Clean up code by using Iterator::collect() when constructing instance tables (#2918)
Some checks are pending
Editor: Dev & CI / build (push) Waiting to run
Editor: Dev & CI / cargo-deny (push) Waiting to run

* instances: `Iterator::collect()` instances

* instances: adjust nodes to use iterators

* fix warnings on master

* Bump MSRV

* Port the remaining usages

---------

Co-authored-by: Keavon Chambers <keavon@keavon.com>
This commit is contained in:
Firestar99 2025-07-23 07:51:40 +02:00 committed by GitHub
parent 032f9bdf72
commit 890da6a3c3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
18 changed files with 964 additions and 985 deletions

View file

@ -2,7 +2,7 @@
name = "graphite-editor" name = "graphite-editor"
publish = false publish = false
version = "0.0.0" version = "0.0.0"
rust-version = "1.85" rust-version = "1.88"
authors = ["Graphite Authors <contact@graphite.rs>"] authors = ["Graphite Authors <contact@graphite.rs>"]
edition = "2024" edition = "2024"
readme = "../README.md" readme = "../README.md"

View file

@ -6804,13 +6804,6 @@ impl From<DocumentNodePersistentMetadataPropertiesRow> for DocumentNodePersisten
} }
} }
#[derive(serde::Serialize, serde::Deserialize)]
enum NodePersistentMetadataVersions {
DocumentNodePersistentMetadataPropertiesRow(DocumentNodePersistentMetadataPropertiesRow),
NodePersistentMetadataInputNames(DocumentNodePersistentMetadataInputNames),
NodePersistentMetadata(DocumentNodePersistentMetadata),
}
fn deserialize_node_persistent_metadata<'de, D>(deserializer: D) -> Result<DocumentNodePersistentMetadata, D::Error> fn deserialize_node_persistent_metadata<'de, D>(deserializer: D) -> Result<DocumentNodePersistentMetadata, D::Error>
where where
D: serde::Deserializer<'de>, D: serde::Deserializer<'de>,

View file

@ -1000,7 +1000,7 @@ impl ShapeState {
} else { } else {
// Push both in and out handles into the correct position // Push both in and out handles into the correct position
for ((handle, sign), other_anchor) in handles.iter().zip([1., -1.]).zip(&anchor_positions) { for ((handle, sign), other_anchor) in handles.iter().zip([1., -1.]).zip(&anchor_positions) {
let Some(anchor_vector) = other_anchor.map(|position| (position - anchor_position)) else { let Some(anchor_vector) = other_anchor.map(|position| position - anchor_position) else {
continue; continue;
}; };

View file

@ -2,7 +2,7 @@
name = "graphite-wasm" name = "graphite-wasm"
publish = false publish = false
version = "0.0.0" version = "0.0.0"
rust-version = "1.85" rust-version = "1.88"
authors = ["Graphite Authors <contact@graphite.rs>"] authors = ["Graphite Authors <contact@graphite.rs>"]
edition = "2024" edition = "2024"
readme = "../../README.md" readme = "../../README.md"
@ -13,7 +13,7 @@ license = "Apache-2.0"
[features] [features]
default = ["gpu"] default = ["gpu"]
gpu = ["editor/gpu"] gpu = ["editor/gpu"]
tauri = [ "editor/tauri"] tauri = ["editor/tauri"]
[lib] [lib]
crate-type = ["cdylib", "rlib"] crate-type = ["cdylib", "rlib"]

View file

@ -169,7 +169,7 @@ where
A::Item: Clone, A::Item: Clone,
B::Item: Clone, B::Item: Clone,
{ {
a.flat_map(move |i| (b.clone().map(move |j| (i.clone(), j)))) a.flat_map(move |i| b.clone().map(move |j| (i.clone(), j)))
} }
/// A square (represented by its top left corner position and width/height of `square_size`) that is currently a candidate for targetting by the dart throwing process. /// A square (represented by its top left corner position and width/height of `square_size`) that is currently a candidate for targetting by the dart throwing process.

View file

@ -1086,7 +1086,7 @@ fn compute_dual(minor_graph: &MinorGraph) -> Result<DualGraph, BooleanError> {
let outer_face_key = if count != 1 { let outer_face_key = if count != 1 {
#[cfg(feature = "logging")] #[cfg(feature = "logging")]
eprintln!("Found multiple outer faces: {areas:?}, falling back to area calculation"); eprintln!("Found multiple outer faces: {areas:?}, falling back to area calculation");
let (key, _) = *areas.iter().max_by_key(|(_, area)| ((area.abs() * 1000.) as u64)).unwrap(); let (key, _) = *areas.iter().max_by_key(|(_, area)| (area.abs() * 1000.) as u64).unwrap();
*key *key
} else { } else {
*windings *windings

View file

@ -27,6 +27,24 @@ impl<T> Instances<T> {
} }
} }
pub fn new_instance(instance: Instance<T>) -> Self {
Self {
instance: vec![instance.instance],
transform: vec![instance.transform],
alpha_blending: vec![instance.alpha_blending],
source_node_id: vec![instance.source_node_id],
}
}
pub fn with_capacity(capacity: usize) -> Self {
Self {
instance: Vec::with_capacity(capacity),
transform: Vec::with_capacity(capacity),
alpha_blending: Vec::with_capacity(capacity),
source_node_id: Vec::with_capacity(capacity),
}
}
pub fn push(&mut self, instance: Instance<T>) { pub fn push(&mut self, instance: Instance<T>) {
self.instance.push(instance.instance); self.instance.push(instance.instance);
self.transform.push(instance.transform); self.transform.push(instance.transform);
@ -161,6 +179,18 @@ unsafe impl<T: StaticType + 'static> StaticType for Instances<T> {
type Static = Instances<T>; type Static = Instances<T>;
} }
impl<T> FromIterator<Instance<T>> for Instances<T> {
fn from_iter<I: IntoIterator<Item = Instance<T>>>(iter: I) -> Self {
let iter = iter.into_iter();
let (lower, _) = iter.size_hint();
let mut instances = Self::with_capacity(lower);
for instance in iter {
instances.push(instance);
}
instances
}
}
fn one_daffine2_default() -> Vec<DAffine2> { fn one_daffine2_default() -> Vec<DAffine2> {
vec![DAffine2::IDENTITY] vec![DAffine2::IDENTITY]
} }

View file

@ -182,7 +182,7 @@ where
A::Item: Clone, A::Item: Clone,
B::Item: Clone, B::Item: Clone,
{ {
a.flat_map(move |i| (b.clone().map(move |j| (i.clone(), j)))) a.flat_map(move |i| b.clone().map(move |j| (i.clone(), j)))
} }
/// A square (represented by its top left corner position and width/height of `square_size`) that is currently a candidate for targetting by the dart throwing process. /// A square (represented by its top left corner position and width/height of `square_size`) that is currently a candidate for targetting by the dart throwing process.

View file

@ -337,7 +337,7 @@ impl VectorData {
/// Returns the number of linear segments connected to the given point. /// Returns the number of linear segments connected to the given point.
pub fn connected_linear_segments(&self, point_id: PointId) -> usize { pub fn connected_linear_segments(&self, point_id: PointId) -> usize {
self.segment_bezier_iter() self.segment_bezier_iter()
.filter(|(_, bez, start, end)| ((*start == point_id || *end == point_id) && matches!(bez.handles, BezierHandles::Linear))) .filter(|(_, bez, start, end)| (*start == point_id || *end == point_id) && matches!(bez.handles, BezierHandles::Linear))
.count() .count()
} }

File diff suppressed because it is too large Load diff

View file

@ -80,8 +80,7 @@ fn union<'a>(vector_data: impl DoubleEndedIterator<Item = InstanceRef<'a, Vector
// Reverse vector data so that the result style is the style of the first vector data // Reverse vector data so that the result style is the style of the first vector data
let mut vector_data_reversed = vector_data.rev(); let mut vector_data_reversed = vector_data.rev();
let mut result_vector_data_table = VectorDataTable::default(); let mut result_vector_data_table = VectorDataTable::new_instance(vector_data_reversed.next().map(|x| x.to_instance_cloned()).unwrap_or_default());
result_vector_data_table.push(vector_data_reversed.next().map(|x| x.to_instance_cloned()).unwrap_or_default());
let mut first_instance = result_vector_data_table.instance_mut_iter().next().expect("Expected the one instance we just pushed"); let mut first_instance = result_vector_data_table.instance_mut_iter().next().expect("Expected the one instance we just pushed");
// Loop over all vector data and union it with the result // Loop over all vector data and union it with the result
@ -113,8 +112,7 @@ fn union<'a>(vector_data: impl DoubleEndedIterator<Item = InstanceRef<'a, Vector
fn subtract<'a>(vector_data: impl Iterator<Item = InstanceRef<'a, VectorData>>) -> VectorDataTable { fn subtract<'a>(vector_data: impl Iterator<Item = InstanceRef<'a, VectorData>>) -> VectorDataTable {
let mut vector_data = vector_data.into_iter(); let mut vector_data = vector_data.into_iter();
let mut result_vector_data_table = VectorDataTable::default(); let mut result_vector_data_table = VectorDataTable::new_instance(vector_data.next().map(|x| x.to_instance_cloned()).unwrap_or_default());
result_vector_data_table.push(vector_data.next().map(|x| x.to_instance_cloned()).unwrap_or_default());
let mut first_instance = result_vector_data_table.instance_mut_iter().next().expect("Expected the one instance we just pushed"); let mut first_instance = result_vector_data_table.instance_mut_iter().next().expect("Expected the one instance we just pushed");
let mut next_vector_data = vector_data.next(); let mut next_vector_data = vector_data.next();
@ -145,8 +143,7 @@ fn subtract<'a>(vector_data: impl Iterator<Item = InstanceRef<'a, VectorData>>)
fn intersect<'a>(vector_data: impl DoubleEndedIterator<Item = InstanceRef<'a, VectorData>>) -> VectorDataTable { fn intersect<'a>(vector_data: impl DoubleEndedIterator<Item = InstanceRef<'a, VectorData>>) -> VectorDataTable {
let mut vector_data = vector_data.rev(); let mut vector_data = vector_data.rev();
let mut result_vector_data_table = VectorDataTable::default(); let mut result_vector_data_table = VectorDataTable::new_instance(vector_data.next().map(|x| x.to_instance_cloned()).unwrap_or_default());
result_vector_data_table.push(vector_data.next().map(|x| x.to_instance_cloned()).unwrap_or_default());
let mut first_instance = result_vector_data_table.instance_mut_iter().next().expect("Expected the one instance we just pushed"); let mut first_instance = result_vector_data_table.instance_mut_iter().next().expect("Expected the one instance we just pushed");
let default = Instance::default(); let default = Instance::default();
@ -225,71 +222,67 @@ fn difference<'a>(vector_data: impl DoubleEndedIterator<Item = InstanceRef<'a, V
} }
fn flatten_vector_data(graphic_group_table: &GraphicGroupTable) -> VectorDataTable { fn flatten_vector_data(graphic_group_table: &GraphicGroupTable) -> VectorDataTable {
let mut result_table = VectorDataTable::default(); graphic_group_table
.instance_ref_iter()
.flat_map(|element| {
match element.instance.clone() {
GraphicElement::VectorData(vector_data) => {
// Apply the parent group's transform to each element of vector data
vector_data
.instance_iter()
.map(|mut sub_vector_data| {
sub_vector_data.transform = *element.transform * sub_vector_data.transform;
for element in graphic_group_table.instance_ref_iter() { sub_vector_data
match element.instance.clone() { })
GraphicElement::VectorData(vector_data) => { .collect::<Vec<_>>()
// Apply the parent group's transform to each element of vector data }
for mut sub_vector_data in vector_data.instance_iter() { GraphicElement::RasterDataCPU(image) => {
sub_vector_data.transform = *element.transform * sub_vector_data.transform; let make_instance = |transform| {
// Convert the image frame into a rectangular subpath with the image's transform
let mut subpath = Subpath::new_rect(DVec2::ZERO, DVec2::ONE);
subpath.apply_transform(transform);
result_table.push(sub_vector_data); // Create a vector data table row from the rectangular subpath, with a default black fill
let mut instance = VectorData::from_subpath(subpath);
instance.style.set_fill(Fill::Solid(Color::BLACK));
Instance { instance, ..Default::default() }
};
// Apply the parent group's transform to each element of raster data
image.instance_ref_iter().map(|instance| make_instance(*element.transform * *instance.transform)).collect::<Vec<_>>()
}
GraphicElement::RasterDataGPU(image) => {
let make_instance = |transform| {
// Convert the image frame into a rectangular subpath with the image's transform
let mut subpath = Subpath::new_rect(DVec2::ZERO, DVec2::ONE);
subpath.apply_transform(transform);
// Create a vector data table row from the rectangular subpath, with a default black fill
let mut instance = VectorData::from_subpath(subpath);
instance.style.set_fill(Fill::Solid(Color::BLACK));
Instance { instance, ..Default::default() }
};
// Apply the parent group's transform to each element of raster data
image.instance_ref_iter().map(|instance| make_instance(*element.transform * *instance.transform)).collect::<Vec<_>>()
}
GraphicElement::GraphicGroup(mut graphic_group) => {
// Apply the parent group's transform to each element of inner group
for sub_element in graphic_group.instance_mut_iter() {
*sub_element.transform = *element.transform * *sub_element.transform;
}
// Recursively flatten the inner group into vector data
let unioned = boolean_operation_on_vector_data_table(flatten_vector_data(&graphic_group).instance_ref_iter(), BooleanOperation::Union);
unioned.instance_iter().collect::<Vec<_>>()
} }
} }
GraphicElement::RasterDataCPU(image) => { })
let make_instance = |transform| { .collect()
// Convert the image frame into a rectangular subpath with the image's transform
let mut subpath = Subpath::new_rect(DVec2::ZERO, DVec2::ONE);
subpath.apply_transform(transform);
// Create a vector data table row from the rectangular subpath, with a default black fill
let mut instance = VectorData::from_subpath(subpath);
instance.style.set_fill(Fill::Solid(Color::BLACK));
Instance { instance, ..Default::default() }
};
// Apply the parent group's transform to each element of raster data
for instance in image.instance_ref_iter() {
result_table.push(make_instance(*element.transform * *instance.transform));
}
}
GraphicElement::RasterDataGPU(image) => {
let make_instance = |transform| {
// Convert the image frame into a rectangular subpath with the image's transform
let mut subpath = Subpath::new_rect(DVec2::ZERO, DVec2::ONE);
subpath.apply_transform(transform);
// Create a vector data table row from the rectangular subpath, with a default black fill
let mut instance = VectorData::from_subpath(subpath);
instance.style.set_fill(Fill::Solid(Color::BLACK));
Instance { instance, ..Default::default() }
};
// Apply the parent group's transform to each element of raster data
for instance in image.instance_ref_iter() {
result_table.push(make_instance(*element.transform * *instance.transform));
}
}
GraphicElement::GraphicGroup(mut graphic_group) => {
// Apply the parent group's transform to each element of inner group
for sub_element in graphic_group.instance_mut_iter() {
*sub_element.transform = *element.transform * *sub_element.transform;
}
// Recursively flatten the inner group into vector data
let unioned = boolean_operation_on_vector_data_table(flatten_vector_data(&graphic_group).instance_ref_iter(), BooleanOperation::Union);
for element in unioned.instance_iter() {
result_table.push(element);
}
}
}
}
result_table
} }
fn to_path(vector: &VectorData, transform: DAffine2) -> Vec<path_bool::PathSegment> { fn to_path(vector: &VectorData, transform: DAffine2) -> Vec<path_bool::PathSegment> {

View file

@ -8,34 +8,33 @@ use std::cmp::{max, min};
#[node_macro::node(category("Raster: Filter"))] #[node_macro::node(category("Raster: Filter"))]
async fn dehaze(_: impl Ctx, image_frame: RasterDataTable<CPU>, strength: Percentage) -> RasterDataTable<CPU> { async fn dehaze(_: impl Ctx, image_frame: RasterDataTable<CPU>, strength: Percentage) -> RasterDataTable<CPU> {
let mut result_table = RasterDataTable::default(); image_frame
.instance_iter()
.map(|mut image_frame_instance| {
let image = image_frame_instance.instance;
// Prepare the image data for processing
let image_data = bytemuck::cast_vec(image.data.clone());
let image_buffer = image::Rgba32FImage::from_raw(image.width, image.height, image_data).expect("Failed to convert internal image format into image-rs data type.");
let dynamic_image: DynamicImage = image_buffer.into();
for mut image_frame_instance in image_frame.instance_iter() { // Run the dehaze algorithm
let image = image_frame_instance.instance; let dehazed_dynamic_image = dehaze_image(dynamic_image, strength / 100.);
// Prepare the image data for processing
let image_data = bytemuck::cast_vec(image.data.clone());
let image_buffer = image::Rgba32FImage::from_raw(image.width, image.height, image_data).expect("Failed to convert internal image format into image-rs data type.");
let dynamic_image: DynamicImage = image_buffer.into();
// Run the dehaze algorithm // Prepare the image data for returning
let dehazed_dynamic_image = dehaze_image(dynamic_image, strength / 100.); let buffer = dehazed_dynamic_image.to_rgba32f().into_raw();
let color_vec = bytemuck::cast_vec(buffer);
let dehazed_image = Image {
width: image.width,
height: image.height,
data: color_vec,
base64_string: None,
};
// Prepare the image data for returning image_frame_instance.instance = Raster::new_cpu(dehazed_image);
let buffer = dehazed_dynamic_image.to_rgba32f().into_raw(); image_frame_instance.source_node_id = None;
let color_vec = bytemuck::cast_vec(buffer); image_frame_instance
let dehazed_image = Image { })
width: image.width, .collect()
height: image.height,
data: color_vec,
base64_string: None,
};
image_frame_instance.instance = Raster::new_cpu(dehazed_image);
image_frame_instance.source_node_id = None;
result_table.push(image_frame_instance);
}
result_table
} }
// There is no real point in modifying these values because they do not change the final result all that much. // There is no real point in modifying these values because they do not change the final result all that much.

View file

@ -20,27 +20,26 @@ async fn blur(
/// Opt to incorrectly apply the filter with color calculations in gamma space for compatibility with the results from other software. /// Opt to incorrectly apply the filter with color calculations in gamma space for compatibility with the results from other software.
gamma: bool, gamma: bool,
) -> RasterDataTable<CPU> { ) -> RasterDataTable<CPU> {
let mut result_table = RasterDataTable::default(); image_frame
.instance_iter()
.map(|mut image_instance| {
let image = image_instance.instance.clone();
for mut image_instance in image_frame.instance_iter() { // Run blur algorithm
let image = image_instance.instance.clone(); let blurred_image = if radius < 0.1 {
// Minimum blur radius
image.clone()
} else if box_blur {
Raster::new_cpu(box_blur_algorithm(image.into_data(), radius, gamma))
} else {
Raster::new_cpu(gaussian_blur_algorithm(image.into_data(), radius, gamma))
};
// Run blur algorithm image_instance.instance = blurred_image;
let blurred_image = if radius < 0.1 { image_instance.source_node_id = None;
// Minimum blur radius image_instance
image.clone() })
} else if box_blur { .collect()
Raster::new_cpu(box_blur_algorithm(image.into_data(), radius, gamma))
} else {
Raster::new_cpu(gaussian_blur_algorithm(image.into_data(), radius, gamma))
};
image_instance.instance = blurred_image;
image_instance.source_node_id = None;
result_table.push(image_instance);
}
result_table
} }
// 1D gaussian kernel // 1D gaussian kernel

View file

@ -31,69 +31,68 @@ impl From<std::io::Error> for Error {
#[node_macro::node(category("Debug: Raster"))] #[node_macro::node(category("Debug: Raster"))]
pub fn sample_image(ctx: impl ExtractFootprint + Clone + Send, image_frame: RasterDataTable<CPU>) -> RasterDataTable<CPU> { pub fn sample_image(ctx: impl ExtractFootprint + Clone + Send, image_frame: RasterDataTable<CPU>) -> RasterDataTable<CPU> {
let mut result_table = RasterDataTable::default(); image_frame
.instance_iter()
.filter_map(|mut image_frame_instance| {
let image_frame_transform = image_frame_instance.transform;
let image = image_frame_instance.instance;
for mut image_frame_instance in image_frame.instance_iter() { // Resize the image using the image crate
let image_frame_transform = image_frame_instance.transform; let data = bytemuck::cast_vec(image.data.clone());
let image = image_frame_instance.instance;
// Resize the image using the image crate let footprint = ctx.footprint();
let data = bytemuck::cast_vec(image.data.clone()); let viewport_bounds = footprint.viewport_bounds_in_local_space();
let image_bounds = Bbox::from_transform(image_frame_transform).to_axis_aligned_bbox();
let intersection = viewport_bounds.intersect(&image_bounds);
let image_size = DAffine2::from_scale(DVec2::new(image.width as f64, image.height as f64));
let size = intersection.size();
let size_px = image_size.transform_vector2(size).as_uvec2();
let footprint = ctx.footprint(); // If the image would not be visible, add nothing.
let viewport_bounds = footprint.viewport_bounds_in_local_space(); if size.x <= 0. || size.y <= 0. {
let image_bounds = Bbox::from_transform(image_frame_transform).to_axis_aligned_bbox(); return None;
let intersection = viewport_bounds.intersect(&image_bounds); }
let image_size = DAffine2::from_scale(DVec2::new(image.width as f64, image.height as f64));
let size = intersection.size();
let size_px = image_size.transform_vector2(size).as_uvec2();
// If the image would not be visible, add nothing. let image_buffer = ::image::Rgba32FImage::from_raw(image.width, image.height, data).expect("Failed to convert internal image format into image-rs data type.");
if size.x <= 0. || size.y <= 0. {
continue;
}
let image_buffer = ::image::Rgba32FImage::from_raw(image.width, image.height, data).expect("Failed to convert internal image format into image-rs data type."); let dynamic_image: ::image::DynamicImage = image_buffer.into();
let offset = (intersection.start - image_bounds.start).max(DVec2::ZERO);
let offset_px = image_size.transform_vector2(offset).as_uvec2();
let cropped = dynamic_image.crop_imm(offset_px.x, offset_px.y, size_px.x, size_px.y);
let dynamic_image: ::image::DynamicImage = image_buffer.into(); let viewport_resolution_x = footprint.transform.transform_vector2(DVec2::X * size.x).length();
let offset = (intersection.start - image_bounds.start).max(DVec2::ZERO); let viewport_resolution_y = footprint.transform.transform_vector2(DVec2::Y * size.y).length();
let offset_px = image_size.transform_vector2(offset).as_uvec2(); let mut new_width = size_px.x;
let cropped = dynamic_image.crop_imm(offset_px.x, offset_px.y, size_px.x, size_px.y); let mut new_height = size_px.y;
let viewport_resolution_x = footprint.transform.transform_vector2(DVec2::X * size.x).length(); // Only downscale the image for now
let viewport_resolution_y = footprint.transform.transform_vector2(DVec2::Y * size.y).length(); let resized = if new_width < image.width || new_height < image.height {
let mut new_width = size_px.x; new_width = viewport_resolution_x as u32;
let mut new_height = size_px.y; new_height = viewport_resolution_y as u32;
// TODO: choose filter based on quality requirements
cropped.resize_exact(new_width, new_height, ::image::imageops::Triangle)
} else {
cropped
};
let buffer = resized.to_rgba32f();
let buffer = buffer.into_raw();
let vec = bytemuck::cast_vec(buffer);
let image = Image {
width: new_width,
height: new_height,
data: vec,
base64_string: None,
};
// we need to adjust the offset if we truncate the offset calculation
// Only downscale the image for now let new_transform = image_frame_transform * DAffine2::from_translation(offset) * DAffine2::from_scale(size);
let resized = if new_width < image.width || new_height < image.height {
new_width = viewport_resolution_x as u32;
new_height = viewport_resolution_y as u32;
// TODO: choose filter based on quality requirements
cropped.resize_exact(new_width, new_height, ::image::imageops::Triangle)
} else {
cropped
};
let buffer = resized.to_rgba32f();
let buffer = buffer.into_raw();
let vec = bytemuck::cast_vec(buffer);
let image = Image {
width: new_width,
height: new_height,
data: vec,
base64_string: None,
};
// we need to adjust the offset if we truncate the offset calculation
let new_transform = image_frame_transform * DAffine2::from_translation(offset) * DAffine2::from_scale(size); image_frame_instance.transform = new_transform;
image_frame_instance.source_node_id = None;
image_frame_instance.transform = new_transform; image_frame_instance.instance = Raster::new_cpu(image);
image_frame_instance.source_node_id = None; Some(image_frame_instance)
image_frame_instance.instance = Raster::new_cpu(image); })
result_table.push(image_frame_instance) .collect()
}
result_table
} }
#[node_macro::node(category("Raster: Channels"))] #[node_macro::node(category("Raster: Channels"))]
@ -105,84 +104,85 @@ pub fn combine_channels(
#[expose] blue: RasterDataTable<CPU>, #[expose] blue: RasterDataTable<CPU>,
#[expose] alpha: RasterDataTable<CPU>, #[expose] alpha: RasterDataTable<CPU>,
) -> RasterDataTable<CPU> { ) -> RasterDataTable<CPU> {
let mut result_table = RasterDataTable::default();
let max_len = red.len().max(green.len()).max(blue.len()).max(alpha.len()); let max_len = red.len().max(green.len()).max(blue.len()).max(alpha.len());
let red = red.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); let red = red.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len);
let green = green.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); let green = green.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len);
let blue = blue.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); let blue = blue.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len);
let alpha = alpha.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); let alpha = alpha.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len);
for (((red, green), blue), alpha) in red.zip(green).zip(blue).zip(alpha) { red.zip(green)
// Turn any default zero-sized image instances into None .zip(blue)
let red = red.filter(|i| i.instance.width > 0 && i.instance.height > 0); .zip(alpha)
let green = green.filter(|i| i.instance.width > 0 && i.instance.height > 0); .filter_map(|(((red, green), blue), alpha)| {
let blue = blue.filter(|i| i.instance.width > 0 && i.instance.height > 0); // Turn any default zero-sized image instances into None
let alpha = alpha.filter(|i| i.instance.width > 0 && i.instance.height > 0); let red = red.filter(|i| i.instance.width > 0 && i.instance.height > 0);
let green = green.filter(|i| i.instance.width > 0 && i.instance.height > 0);
let blue = blue.filter(|i| i.instance.width > 0 && i.instance.height > 0);
let alpha = alpha.filter(|i| i.instance.width > 0 && i.instance.height > 0);
// Get this instance's transform and alpha blending mode from the first non-empty channel // Get this instance's transform and alpha blending mode from the first non-empty channel
let Some((transform, alpha_blending)) = [&red, &green, &blue, &alpha].iter().find_map(|i| i.as_ref()).map(|i| (i.transform, i.alpha_blending)) else { let Some((transform, alpha_blending)) = [&red, &green, &blue, &alpha].iter().find_map(|i| i.as_ref()).map(|i| (i.transform, i.alpha_blending)) else {
continue; return None;
}; };
// Get the common width and height of the channels, which must have equal dimensions // Get the common width and height of the channels, which must have equal dimensions
let channel_dimensions = [ let channel_dimensions = [
red.as_ref().map(|r| (r.instance.width, r.instance.height)), red.as_ref().map(|r| (r.instance.width, r.instance.height)),
green.as_ref().map(|g| (g.instance.width, g.instance.height)), green.as_ref().map(|g| (g.instance.width, g.instance.height)),
blue.as_ref().map(|b| (b.instance.width, b.instance.height)), blue.as_ref().map(|b| (b.instance.width, b.instance.height)),
alpha.as_ref().map(|a| (a.instance.width, a.instance.height)), alpha.as_ref().map(|a| (a.instance.width, a.instance.height)),
]; ];
if channel_dimensions.iter().all(Option::is_none) if channel_dimensions.iter().all(Option::is_none)
|| channel_dimensions || channel_dimensions
.iter() .iter()
.flatten() .flatten()
.any(|&(x, y)| channel_dimensions.iter().flatten().any(|&(other_x, other_y)| x != other_x || y != other_y)) .any(|&(x, y)| channel_dimensions.iter().flatten().any(|&(other_x, other_y)| x != other_x || y != other_y))
{ {
continue; return None;
} }
let Some(&(width, height)) = channel_dimensions.iter().flatten().next() else { continue }; let Some(&(width, height)) = channel_dimensions.iter().flatten().next() else {
return None;
};
// Create a new image for this instance output // Create a new image for this instance output
let mut image = Image::new(width, height, Color::TRANSPARENT); let mut image = Image::new(width, height, Color::TRANSPARENT);
// Iterate over all pixels in the image and set the color channels // Iterate over all pixels in the image and set the color channels
for y in 0..image.height() { for y in 0..image.height() {
for x in 0..image.width() { for x in 0..image.width() {
let image_pixel = image.get_pixel_mut(x, y).unwrap(); let image_pixel = image.get_pixel_mut(x, y).unwrap();
if let Some(r) = red.as_ref().and_then(|r| r.instance.get_pixel(x, y)) { if let Some(r) = red.as_ref().and_then(|r| r.instance.get_pixel(x, y)) {
image_pixel.set_red(r.l().cast_linear_channel()); image_pixel.set_red(r.l().cast_linear_channel());
} else { } else {
image_pixel.set_red(Channel::from_linear(0.)); image_pixel.set_red(Channel::from_linear(0.));
} }
if let Some(g) = green.as_ref().and_then(|g| g.instance.get_pixel(x, y)) { if let Some(g) = green.as_ref().and_then(|g| g.instance.get_pixel(x, y)) {
image_pixel.set_green(g.l().cast_linear_channel()); image_pixel.set_green(g.l().cast_linear_channel());
} else { } else {
image_pixel.set_green(Channel::from_linear(0.)); image_pixel.set_green(Channel::from_linear(0.));
} }
if let Some(b) = blue.as_ref().and_then(|b| b.instance.get_pixel(x, y)) { if let Some(b) = blue.as_ref().and_then(|b| b.instance.get_pixel(x, y)) {
image_pixel.set_blue(b.l().cast_linear_channel()); image_pixel.set_blue(b.l().cast_linear_channel());
} else { } else {
image_pixel.set_blue(Channel::from_linear(0.)); image_pixel.set_blue(Channel::from_linear(0.));
} }
if let Some(a) = alpha.as_ref().and_then(|a| a.instance.get_pixel(x, y)) { if let Some(a) = alpha.as_ref().and_then(|a| a.instance.get_pixel(x, y)) {
image_pixel.set_alpha(a.l().cast_linear_channel()); image_pixel.set_alpha(a.l().cast_linear_channel());
} else { } else {
image_pixel.set_alpha(Channel::from_linear(1.)); image_pixel.set_alpha(Channel::from_linear(1.));
}
} }
} }
}
// Add this instance to the result table Some(Instance {
result_table.push(Instance { instance: Raster::new_cpu(image),
instance: Raster::new_cpu(image), transform,
transform, alpha_blending,
alpha_blending, source_node_id: None,
source_node_id: None, })
}); })
} .collect()
result_table
} }
#[node_macro::node(category("Raster"))] #[node_macro::node(category("Raster"))]
@ -201,91 +201,85 @@ pub fn mask(
}; };
let stencil_size = DVec2::new(stencil_instance.instance.width as f64, stencil_instance.instance.height as f64); let stencil_size = DVec2::new(stencil_instance.instance.width as f64, stencil_instance.instance.height as f64);
let mut result_table = RasterDataTable::default(); image
.instance_iter()
.filter_map(|mut image_instance| {
let image_size = DVec2::new(image_instance.instance.width as f64, image_instance.instance.height as f64);
let mask_size = stencil_instance.transform.decompose_scale();
for mut image_instance in image.instance_iter() { if mask_size == DVec2::ZERO {
let image_size = DVec2::new(image_instance.instance.width as f64, image_instance.instance.height as f64); return None;
let mask_size = stencil_instance.transform.decompose_scale();
if mask_size == DVec2::ZERO {
continue;
}
// Transforms a point from the background image to the foreground image
let bg_to_fg = image_instance.transform * DAffine2::from_scale(1. / image_size);
let stencil_transform_inverse = stencil_instance.transform.inverse();
for y in 0..image_instance.instance.height {
for x in 0..image_instance.instance.width {
let image_point = DVec2::new(x as f64, y as f64);
let mask_point = bg_to_fg.transform_point2(image_point);
let local_mask_point = stencil_transform_inverse.transform_point2(mask_point);
let mask_point = stencil_instance.transform.transform_point2(local_mask_point.clamp(DVec2::ZERO, DVec2::ONE));
let mask_point = (DAffine2::from_scale(stencil_size) * stencil_instance.transform.inverse()).transform_point2(mask_point);
let image_pixel = image_instance.instance.data_mut().get_pixel_mut(x, y).unwrap();
let mask_pixel = stencil_instance.instance.sample(mask_point);
*image_pixel = image_pixel.multiplied_alpha(mask_pixel.l().cast_linear_channel());
} }
}
result_table.push(image_instance); // Transforms a point from the background image to the foreground image
} let bg_to_fg = image_instance.transform * DAffine2::from_scale(1. / image_size);
let stencil_transform_inverse = stencil_instance.transform.inverse();
result_table for y in 0..image_instance.instance.height {
for x in 0..image_instance.instance.width {
let image_point = DVec2::new(x as f64, y as f64);
let mask_point = bg_to_fg.transform_point2(image_point);
let local_mask_point = stencil_transform_inverse.transform_point2(mask_point);
let mask_point = stencil_instance.transform.transform_point2(local_mask_point.clamp(DVec2::ZERO, DVec2::ONE));
let mask_point = (DAffine2::from_scale(stencil_size) * stencil_instance.transform.inverse()).transform_point2(mask_point);
let image_pixel = image_instance.instance.data_mut().get_pixel_mut(x, y).unwrap();
let mask_pixel = stencil_instance.instance.sample(mask_point);
*image_pixel = image_pixel.multiplied_alpha(mask_pixel.l().cast_linear_channel());
}
}
Some(image_instance)
})
.collect()
} }
#[node_macro::node(category(""))] #[node_macro::node(category(""))]
pub fn extend_image_to_bounds(_: impl Ctx, image: RasterDataTable<CPU>, bounds: DAffine2) -> RasterDataTable<CPU> { pub fn extend_image_to_bounds(_: impl Ctx, image: RasterDataTable<CPU>, bounds: DAffine2) -> RasterDataTable<CPU> {
let mut result_table = RasterDataTable::default(); image
.instance_iter()
for mut image_instance in image.instance_iter() { .map(|mut image_instance| {
let image_aabb = Bbox::unit().affine_transform(image_instance.transform).to_axis_aligned_bbox(); let image_aabb = Bbox::unit().affine_transform(image_instance.transform).to_axis_aligned_bbox();
let bounds_aabb = Bbox::unit().affine_transform(bounds.transform()).to_axis_aligned_bbox(); let bounds_aabb = Bbox::unit().affine_transform(bounds.transform()).to_axis_aligned_bbox();
if image_aabb.contains(bounds_aabb.start) && image_aabb.contains(bounds_aabb.end) { if image_aabb.contains(bounds_aabb.start) && image_aabb.contains(bounds_aabb.end) {
result_table.push(image_instance); return image_instance;
continue;
}
let image_data = &image_instance.instance.data;
let (image_width, image_height) = (image_instance.instance.width, image_instance.instance.height);
if image_width == 0 || image_height == 0 {
for image_instance in empty_image((), bounds, Color::TRANSPARENT).instance_iter() {
result_table.push(image_instance);
} }
continue;
}
let orig_image_scale = DVec2::new(image_width as f64, image_height as f64); let image_data = &image_instance.instance.data;
let layer_to_image_space = DAffine2::from_scale(orig_image_scale) * image_instance.transform.inverse(); let (image_width, image_height) = (image_instance.instance.width, image_instance.instance.height);
let bounds_in_image_space = Bbox::unit().affine_transform(layer_to_image_space * bounds).to_axis_aligned_bbox(); if image_width == 0 || image_height == 0 {
return empty_image((), bounds, Color::TRANSPARENT).instance_iter().next().unwrap();
}
let new_start = bounds_in_image_space.start.floor().min(DVec2::ZERO); let orig_image_scale = DVec2::new(image_width as f64, image_height as f64);
let new_end = bounds_in_image_space.end.ceil().max(orig_image_scale); let layer_to_image_space = DAffine2::from_scale(orig_image_scale) * image_instance.transform.inverse();
let new_scale = new_end - new_start; let bounds_in_image_space = Bbox::unit().affine_transform(layer_to_image_space * bounds).to_axis_aligned_bbox();
// Copy over original image into enlarged image. let new_start = bounds_in_image_space.start.floor().min(DVec2::ZERO);
let mut new_image = Image::new(new_scale.x as u32, new_scale.y as u32, Color::TRANSPARENT); let new_end = bounds_in_image_space.end.ceil().max(orig_image_scale);
let offset_in_new_image = (-new_start).as_uvec2(); let new_scale = new_end - new_start;
for y in 0..image_height {
let old_start = y * image_width;
let new_start = (y + offset_in_new_image.y) * new_image.width + offset_in_new_image.x;
let old_row = &image_data[old_start as usize..(old_start + image_width) as usize];
let new_row = &mut new_image.data[new_start as usize..(new_start + image_width) as usize];
new_row.copy_from_slice(old_row);
}
// Compute new transform. // Copy over original image into enlarged image.
// let layer_to_new_texture_space = (DAffine2::from_scale(1. / new_scale) * DAffine2::from_translation(new_start) * layer_to_image_space).inverse(); let mut new_image = Image::new(new_scale.x as u32, new_scale.y as u32, Color::TRANSPARENT);
let new_texture_to_layer_space = image_instance.transform * DAffine2::from_scale(1. / orig_image_scale) * DAffine2::from_translation(new_start) * DAffine2::from_scale(new_scale); let offset_in_new_image = (-new_start).as_uvec2();
for y in 0..image_height {
let old_start = y * image_width;
let new_start = (y + offset_in_new_image.y) * new_image.width + offset_in_new_image.x;
let old_row = &image_data[old_start as usize..(old_start + image_width) as usize];
let new_row = &mut new_image.data[new_start as usize..(new_start + image_width) as usize];
new_row.copy_from_slice(old_row);
}
image_instance.instance = Raster::new_cpu(new_image); // Compute new transform.
image_instance.transform = new_texture_to_layer_space; // let layer_to_new_texture_space = (DAffine2::from_scale(1. / new_scale) * DAffine2::from_translation(new_start) * layer_to_image_space).inverse();
image_instance.source_node_id = None; let new_texture_to_layer_space = image_instance.transform * DAffine2::from_scale(1. / orig_image_scale) * DAffine2::from_translation(new_start) * DAffine2::from_scale(new_scale);
result_table.push(image_instance);
}
result_table image_instance.instance = Raster::new_cpu(new_image);
image_instance.transform = new_texture_to_layer_space;
image_instance.source_node_id = None;
image_instance
})
.collect()
} }
#[node_macro::node(category("Debug: Raster"))] #[node_macro::node(category("Debug: Raster"))]
@ -392,14 +386,11 @@ pub fn noise_pattern(
} }
} }
let mut result = RasterDataTable::default(); return RasterDataTable::new_instance(Instance {
result.push(Instance {
instance: Raster::new_cpu(image), instance: Raster::new_cpu(image),
transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size), transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size),
..Default::default() ..Default::default()
}); });
return result;
} }
}; };
noise.set_noise_type(Some(noise_type)); noise.set_noise_type(Some(noise_type));
@ -457,14 +448,11 @@ pub fn noise_pattern(
} }
} }
let mut result = RasterDataTable::default(); RasterDataTable::new_instance(Instance {
result.push(Instance {
instance: Raster::new_cpu(image), instance: Raster::new_cpu(image),
transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size), transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size),
..Default::default() ..Default::default()
}); })
result
} }
#[node_macro::node(category("Raster: Pattern"))] #[node_macro::node(category("Raster: Pattern"))]
@ -502,20 +490,16 @@ pub fn mandelbrot(ctx: impl ExtractFootprint + Send) -> RasterDataTable<CPU> {
} }
} }
let image = Image { RasterDataTable::new_instance(Instance {
width, instance: Raster::new_cpu(Image {
height, width,
data, height,
..Default::default() data,
}; ..Default::default()
let mut result = RasterDataTable::default(); }),
result.push(Instance {
instance: Raster::new_cpu(image),
transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size), transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size),
..Default::default() ..Default::default()
}); })
result
} }
#[inline(always)] #[inline(always)]

View file

@ -292,15 +292,12 @@ where
let rasterized = context.get_image_data(0., 0., resolution.x as f64, resolution.y as f64).unwrap(); let rasterized = context.get_image_data(0., 0., resolution.x as f64, resolution.y as f64).unwrap();
let mut result = RasterDataTable::default();
let image = Image::from_image_data(&rasterized.data().0, resolution.x as u32, resolution.y as u32); let image = Image::from_image_data(&rasterized.data().0, resolution.x as u32, resolution.y as u32);
result.push(Instance { RasterDataTable::new_instance(Instance {
instance: Raster::new_cpu(image), instance: Raster::new_cpu(image),
transform: footprint.transform, transform: footprint.transform,
..Default::default() ..Default::default()
}); })
result
} }
#[node_macro::node(category(""))] #[node_macro::node(category(""))]

View file

@ -38,10 +38,10 @@ impl MaskType {
} }
fn write_to_defs(self, svg_defs: &mut String, uuid: u64, svg_string: String) { fn write_to_defs(self, svg_defs: &mut String, uuid: u64, svg_string: String) {
let id = format!("mask-{}", uuid); let id = format!("mask-{uuid}");
match self { match self {
Self::Clip => write!(svg_defs, r##"<clipPath id="{id}">{}</clipPath>"##, svg_string).unwrap(), Self::Clip => write!(svg_defs, r##"<clipPath id="{id}">{svg_string}</clipPath>"##).unwrap(),
Self::Mask => write!(svg_defs, r##"<mask id="{id}" mask-type="alpha">{}</mask>"##, svg_string).unwrap(), Self::Mask => write!(svg_defs, r##"<mask id="{id}" mask-type="alpha">{svg_string}</mask>"##).unwrap(),
} }
} }
} }
@ -89,9 +89,9 @@ impl SvgRender {
.unwrap_or_default(); .unwrap_or_default();
let matrix = format_transform_matrix(transform); let matrix = format_transform_matrix(transform);
let transform = if matrix.is_empty() { String::new() } else { format!(r#" transform="{}""#, matrix) }; let transform = if matrix.is_empty() { String::new() } else { format!(r#" transform="{matrix}""#) };
let svg_header = format!(r#"<svg xmlns="http://www.w3.org/2000/svg" {}><defs>{defs}</defs><g{transform}>"#, view_box); let svg_header = format!(r#"<svg xmlns="http://www.w3.org/2000/svg" {view_box}><defs>{defs}</defs><g{transform}>"#);
self.svg.insert(0, svg_header.into()); self.svg.insert(0, svg_header.into());
self.svg.push("</g></svg>".into()); self.svg.push("</g></svg>".into());
} }
@ -267,7 +267,7 @@ impl GraphicElementRendered for GraphicGroupTable {
mask_state = None; mask_state = None;
} }
let id = format!("mask-{}", uuid); let id = format!("mask-{uuid}");
let selector = format!("url(#{id})"); let selector = format!("url(#{id})");
attributes.push(mask_type.to_attribute(), selector); attributes.push(mask_type.to_attribute(), selector);
@ -444,18 +444,18 @@ impl GraphicElementRendered for VectorDataTable {
let can_use_order = !instance.instance.style.fill().is_none() && mask_type == MaskType::Mask; let can_use_order = !instance.instance.style.fill().is_none() && mask_type == MaskType::Mask;
if !can_use_order { if !can_use_order {
let id = format!("alignment-{}", generate_uuid()); let id = format!("alignment-{}", generate_uuid());
let mut vector_row = VectorDataTable::default();
let mut fill_instance = instance.instance.clone();
let mut fill_instance = instance.instance.clone();
fill_instance.style.clear_stroke(); fill_instance.style.clear_stroke();
fill_instance.style.set_fill(Fill::solid(Color::BLACK)); fill_instance.style.set_fill(Fill::solid(Color::BLACK));
vector_row.push(Instance { let vector_row = VectorDataTable::new_instance(Instance {
instance: fill_instance, instance: fill_instance,
alpha_blending: *instance.alpha_blending, alpha_blending: *instance.alpha_blending,
transform: *instance.transform, transform: *instance.transform,
source_node_id: None, source_node_id: None,
}); });
push_id = Some((id, mask_type, vector_row)); push_id = Some((id, mask_type, vector_row));
} }
} }
@ -477,7 +477,7 @@ impl GraphicElementRendered for VectorDataTable {
let (x, y) = quad.top_left().into(); let (x, y) = quad.top_left().into();
let (width, height) = (quad.bottom_right() - quad.top_left()).into(); let (width, height) = (quad.bottom_right() - quad.top_left()).into();
write!(defs, r##"{}"##, svg.svg_defs).unwrap(); write!(defs, r##"{}"##, svg.svg_defs).unwrap();
let rect = format!(r##"<rect x="{}" y="{}" width="{width}" height="{height}" fill="white" />"##, x, y); let rect = format!(r##"<rect x="{x}" y="{y}" width="{width}" height="{height}" fill="white" />"##);
match mask_type { match mask_type {
MaskType::Clip => write!(defs, r##"<clipPath id="{id}">{}</clipPath>"##, svg.svg.to_svg_string()).unwrap(), MaskType::Clip => write!(defs, r##"<clipPath id="{id}">{}</clipPath>"##, svg.svg.to_svg_string()).unwrap(),
MaskType::Mask => write!(defs, r##"<mask id="{id}">{}{}</mask>"##, rect, svg.svg.to_svg_string()).unwrap(), MaskType::Mask => write!(defs, r##"<mask id="{id}">{}{}</mask>"##, rect, svg.svg.to_svg_string()).unwrap(),
@ -564,13 +564,11 @@ impl GraphicElementRendered for VectorDataTable {
.stroke() .stroke()
.is_some_and(|stroke| stroke.align == StrokeAlign::Outside && !instance.instance.style.fill().is_none()); .is_some_and(|stroke| stroke.align == StrokeAlign::Outside && !instance.instance.style.fill().is_none());
if can_draw_aligned_stroke && !reorder_for_outside { if can_draw_aligned_stroke && !reorder_for_outside {
let mut vector_data = VectorDataTable::default();
let mut fill_instance = instance.instance.clone(); let mut fill_instance = instance.instance.clone();
fill_instance.style.clear_stroke(); fill_instance.style.clear_stroke();
fill_instance.style.set_fill(Fill::solid(Color::BLACK)); fill_instance.style.set_fill(Fill::solid(Color::BLACK));
vector_data.push(Instance { let vector_data = VectorDataTable::new_instance(Instance {
instance: fill_instance, instance: fill_instance,
alpha_blending: *instance.alpha_blending, alpha_blending: *instance.alpha_blending,
transform: *instance.transform, transform: *instance.transform,
@ -639,7 +637,11 @@ impl GraphicElementRendered for VectorDataTable {
let bounds = instance.instance.nonzero_bounding_box(); let bounds = instance.instance.nonzero_bounding_box();
let bound_transform = DAffine2::from_scale_angle_translation(bounds[1] - bounds[0], 0., bounds[0]); let bound_transform = DAffine2::from_scale_angle_translation(bounds[1] - bounds[0], 0., bounds[0]);
let inverse_parent_transform = (parent_transform.matrix2.determinant() != 0.).then(|| parent_transform.inverse()).unwrap_or_default(); let inverse_parent_transform = if parent_transform.matrix2.determinant() != 0. {
parent_transform.inverse()
} else {
Default::default()
};
let mod_points = inverse_parent_transform * multiplied_transform * bound_transform; let mod_points = inverse_parent_transform * multiplied_transform * bound_transform;
let start = mod_points.transform_point2(gradient.start); let start = mod_points.transform_point2(gradient.start);
@ -666,7 +668,11 @@ impl GraphicElementRendered for VectorDataTable {
}); });
// Vello does `element_transform * brush_transform` internally. We don't want element_transform to have any impact so we need to left multiply by the inverse. // Vello does `element_transform * brush_transform` internally. We don't want element_transform to have any impact so we need to left multiply by the inverse.
// This makes the final internal brush transform equal to `parent_transform`, allowing you to stretch a gradient by transforming the parent folder. // This makes the final internal brush transform equal to `parent_transform`, allowing you to stretch a gradient by transforming the parent folder.
let inverse_element_transform = (element_transform.matrix2.determinant() != 0.).then(|| element_transform.inverse()).unwrap_or_default(); let inverse_element_transform = if element_transform.matrix2.determinant() != 0. {
element_transform.inverse()
} else {
Default::default()
};
let brush_transform = kurbo::Affine::new((inverse_element_transform * parent_transform).to_cols_array()); let brush_transform = kurbo::Affine::new((inverse_element_transform * parent_transform).to_cols_array());
scene.fill(peniko::Fill::NonZero, kurbo::Affine::new(element_transform.to_cols_array()), &fill, Some(brush_transform), &path); scene.fill(peniko::Fill::NonZero, kurbo::Affine::new(element_transform.to_cols_array()), &fill, Some(brush_transform), &path);
} }

View file

@ -2,7 +2,7 @@
name = "node-macro" name = "node-macro"
publish = false publish = false
version = "0.0.0" version = "0.0.0"
rust-version = "1.85" rust-version = "1.88"
authors = ["Graphite Authors <contact@graphite.rs>"] authors = ["Graphite Authors <contact@graphite.rs>"]
edition = "2024" edition = "2024"
readme = "../../README.md" readme = "../../README.md"
@ -26,4 +26,3 @@ proc-macro-error2 = "2"
[dev-dependencies] [dev-dependencies]
graphene-core = { workspace = true } graphene-core = { workspace = true }

View file

@ -2,7 +2,7 @@
name = "graphite-proc-macros" name = "graphite-proc-macros"
publish = false publish = false
version = "0.0.0" version = "0.0.0"
rust-version = "1.85" rust-version = "1.88"
authors = ["Graphite Authors <contact@graphite.rs>"] authors = ["Graphite Authors <contact@graphite.rs>"]
edition = "2024" edition = "2024"
readme = "../README.md" readme = "../README.md"