node_macro::node(category(""))]
async fn read_output_buffer<'a: 'n>(_: impl Ctx + 'a, buffer: Arc<WgpuShaderInput>, executor: &'a WgpuExecutor, _compute_pass: ()) -> Vec<u8> {
executor.read_output_buffer(buffer).await.unwrap()
}
pub type WindowHandle = Arc<SurfaceHandle<Window>>;
#[node_macro::node(skip_impl)]
@ -881,63 +159,3 @@ fn create_gpu_surface<'a: 'n, Io: ApplicationIo<Executor = WgpuExecutor, Surface
let executor = editor_api.application_io.as_ref()?.gpu_executor()?;
Some(Arc::new(executor.create_surface(canvas).ok()?))
}
#[derive(DynAny, Clone, Debug)]
pub struct ShaderInputFrame {
shader_input: Arc<WgpuShaderInput>,
transform: DAffine2,
}
#[node_macro::node(category(""))]
async fn render_texture<'a: 'n>(
_: impl Ctx + 'a,
footprint: Footprint,
image: impl Node<Footprint, Output = ShaderInputFrame>,
surface: Option<WgpuSurface>,
executor: &'a WgpuExecutor,
) -> SurfaceFrame {
let surface = surface.unwrap();
let surface_id = surface.window_id;
let image = image.eval(footprint).await;
let transform = image.transform;
executor.create_render_pass(footprint, image, surface).unwrap();
SurfaceFrame {
surface_id,
transform,
resolution: footprint.resolution,
}
}
#[node_macro::node(category(""))]
async fn upload_texture<'a: 'n>(_: impl ExtractFootprint + Ctx, input: RasterDataTable<CPU>, executor: &'a WgpuExecutor) -> RasterDataTable<GPU> {
let mut result_table = RasterDataTable::<GPU>::default();
for instance in input.instance_ref_iter() {
let image = instance.instance;
let new_data: Vec<SRGBA8> = image.data.iter().map(|x| (*x).into()).collect();
let new_image = Image {
width: image.width,
height: image.height,
data: new_data,
base64_string: None,
};
let shader_input = executor.create_texture_buffer(new_image, TextureBufferOptions::Texture).unwrap();
let texture = match shader_input {
ShaderInput::TextureBuffer(buffer, _) => buffer,
ShaderInput::StorageTextureBuffer(buffer, _) => buffer,
_ => unreachable!("Unsupported ShaderInput type"),
};
result_table.push(Instance {
instance: Raster::new_gpu(texture.into()),
transform: *instance.transform,
alpha_blending: *instance.alpha_blending,
source_node_id: *instance.source_node_id,
});
}
result_table
}