mirror of
https://github.com/GraphiteEditor/Graphite.git
synced 2025-08-03 13:02:20 +00:00
Refactor the 'Spline' node to use Kurbo instead of Bezier-rs (#2701)
* copy and refactor spline algorithm from Bezier-rs * add comments * refactor spline node * fix spline when path is closed * use refactored version of spline algorithm * revert changes to 'Spline' node funtion * use manipulator groups instead of bezpath * Fix comment --------- Co-authored-by: Keavon Chambers <keavon@keavon.com>
This commit is contained in:
parent
4dfeafd65e
commit
4696004dc9
4 changed files with 195 additions and 9 deletions
|
@ -3,3 +3,4 @@ mod instance;
|
|||
mod merge_by_distance;
|
||||
pub mod offset_subpath;
|
||||
mod poisson_disk;
|
||||
pub mod spline;
|
||||
|
|
178
node-graph/gcore/src/vector/algorithms/spline.rs
Normal file
178
node-graph/gcore/src/vector/algorithms/spline.rs
Normal file
|
@ -0,0 +1,178 @@
|
|||
use glam::DVec2;
|
||||
|
||||
/// Solve for the first handle of an open spline. (The opposite handle can be found by mirroring the result about the anchor.)
|
||||
pub fn solve_spline_first_handle_open(points: &[DVec2]) -> Vec<DVec2> {
|
||||
let len_points = points.len();
|
||||
if len_points == 0 {
|
||||
return Vec::new();
|
||||
}
|
||||
if len_points == 1 {
|
||||
return vec![points[0]];
|
||||
}
|
||||
|
||||
// Matrix coefficients a, b and c (see https://mathworld.wolfram.com/CubicSpline.html).
|
||||
// Because the `a` coefficients are all 1, they need not be stored.
|
||||
// This algorithm does a variation of the above algorithm.
|
||||
// Instead of using the traditional cubic (a + bt + ct^2 + dt^3), we use the bezier cubic.
|
||||
|
||||
let mut b = vec![DVec2::new(4., 4.); len_points];
|
||||
b[0] = DVec2::new(2., 2.);
|
||||
b[len_points - 1] = DVec2::new(2., 2.);
|
||||
|
||||
let mut c = vec![DVec2::new(1., 1.); len_points];
|
||||
|
||||
// 'd' is the the second point in a cubic bezier, which is what we solve for
|
||||
let mut d = vec![DVec2::ZERO; len_points];
|
||||
|
||||
d[0] = DVec2::new(2. * points[1].x + points[0].x, 2. * points[1].y + points[0].y);
|
||||
d[len_points - 1] = DVec2::new(3. * points[len_points - 1].x, 3. * points[len_points - 1].y);
|
||||
for idx in 1..(len_points - 1) {
|
||||
d[idx] = DVec2::new(4. * points[idx].x + 2. * points[idx + 1].x, 4. * points[idx].y + 2. * points[idx + 1].y);
|
||||
}
|
||||
|
||||
// Solve with Thomas algorithm (see https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm)
|
||||
// Now we do row operations to eliminate `a` coefficients.
|
||||
c[0] /= -b[0];
|
||||
d[0] /= -b[0];
|
||||
#[allow(clippy::assign_op_pattern)]
|
||||
for i in 1..len_points {
|
||||
b[i] += c[i - 1];
|
||||
// For some reason this `+=` version makes the borrow checker mad:
|
||||
// d[i] += d[i-1]
|
||||
d[i] = d[i] + d[i - 1];
|
||||
c[i] /= -b[i];
|
||||
d[i] /= -b[i];
|
||||
}
|
||||
|
||||
// At this point b[i] == -a[i + 1] and a[i] == 0.
|
||||
// Now we do row operations to eliminate 'c' coefficients and solve.
|
||||
d[len_points - 1] *= -1.;
|
||||
#[allow(clippy::assign_op_pattern)]
|
||||
for i in (0..len_points - 1).rev() {
|
||||
d[i] = d[i] - (c[i] * d[i + 1]);
|
||||
d[i] *= -1.; // d[i] /= b[i]
|
||||
}
|
||||
|
||||
d
|
||||
}
|
||||
|
||||
/// Solve for the first handle of a closed spline. (The opposite handle can be found by mirroring the result about the anchor.)
|
||||
/// If called with fewer than 3 points, this function will return an empty result.
|
||||
pub fn solve_spline_first_handle_closed(points: &[DVec2]) -> Vec<DVec2> {
|
||||
let len_points = points.len();
|
||||
if len_points < 3 {
|
||||
return Vec::new();
|
||||
}
|
||||
|
||||
// Matrix coefficients `a`, `b` and `c` (see https://mathworld.wolfram.com/CubicSpline.html).
|
||||
// We don't really need to allocate them but it keeps the maths understandable.
|
||||
let a = vec![DVec2::ONE; len_points];
|
||||
let b = vec![DVec2::splat(4.); len_points];
|
||||
let c = vec![DVec2::ONE; len_points];
|
||||
|
||||
let mut cmod = vec![DVec2::ZERO; len_points];
|
||||
let mut u = vec![DVec2::ZERO; len_points];
|
||||
|
||||
// `x` is initially the output of the matrix multiplication, but is converted to the second value.
|
||||
let mut x = vec![DVec2::ZERO; len_points];
|
||||
|
||||
for (i, point) in x.iter_mut().enumerate() {
|
||||
let previous_i = i.checked_sub(1).unwrap_or(len_points - 1);
|
||||
let next_i = (i + 1) % len_points;
|
||||
*point = 3. * (points[next_i] - points[previous_i]);
|
||||
}
|
||||
|
||||
// Solve using https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm#Variants (the variant using periodic boundary conditions).
|
||||
// This code below is based on the reference C language implementation provided in that section of the article.
|
||||
let alpha = a[0];
|
||||
let beta = c[len_points - 1];
|
||||
|
||||
// Arbitrary, but chosen such that division by zero is avoided.
|
||||
let gamma = -b[0];
|
||||
|
||||
cmod[0] = alpha / (b[0] - gamma);
|
||||
u[0] = gamma / (b[0] - gamma);
|
||||
x[0] /= b[0] - gamma;
|
||||
|
||||
// Handle from from `1` to `len_points - 2` (inclusive).
|
||||
for ix in 1..=(len_points - 2) {
|
||||
let m = 1.0 / (b[ix] - a[ix] * cmod[ix - 1]);
|
||||
cmod[ix] = c[ix] * m;
|
||||
u[ix] = (0.0 - a[ix] * u[ix - 1]) * m;
|
||||
x[ix] = (x[ix] - a[ix] * x[ix - 1]) * m;
|
||||
}
|
||||
|
||||
// Handle `len_points - 1`.
|
||||
let m = 1.0 / (b[len_points - 1] - alpha * beta / gamma - beta * cmod[len_points - 2]);
|
||||
u[len_points - 1] = (alpha - a[len_points - 1] * u[len_points - 2]) * m;
|
||||
x[len_points - 1] = (x[len_points - 1] - a[len_points - 1] * x[len_points - 2]) * m;
|
||||
|
||||
// Loop from `len_points - 2` to `0` (inclusive).
|
||||
for ix in (0..=(len_points - 2)).rev() {
|
||||
u[ix] = u[ix] - cmod[ix] * u[ix + 1];
|
||||
x[ix] = x[ix] - cmod[ix] * x[ix + 1];
|
||||
}
|
||||
|
||||
let fact = (x[0] + x[len_points - 1] * beta / gamma) / (1.0 + u[0] + u[len_points - 1] * beta / gamma);
|
||||
|
||||
for ix in 0..(len_points) {
|
||||
x[ix] -= fact * u[ix];
|
||||
}
|
||||
|
||||
let mut real = vec![DVec2::ZERO; len_points];
|
||||
for i in 0..len_points {
|
||||
let previous = i.checked_sub(1).unwrap_or(len_points - 1);
|
||||
let next = (i + 1) % len_points;
|
||||
real[i] = x[previous] * a[next] + x[i] * b[i] + x[next] * c[i];
|
||||
}
|
||||
|
||||
// The matrix is now solved.
|
||||
|
||||
// Since we have computed the derivative, work back to find the start handle.
|
||||
for i in 0..len_points {
|
||||
x[i] = (x[i] / 3.) + points[i];
|
||||
}
|
||||
|
||||
x
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn closed_spline() {
|
||||
use crate::vector::misc::{dvec2_to_point, point_to_dvec2};
|
||||
use kurbo::{BezPath, ParamCurve, ParamCurveDeriv};
|
||||
|
||||
// These points are just chosen arbitrary
|
||||
let points = [DVec2::new(0., 0.), DVec2::new(0., 0.), DVec2::new(6., 5.), DVec2::new(7., 9.), DVec2::new(2., 3.)];
|
||||
|
||||
// List of first handle or second point in a cubic bezier curve.
|
||||
let first_handles = solve_spline_first_handle_closed(&points);
|
||||
|
||||
// Construct the Subpath
|
||||
let mut bezpath = BezPath::new();
|
||||
bezpath.move_to(dvec2_to_point(points[0]));
|
||||
|
||||
for i in 0..first_handles.len() {
|
||||
let next_i = i + 1;
|
||||
let next_i = if next_i == first_handles.len() { 0 } else { next_i };
|
||||
|
||||
// First handle or second point of a cubic Bezier curve.
|
||||
let p1 = dvec2_to_point(first_handles[i]);
|
||||
// Second handle or third point of a cubic Bezier curve.
|
||||
let p2 = dvec2_to_point(2. * points[next_i] - first_handles[next_i]);
|
||||
// Endpoint or fourth point of a cubic Bezier curve.
|
||||
let p3 = dvec2_to_point(points[next_i]);
|
||||
|
||||
bezpath.curve_to(p1, p2, p3);
|
||||
}
|
||||
|
||||
// For each pair of bézier curves, ensure that the second derivative is continuous
|
||||
for (bézier_a, bézier_b) in bezpath.segments().zip(bezpath.segments().skip(1).chain(bezpath.segments().take(1))) {
|
||||
let derivative2_end_a = point_to_dvec2(bézier_a.to_cubic().deriv().eval(1.));
|
||||
let derivative2_start_b = point_to_dvec2(bézier_b.to_cubic().deriv().eval(0.));
|
||||
|
||||
assert!(
|
||||
derivative2_end_a.abs_diff_eq(derivative2_start_b, 1e-10),
|
||||
"second derivative at the end of a {derivative2_end_a} is equal to the second derivative at the start of b {derivative2_start_b}"
|
||||
);
|
||||
}
|
||||
}
|
|
@ -1,6 +1,6 @@
|
|||
use crate::vector::misc::dvec2_to_point;
|
||||
use crate::vector::vector_data::{HandleId, VectorData};
|
||||
use bezier_rs::BezierHandles;
|
||||
use bezier_rs::{BezierHandles, ManipulatorGroup};
|
||||
use core::iter::zip;
|
||||
use dyn_any::DynAny;
|
||||
use glam::{DAffine2, DVec2};
|
||||
|
@ -849,7 +849,7 @@ impl VectorData {
|
|||
})
|
||||
}
|
||||
|
||||
fn build_stroke_path_iter(&self) -> StrokePathIter {
|
||||
pub fn build_stroke_path_iter(&self) -> StrokePathIter {
|
||||
let mut points = vec![StrokePathIterPointMetadata::default(); self.point_domain.ids().len()];
|
||||
for (segment_index, (&start, &end)) in self.segment_domain.start_point.iter().zip(&self.segment_domain.end_point).enumerate() {
|
||||
points[start].set(StrokePathIterPointSegmentMetadata::new(segment_index, false));
|
||||
|
@ -869,6 +869,12 @@ impl VectorData {
|
|||
self.build_stroke_path_iter().map(|(group, closed)| bezier_rs::Subpath::new(group, closed))
|
||||
}
|
||||
|
||||
/// Construct and return an iterator of Vec of `(bezier_rs::ManipulatorGroup<PointId>], bool)` for stroke.
|
||||
/// The boolean in the tuple indicates if the path is closed.
|
||||
pub fn stroke_manipulator_groups(&self) -> impl Iterator<Item = (Vec<ManipulatorGroup<PointId>>, bool)> {
|
||||
self.build_stroke_path_iter()
|
||||
}
|
||||
|
||||
/// Construct a [`kurbo::BezPath`] curve for stroke.
|
||||
pub fn stroke_bezpath_iter(&self) -> impl Iterator<Item = kurbo::BezPath> {
|
||||
self.build_stroke_path_iter().map(|(group, closed)| {
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
use super::algorithms::bezpath_algorithms::{self, position_on_bezpath, sample_points_on_bezpath, tangent_on_bezpath};
|
||||
use super::algorithms::offset_subpath::offset_subpath;
|
||||
use super::algorithms::spline::{solve_spline_first_handle_closed, solve_spline_first_handle_open};
|
||||
use super::misc::{CentroidType, point_to_dvec2};
|
||||
use super::style::{Fill, Gradient, GradientStops, Stroke};
|
||||
use super::{PointId, SegmentDomain, SegmentId, StrokeId, VectorData, VectorDataTable};
|
||||
|
@ -1436,15 +1437,15 @@ async fn spline(_: impl Ctx, vector_data: VectorDataTable) -> VectorDataTable {
|
|||
}
|
||||
|
||||
let mut segment_domain = SegmentDomain::default();
|
||||
for subpath in vector_data_instance.instance.stroke_bezier_paths() {
|
||||
let positions = subpath.manipulator_groups().iter().map(|group| group.anchor).collect::<Vec<_>>();
|
||||
let closed = subpath.closed() && positions.len() > 2;
|
||||
for (manipulator_groups, closed) in vector_data_instance.instance.stroke_manipulator_groups() {
|
||||
let positions = manipulator_groups.iter().map(|group| group.anchor).collect::<Vec<_>>();
|
||||
let closed = closed && positions.len() > 2;
|
||||
|
||||
// Compute control point handles for Bezier spline.
|
||||
let first_handles = if closed {
|
||||
bezier_rs::solve_spline_first_handle_closed(&positions)
|
||||
solve_spline_first_handle_closed(&positions)
|
||||
} else {
|
||||
bezier_rs::solve_spline_first_handle_open(&positions)
|
||||
solve_spline_first_handle_open(&positions)
|
||||
};
|
||||
|
||||
let stroke_id = StrokeId::ZERO;
|
||||
|
@ -1453,8 +1454,8 @@ async fn spline(_: impl Ctx, vector_data: VectorDataTable) -> VectorDataTable {
|
|||
for i in 0..(positions.len() - if closed { 0 } else { 1 }) {
|
||||
let next_index = (i + 1) % positions.len();
|
||||
|
||||
let start_index = vector_data_instance.instance.point_domain.resolve_id(subpath.manipulator_groups()[i].id).unwrap();
|
||||
let end_index = vector_data_instance.instance.point_domain.resolve_id(subpath.manipulator_groups()[next_index].id).unwrap();
|
||||
let start_index = vector_data_instance.instance.point_domain.resolve_id(manipulator_groups[i].id).unwrap();
|
||||
let end_index = vector_data_instance.instance.point_domain.resolve_id(manipulator_groups[next_index].id).unwrap();
|
||||
|
||||
let handle_start = first_handles[i];
|
||||
let handle_end = positions[next_index] * 2. - first_handles[next_index];
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue