Clean up node catalog by adding missing units, more tooltips; fix 'Line' node missing parameters (#2813)

* Fix unit usages

* Add node and parameter doc comments

* Fix the parameters panel for the 'Line' node when added from the graph

* Clean up nodes

* Fix tests

* Update the demo artwork
This commit is contained in:
Keavon Chambers 2025-07-01 07:47:54 -07:00 committed by GitHub
parent 0febfaf142
commit 8c5accc069
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
21 changed files with 366 additions and 89 deletions

View file

@ -1,5 +1,14 @@
use crate::raster_types::{CPU, RasterDataTable};
use crate::vector::VectorDataTable;
use crate::{Color, Ctx};
use glam::{DAffine2, DVec2};
#[node_macro::node(category("Debug"), name("Log to Console"))]
fn log_to_console<T: std::fmt::Debug>(_: impl Ctx, #[implementations(String, bool, f64, u32, u64, DVec2, VectorDataTable, DAffine2, Color, Option<Color>)] value: T) -> T {
// KEEP THIS `debug!()` - It acts as the output for the debug node itself
log::debug!("{:#?}", value);
value
}
/// Meant for debugging purposes, not general use. Returns the size of the input type in bytes.
#[node_macro::node(category("Debug"))]

View file

@ -2,7 +2,9 @@ use crate::Ctx;
use dyn_any::DynAny;
use glam::{DVec2, IVec2, UVec2};
/// Obtain the X or Y component of a coordinate.
/// Obtains the X or Y component of a coordinate point.
///
/// The inverse of this node is "Coordinate Value", which can have either or both its X and Y exposed as graph inputs.
#[node_macro::node(name("Extract XY"), category("Math: Vector"))]
fn extract_xy<T: Into<DVec2>>(_: impl Ctx, #[implementations(DVec2, IVec2, UVec2)] vector: T, axis: XY) -> f64 {
match axis {

View file

@ -1,14 +1,13 @@
use crate::ArtboardGroupTable;
use crate::Color;
use crate::GraphicElement;
use crate::GraphicGroupTable;
use crate::gradient::GradientStops;
use crate::raster_types::{CPU, GPU, RasterDataTable};
use crate::vector::VectorDataTable;
use crate::{Color, Context, Ctx};
use crate::{Context, Ctx};
use glam::{DAffine2, DVec2};
#[node_macro::node(category("Debug"), name("Log to Console"))]
fn log_to_console<T: std::fmt::Debug>(_: impl Ctx, #[implementations(String, bool, f64, u32, u64, DVec2, VectorDataTable, DAffine2, Color, Option<Color>)] value: T) -> T {
// KEEP THIS `debug!()` - It acts as the output for the debug node itself
log::debug!("{:#?}", value);
value
}
#[node_macro::node(category("Text"))]
fn to_string<T: std::fmt::Debug>(_: impl Ctx, #[implementations(String, bool, f64, u32, u64, DVec2, VectorDataTable, DAffine2)] value: T) -> String {
format!("{:?}", value)
@ -45,24 +44,42 @@ async fn switch<T, C: Send + 'n + Clone>(
#[implementations(
Context -> String,
Context -> bool,
Context -> f32,
Context -> f64,
Context -> u32,
Context -> u64,
Context -> DVec2,
Context -> VectorDataTable,
Context -> DAffine2,
Context -> ArtboardGroupTable,
Context -> VectorDataTable,
Context -> GraphicGroupTable,
Context -> RasterDataTable<CPU>,
Context -> RasterDataTable<GPU>,
Context -> GraphicElement,
Context -> Color,
Context -> Option<Color>,
Context -> GradientStops,
)]
if_true: impl Node<C, Output = T>,
#[expose]
#[implementations(
Context -> String,
Context -> bool,
Context -> f32,
Context -> f64,
Context -> u32,
Context -> u64,
Context -> DVec2,
Context -> VectorDataTable,
Context -> DAffine2,
Context -> ArtboardGroupTable,
Context -> VectorDataTable,
Context -> GraphicGroupTable,
Context -> RasterDataTable<CPU>,
Context -> RasterDataTable<GPU>,
Context -> GraphicElement,
Context -> Color,
Context -> Option<Color>,
Context -> GradientStops,
)]
if_false: impl Node<C, Output = T>,
) -> T {

View file

@ -73,9 +73,17 @@ pub trait Convert<T>: Sized {
fn convert(self) -> T;
}
impl<T: ToString> Convert<String> for T {
/// Converts this type into a `String` using its `ToString` implementation.
#[inline]
fn convert(self) -> String {
self.to_string()
}
}
/// Implements the [`Convert`] trait for conversion between the cartesian product of Rust's primitive numeric types.
macro_rules! impl_convert {
($from:ty,$to:ty) => {
($from:ty, $to:ty) => {
impl Convert<$to> for $from {
fn convert(self) -> $to {
self as $to

View file

@ -70,6 +70,7 @@ async fn boundless_footprint<T: 'n + 'static>(
transform_target.eval(ctx.into_context()).await
}
#[node_macro::node(category("Debug"))]
async fn freeze_real_time<T: 'n + 'static>(
ctx: impl Ctx + CloneVarArgs + ExtractAll,

View file

@ -86,6 +86,7 @@ async fn instance_position(ctx: impl Ctx + ExtractVarArgs) -> DVec2 {
Default::default()
}
// TODO: Make this return a u32 instead of an f64, but we ned to improve math-related compatibility with integer types first.
#[node_macro::node(category("Instancing"), path(graphene_core::vector))]
async fn instance_index(ctx: impl Ctx + ExtractIndex) -> f64 {
match ctx.try_index() {

View file

@ -37,7 +37,13 @@ impl CornerRadius for [f64; 4] {
}
#[node_macro::node(category("Vector: Shape"))]
fn circle(_: impl Ctx, _primary: (), #[default(50.)] radius: f64) -> VectorDataTable {
fn circle(
_: impl Ctx,
_primary: (),
#[unit(" px")]
#[default(50.)]
radius: f64,
) -> VectorDataTable {
let radius = radius.abs();
VectorDataTable::new(VectorData::from_subpath(Subpath::new_ellipse(DVec2::splat(-radius), DVec2::splat(radius))))
}
@ -46,7 +52,9 @@ fn circle(_: impl Ctx, _primary: (), #[default(50.)] radius: f64) -> VectorDataT
fn arc(
_: impl Ctx,
_primary: (),
#[default(50.)] radius: f64,
#[unit(" px")]
#[default(50.)]
radius: f64,
start_angle: Angle,
#[default(270.)]
#[range((0., 360.))]
@ -66,7 +74,16 @@ fn arc(
}
#[node_macro::node(category("Vector: Shape"))]
fn ellipse(_: impl Ctx, _primary: (), #[default(50)] radius_x: f64, #[default(25)] radius_y: f64) -> VectorDataTable {
fn ellipse(
_: impl Ctx,
_primary: (),
#[unit(" px")]
#[default(50)]
radius_x: f64,
#[unit(" px")]
#[default(25)]
radius_y: f64,
) -> VectorDataTable {
let radius = DVec2::new(radius_x, radius_y);
let corner1 = -radius;
let corner2 = radius;
@ -87,8 +104,12 @@ fn ellipse(_: impl Ctx, _primary: (), #[default(50)] radius_x: f64, #[default(25
fn rectangle<T: CornerRadius>(
_: impl Ctx,
_primary: (),
#[default(100)] width: f64,
#[default(100)] height: f64,
#[unit(" px")]
#[default(100)]
width: f64,
#[unit(" px")]
#[default(100)]
height: f64,
_individual_corner_radii: bool, // TODO: Move this to the bottom once we have a migration capability
#[implementations(f64, [f64; 4])] corner_radius: T,
#[default(true)] clamped: bool,
@ -104,7 +125,9 @@ fn regular_polygon<T: AsU64>(
#[hard_min(3.)]
#[implementations(u32, u64, f64)]
sides: T,
#[default(50)] radius: f64,
#[unit(" px")]
#[default(50)]
radius: f64,
) -> VectorDataTable {
let points = sides.as_u64();
let radius: f64 = radius * 2.;
@ -119,8 +142,12 @@ fn star<T: AsU64>(
#[hard_min(2.)]
#[implementations(u32, u64, f64)]
sides: T,
#[default(50)] radius_1: f64,
#[default(25)] radius_2: f64,
#[unit(" px")]
#[default(50)]
radius_1: f64,
#[unit(" px")]
#[default(25)]
radius_2: f64,
) -> VectorDataTable {
let points = sides.as_u64();
let diameter: f64 = radius_1 * 2.;
@ -130,7 +157,7 @@ fn star<T: AsU64>(
}
#[node_macro::node(category("Vector: Shape"))]
fn line(_: impl Ctx, _primary: (), #[default((0., -50.))] start: PixelSize, #[default((0., 50.))] end: PixelSize) -> VectorDataTable {
fn line(_: impl Ctx, _primary: (), #[default(0., 0.)] start: PixelSize, #[default(100., 100.)] end: PixelSize) -> VectorDataTable {
VectorDataTable::new(VectorData::from_subpath(Subpath::new_line(start, end)))
}
@ -153,13 +180,14 @@ fn grid<T: GridSpacing>(
_: impl Ctx,
_primary: (),
grid_type: GridType,
#[unit(" px")]
#[hard_min(0.)]
#[default(10)]
#[implementations(f64, DVec2)]
spacing: T,
#[default(30., 30.)] angles: DVec2,
#[default(10)] columns: u32,
#[default(10)] rows: u32,
#[default(30., 30.)] angles: DVec2,
) -> VectorDataTable {
let (x_spacing, y_spacing) = spacing.as_dvec2().into();
let (angle_a, angle_b) = angles.into();
@ -251,11 +279,11 @@ mod tests {
#[test]
fn isometric_grid_test() {
// Doesn't crash with weird angles
grid((), (), GridType::Isometric, 0., (0., 0.).into(), 5, 5);
grid((), (), GridType::Isometric, 90., (90., 90.).into(), 5, 5);
grid((), (), GridType::Isometric, 0., 5, 5, (0., 0.).into());
grid((), (), GridType::Isometric, 90., 5, 5, (90., 90.).into());
// Works properly
let grid = grid((), (), GridType::Isometric, 10., (30., 30.).into(), 5, 5);
let grid = grid((), (), GridType::Isometric, 10., 5, 5, (30., 30.).into());
assert_eq!(grid.instance_ref_iter().next().unwrap().instance.point_domain.ids().len(), 5 * 5);
assert_eq!(grid.instance_ref_iter().next().unwrap().instance.segment_bezier_iter().count(), 4 * 5 + 4 * 9);
for (_, bezier, _, _) in grid.instance_ref_iter().next().unwrap().instance.segment_bezier_iter() {
@ -270,7 +298,7 @@ mod tests {
#[test]
fn skew_isometric_grid_test() {
let grid = grid((), (), GridType::Isometric, 10., (40., 30.).into(), 5, 5);
let grid = grid((), (), GridType::Isometric, 10., 5, 5, (40., 30.).into());
assert_eq!(grid.instance_ref_iter().next().unwrap().instance.point_domain.ids().len(), 5 * 5);
assert_eq!(grid.instance_ref_iter().next().unwrap().instance.segment_bezier_iter().count(), 4 * 5 + 4 * 9);
for (_, bezier, _, _) in grid.instance_ref_iter().next().unwrap().instance.segment_bezier_iter() {

View file

@ -65,6 +65,7 @@ async fn assign_colors<T>(
randomize: bool,
#[widget(ParsedWidgetOverride::Custom = "assign_colors_seed")]
/// The seed used for randomization.
/// Seed to determine unique variations on the randomized color selection.
seed: SeedValue,
#[widget(ParsedWidgetOverride::Custom = "assign_colors_repeat_every")]
/// The number of elements to span across the gradient before repeating. A 0 value will span the entire gradient once.
@ -165,6 +166,7 @@ async fn stroke<C: Into<Option<Color>> + 'n + Send, V>(
#[default(Color::BLACK)]
/// The stroke color.
color: C,
#[unit(" px")]
#[default(2.)]
/// The stroke weight.
weight: f64,
@ -183,6 +185,7 @@ async fn stroke<C: Into<Option<Color>> + 'n + Send, V>(
/// The stroke dash lengths. Each length forms a distance in a pattern where the first length is a dash, the second is a gap, and so on. If the list is an odd length, the pattern repeats with solid-gap roles reversed.
dash_lengths: Vec<f64>,
/// The phase offset distance from the starting point of the dash pattern.
#[unit(" px")]
dash_offset: f64,
) -> Instances<V>
where
@ -253,7 +256,9 @@ async fn circular_repeat<I: 'n + Send + Clone>(
// TODO: Implement other GraphicElementRendered types.
#[implementations(GraphicGroupTable, VectorDataTable, RasterDataTable<CPU>)] instance: Instances<I>,
angle_offset: Angle,
#[default(5)] radius: f64,
#[unit(" px")]
#[default(5)]
radius: f64,
#[default(5)] instances: IntegerCount,
) -> Instances<I> {
let count = instances.max(1);
@ -363,7 +368,7 @@ async fn mirror<I: 'n + Send + Clone>(
_: impl Ctx,
#[implementations(GraphicGroupTable, VectorDataTable, RasterDataTable<CPU>)] instance: Instances<I>,
#[default(ReferencePoint::Center)] relative_to_bounds: ReferencePoint,
offset: f64,
#[unit(" px")] offset: f64,
#[range((-90., 90.))] angle: Angle,
#[default(true)] keep_original: bool,
) -> Instances<I>
@ -1139,10 +1144,10 @@ async fn sample_polyline(
_: impl Ctx,
vector_data: VectorDataTable,
spacing: PointSpacingType,
separation: f64,
quantity: f64,
start_offset: f64,
stop_offset: f64,
#[unit(" px")] separation: f64,
quantity: u32,
#[unit(" px")] start_offset: f64,
#[unit(" px")] stop_offset: f64,
adaptive_spacing: bool,
subpath_segment_lengths: Vec<f64>,
) -> VectorDataTable {
@ -1182,7 +1187,7 @@ async fn sample_polyline(
let amount = match spacing {
PointSpacingType::Separation => separation,
PointSpacingType::Quantity => quantity,
PointSpacingType::Quantity => quantity as f64,
};
let Some(mut sample_bezpath) = sample_polyline_on_bezpath(bezpath, spacing, amount, start_offset, stop_offset, adaptive_spacing, current_bezpath_segments_length) else {
continue;
@ -1388,6 +1393,7 @@ async fn tangent_on_path(
async fn poisson_disk_points(
_: impl Ctx,
vector_data: VectorDataTable,
#[unit(" px")]
#[default(10.)]
#[hard_min(0.01)]
separation_disk_diameter: f64,
@ -1498,7 +1504,14 @@ async fn spline(_: impl Ctx, vector_data: VectorDataTable) -> VectorDataTable {
}
#[node_macro::node(category("Vector: Modifier"), path(graphene_core::vector))]
async fn jitter_points(_: impl Ctx, vector_data: VectorDataTable, #[default(5.)] amount: f64, seed: SeedValue) -> VectorDataTable {
async fn jitter_points(
_: impl Ctx,
vector_data: VectorDataTable,
#[unit(" px")]
#[default(5.)]
amount: f64,
seed: SeedValue,
) -> VectorDataTable {
let mut result_table = VectorDataTable::default();
for mut vector_data_instance in vector_data.instance_iter() {
@ -2080,7 +2093,7 @@ mod test {
#[tokio::test]
async fn sample_polyline() {
let path = Subpath::from_bezier(&Bezier::from_cubic_dvec2(DVec2::ZERO, DVec2::ZERO, DVec2::X * 100., DVec2::X * 100.));
let sample_polyline = super::sample_polyline(Footprint::default(), vector_node(path), PointSpacingType::Separation, 30., 0., 0., 0., false, vec![100.]).await;
let sample_polyline = super::sample_polyline(Footprint::default(), vector_node(path), PointSpacingType::Separation, 30., 0, 0., 0., false, vec![100.]).await;
let sample_polyline = sample_polyline.instance_ref_iter().next().unwrap().instance;
assert_eq!(sample_polyline.point_domain.positions().len(), 4);
for (pos, expected) in sample_polyline.point_domain.positions().iter().zip([DVec2::X * 0., DVec2::X * 30., DVec2::X * 60., DVec2::X * 90.]) {
@ -2090,7 +2103,7 @@ mod test {
#[tokio::test]
async fn sample_polyline_adaptive_spacing() {
let path = Subpath::from_bezier(&Bezier::from_cubic_dvec2(DVec2::ZERO, DVec2::ZERO, DVec2::X * 100., DVec2::X * 100.));
let sample_polyline = super::sample_polyline(Footprint::default(), vector_node(path), PointSpacingType::Separation, 18., 0., 45., 10., true, vec![100.]).await;
let sample_polyline = super::sample_polyline(Footprint::default(), vector_node(path), PointSpacingType::Separation, 18., 0, 45., 10., true, vec![100.]).await;
let sample_polyline = sample_polyline.instance_ref_iter().next().unwrap().instance;
assert_eq!(sample_polyline.point_domain.positions().len(), 4);
for (pos, expected) in sample_polyline.point_domain.positions().iter().zip([DVec2::X * 45., DVec2::X * 60., DVec2::X * 75., DVec2::X * 90.]) {

View file

@ -78,8 +78,12 @@ fn math<U: num_traits::float::Float>(
#[node_macro::node(category("Math: Arithmetic"))]
fn add<U: Add<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, f64, DVec2)] augend: U,
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, DVec2, f64)] addend: T,
/// The left-hand side of the addition operation.
#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
augend: U,
/// The right-hand side of the addition operation.
#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
addend: T,
) -> <U as Add<T>>::Output {
augend + addend
}
@ -88,8 +92,12 @@ fn add<U: Add<T>, T>(
#[node_macro::node(category("Math: Arithmetic"))]
fn subtract<U: Sub<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, f64, DVec2)] minuend: U,
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, DVec2, f64)] subtrahend: T,
/// The left-hand side of the subtraction operation.
#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
minuend: U,
/// The right-hand side of the subtraction operation.
#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
subtrahend: T,
) -> <U as Sub<T>>::Output {
minuend - subtrahend
}
@ -98,9 +106,12 @@ fn subtract<U: Sub<T>, T>(
#[node_macro::node(category("Math: Arithmetic"))]
fn multiply<U: Mul<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, f64, DVec2)] multiplier: U,
/// The left-hand side of the multiplication operation.
#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
multiplier: U,
/// The right-hand side of the multiplication operation.
#[default(1.)]
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, DVec2, f64)]
#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
multiplicand: T,
) -> <U as Mul<T>>::Output {
multiplier * multiplicand
@ -112,7 +123,10 @@ fn multiply<U: Mul<T>, T>(
#[node_macro::node(category("Math: Arithmetic"))]
fn divide<U: Div<T> + Default + PartialEq, T: Default + PartialEq>(
_: impl Ctx,
#[implementations(f64, f64, f32, f32, u32, u32, DVec2, DVec2, f64)] numerator: U,
/// The left-hand side of the division operation.
#[implementations(f64, f64, f32, f32, u32, u32, DVec2, DVec2, f64)]
numerator: U,
/// The right-hand side of the division operation.
#[default(1.)]
#[implementations(f64, f64, f32, f32, u32, u32, DVec2, f64, DVec2)]
denominator: T,
@ -130,10 +144,15 @@ where
#[node_macro::node(category("Math: Arithmetic"))]
fn modulo<U: Rem<T, Output: Add<T, Output: Rem<T, Output = U::Output>>>, T: Copy>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32, DVec2, DVec2, f64)] numerator: U,
/// The left-hand side of the modulo operation.
#[implementations(f64, f32, u32, DVec2, DVec2, f64)]
numerator: U,
/// The right-hand side of the modulo operation.
#[default(2.)]
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32, DVec2, f64, DVec2)]
#[implementations(f64, f32, u32, DVec2, f64, DVec2)]
modulus: T,
/// Ensures the result will always be positive, even if the numerator is negative.
#[default(true)]
always_positive: bool,
) -> <U as Rem<T>>::Output {
if always_positive { (numerator % modulus + modulus) % modulus } else { numerator % modulus }
@ -143,9 +162,12 @@ fn modulo<U: Rem<T, Output: Add<T, Output: Rem<T, Output = U::Output>>>, T: Copy
#[node_macro::node(category("Math: Arithmetic"))]
fn exponent<U: Pow<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f64, &f64, f32, &f32, f32, &f32, u32, &u32, u32, &u32)] base: U,
/// The base number that will be raised to the power.
#[implementations(f64, f32, u32)]
base: U,
/// The power to which the base number will be raised.
#[default(2.)]
#[implementations(f64, f64, &f64, &f64, f32, f32, &f32, &f32, u32, u32, &u32, &u32)]
#[implementations(f64, f32, u32)]
power: T,
) -> <U as num_traits::Pow<T>>::Output {
base.pow(power)
@ -155,9 +177,11 @@ fn exponent<U: Pow<T>, T>(
#[node_macro::node(category("Math: Arithmetic"))]
fn root<U: num_traits::float::Float>(
_: impl Ctx,
/// The number for which the nth root will be calculated.
#[default(2.)]
#[implementations(f64, f32)]
radicand: U,
/// The degree of the root to be calculated. Square root is 2, cube root is 3, and so on.
#[default(2.)]
#[implementations(f64, f32)]
degree: U,
@ -175,7 +199,10 @@ fn root<U: num_traits::float::Float>(
#[node_macro::node(category("Math: Arithmetic"))]
fn logarithm<U: num_traits::float::Float>(
_: impl Ctx,
#[implementations(f64, f32)] value: U,
/// The number for which the logarithm will be calculated.
#[implementations(f64, f32)]
value: U,
/// The base of the logarithm, such as 2 (binary), 10 (decimal), and e (natural logarithm).
#[default(2.)]
#[implementations(f64, f32)]
base: U,
@ -193,39 +220,83 @@ fn logarithm<U: num_traits::float::Float>(
/// The sine trigonometric function (sin) calculates the ratio of the angle's opposite side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn sine<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] theta: U, radians: bool) -> U {
fn sine<U: num_traits::float::Float>(
_: impl Ctx,
/// The given angle.
#[implementations(f64, f32)]
theta: U,
/// Whether the given angle should be interpreted as radians instead of degrees.
radians: bool,
) -> U {
if radians { theta.sin() } else { theta.to_radians().sin() }
}
/// The cosine trigonometric function (cos) calculates the ratio of the angle's adjacent side length to its hypotenuse length.
#[node_macro::node(category("Math: Trig"))]
fn cosine<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] theta: U, radians: bool) -> U {
fn cosine<U: num_traits::float::Float>(
_: impl Ctx,
/// The given angle.
#[implementations(f64, f32)]
theta: U,
/// Whether the given angle should be interpreted as radians instead of degrees.
radians: bool,
) -> U {
if radians { theta.cos() } else { theta.to_radians().cos() }
}
/// The tangent trigonometric function (tan) calculates the ratio of the angle's opposite side length to its adjacent side length.
#[node_macro::node(category("Math: Trig"))]
fn tangent<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] theta: U, radians: bool) -> U {
fn tangent<U: num_traits::float::Float>(
_: impl Ctx,
/// The given angle.
#[implementations(f64, f32)]
theta: U,
/// Whether the given angle should be interpreted as radians instead of degrees.
radians: bool,
) -> U {
if radians { theta.tan() } else { theta.to_radians().tan() }
}
/// The inverse sine trigonometric function (asin) calculates the angle whose sine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn sine_inverse<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U, radians: bool) -> U {
fn sine_inverse<U: num_traits::float::Float>(
_: impl Ctx,
/// The given value for which the angle will be calculated. Must be in the range [-1, 1] or else the result will be NaN.
#[implementations(f64, f32)]
value: U,
/// Whether the resulting angle should be given in as radians instead of degrees.
radians: bool,
) -> U {
if radians { value.asin() } else { value.asin().to_degrees() }
}
/// The inverse cosine trigonometric function (acos) calculates the angle whose cosine is the specified value.
#[node_macro::node(category("Math: Trig"))]
fn cosine_inverse<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U, radians: bool) -> U {
fn cosine_inverse<U: num_traits::float::Float>(
_: impl Ctx,
/// The given value for which the angle will be calculated. Must be in the range [-1, 1] or else the result will be NaN.
#[implementations(f64, f32)]
value: U,
/// Whether the resulting angle should be given in as radians instead of degrees.
radians: bool,
) -> U {
if radians { value.acos() } else { value.acos().to_degrees() }
}
/// The inverse tangent trigonometric function (atan or atan2, depending on input type) calculates:
/// atan: the angle whose tangent is the specified scalar number.
/// atan2: the angle of a ray from the origin to the specified coordinate.
///
/// The resulting angle is always in the range [0°, 180°] or, in radians, [-π/2, π/2].
#[node_macro::node(category("Math: Trig"))]
fn tangent_inverse<U: TangentInverse>(_: impl Ctx, #[implementations(f64, f32, DVec2)] value: U, radians: bool) -> U::Output {
fn tangent_inverse<U: TangentInverse>(
_: impl Ctx,
/// The given value for which the angle will be calculated.
#[implementations(f64, f32, DVec2)]
value: U,
/// Whether the resulting angle should be given in as radians instead of degrees.
radians: bool,
) -> U::Output {
value.atan(radians)
}
@ -257,10 +328,13 @@ impl TangentInverse for DVec2 {
fn random<U: num_traits::float::Float>(
_: impl Ctx,
_primary: (),
/// Seed to determine the unique variation of which number will be generated.
seed: u64,
/// The smaller end of the range within which the random number will be generated.
#[implementations(f64, f32)]
#[default(0.)]
min: U,
/// The larger end of the range within which the random number will be generated.
#[implementations(f64, f32)]
#[default(1.)]
max: U,
@ -294,37 +368,73 @@ fn to_f64<U: num_traits::int::PrimInt>(_: impl Ctx, #[implementations(u32, u64)]
/// The rounding function (round) maps an input value to its nearest whole number. Halfway values are rounded away from zero.
#[node_macro::node(category("Math: Numeric"))]
fn round<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
fn round<U: num_traits::float::Float>(
_: impl Ctx,
/// The number which will be rounded.
#[implementations(f64, f32)]
value: U,
) -> U {
value.round()
}
/// The floor function (floor) reduces an input value to its nearest larger whole number, unless the input number is already whole.
/// The floor function (floor) rounds down an input value to the nearest whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn floor<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
fn floor<U: num_traits::float::Float>(
_: impl Ctx,
/// The number which will be rounded down.
#[implementations(f64, f32)]
value: U,
) -> U {
value.floor()
}
/// The ceiling function (ceil) increases an input value to its nearest smaller whole number, unless the input number is already whole.
/// The ceiling function (ceil) rounds up an input value to the nearest whole number, unless the input number is already whole.
#[node_macro::node(category("Math: Numeric"))]
fn ceiling<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
fn ceiling<U: num_traits::float::Float>(
_: impl Ctx,
/// The number which will be rounded up.
#[implementations(f64, f32)]
value: U,
) -> U {
value.ceil()
}
/// The absolute value function (abs) removes the negative sign from an input value, if present.
#[node_macro::node(category("Math: Numeric"))]
fn absolute_value<U: num_traits::float::Float>(_: impl Ctx, #[implementations(f64, f32)] value: U) -> U {
fn absolute_value<U: num_traits::float::Float>(
_: impl Ctx,
/// The number which will be made positive.
#[implementations(f64, f32)]
value: U,
) -> U {
value.abs()
}
/// The minimum function (min) picks the smaller of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn min<T: std::cmp::PartialOrd>(_: impl Ctx, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] value: T, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] other_value: T) -> T {
fn min<T: std::cmp::PartialOrd>(
_: impl Ctx,
/// One of the two numbers, of which the lesser will be returned.
#[implementations(f64, f32, u32, &str)]
value: T,
/// The other of the two numbers, of which the lesser will be returned.
#[implementations(f64, f32, u32, &str)]
other_value: T,
) -> T {
if value < other_value { value } else { other_value }
}
/// The maximum function (max) picks the larger of two numbers.
#[node_macro::node(category("Math: Numeric"))]
fn max<T: std::cmp::PartialOrd>(_: impl Ctx, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] value: T, #[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] other_value: T) -> T {
fn max<T: std::cmp::PartialOrd>(
_: impl Ctx,
/// One of the two numbers, of which the greater will be returned.
#[implementations(f64, f32, u32, &str)]
value: T,
/// The other of the two numbers, of which the greater will be returned.
#[implementations(f64, f32, u32, &str)]
other_value: T,
) -> T {
if value > other_value { value } else { other_value }
}
@ -332,9 +442,15 @@ fn max<T: std::cmp::PartialOrd>(_: impl Ctx, #[implementations(f64, &f64, f32, &
#[node_macro::node(category("Math: Numeric"))]
fn clamp<T: std::cmp::PartialOrd>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] min: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, &str)] max: T,
/// The number to be clamped, which will be restricted to the range between the minimum and maximum values.
#[implementations(f64, f32, u32, &str)]
value: T,
/// The left (smaller) side of the range. The output will never be less than this number.
#[implementations(f64, f32, u32, &str)]
min: T,
/// The right (greater) side of the range. The output will never be greater than this number.
#[implementations(f64, f32, u32, &str)]
max: T,
) -> T {
let (min, max) = if min < max { (min, max) } else { (max, min) };
if value < min {
@ -350,8 +466,12 @@ fn clamp<T: std::cmp::PartialOrd>(
#[node_macro::node(category("Math: Logic"))]
fn equals<U: std::cmp::PartialEq<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] other_value: U,
/// One of the two numbers to compare for equality.
#[implementations(f64, f32, u32, DVec2, &str)]
value: T,
/// The other of the two numbers to compare for equality.
#[implementations(f64, f32, u32, DVec2, &str)]
other_value: U,
) -> bool {
other_value == value
}
@ -360,8 +480,12 @@ fn equals<U: std::cmp::PartialEq<T>, T>(
#[node_macro::node(category("Math: Logic"))]
fn not_equals<U: std::cmp::PartialEq<T>, T>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32, DVec2, &DVec2, &str)] other_value: U,
/// One of the two numbers to compare for inequality.
#[implementations(f64, f32, u32, DVec2, &str)]
value: T,
/// The other of the two numbers to compare for inequality.
#[implementations(f64, f32, u32, DVec2, &str)]
other_value: U,
) -> bool {
other_value != value
}
@ -371,8 +495,13 @@ fn not_equals<U: std::cmp::PartialEq<T>, T>(
#[node_macro::node(category("Math: Logic"))]
fn less_than<T: std::cmp::PartialOrd<T>>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] other_value: T,
/// The number on the left-hand side of the comparison.
#[implementations(f64, f32, u32)]
value: T,
/// The number on the right-hand side of the comparison.
#[implementations(f64, f32, u32)]
other_value: T,
/// Uses the less-than-or-equal operation (<=) instead of the less-than operation (<).
or_equal: bool,
) -> bool {
if or_equal { value <= other_value } else { value < other_value }
@ -383,8 +512,13 @@ fn less_than<T: std::cmp::PartialOrd<T>>(
#[node_macro::node(category("Math: Logic"))]
fn greater_than<T: std::cmp::PartialOrd<T>>(
_: impl Ctx,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] value: T,
#[implementations(f64, &f64, f32, &f32, u32, &u32)] other_value: T,
/// The number on the left-hand side of the comparison.
#[implementations(f64, f32, u32)]
value: T,
/// The number on the right-hand side of the comparison.
#[implementations(f64, f32, u32)]
other_value: T,
/// Uses the greater-than-or-equal operation (>=) instead of the greater-than operation (>).
or_equal: bool,
) -> bool {
if or_equal { value >= other_value } else { value > other_value }
@ -392,19 +526,35 @@ fn greater_than<T: std::cmp::PartialOrd<T>>(
/// The logical or operation (||) returns true if either of the two inputs are true, or false if both are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_or(_: impl Ctx, value: bool, other_value: bool) -> bool {
fn logical_or(
_: impl Ctx,
/// One of the two boolean values, either of which may be true for the node to output true.
value: bool,
/// The other of the two boolean values, either of which may be true for the node to output true.
other_value: bool,
) -> bool {
value || other_value
}
/// The logical and operation (&&) returns true if both of the two inputs are true, or false if any are false.
#[node_macro::node(category("Math: Logic"))]
fn logical_and(_: impl Ctx, value: bool, other_value: bool) -> bool {
fn logical_and(
_: impl Ctx,
/// One of the two boolean values, both of which must be true for the node to output true.
value: bool,
/// The other of the two boolean values, both of which must be true for the node to output true.
other_value: bool,
) -> bool {
value && other_value
}
/// The logical not operation (!) reverses true and false value of the input.
#[node_macro::node(category("Math: Logic"))]
fn logical_not(_: impl Ctx, input: bool) -> bool {
fn logical_not(
_: impl Ctx,
/// The boolean value to be reversed.
input: bool,
) -> bool {
!input
}

View file

@ -56,7 +56,7 @@ impl<P: Pixel + Alpha> Sample for BrushStampGenerator<P> {
}
#[node_macro::node(skip_impl)]
fn brush_stamp_generator(diameter: f64, color: Color, hardness: f64, flow: f64) -> BrushStampGenerator<Color> {
fn brush_stamp_generator(#[unit(" px")] diameter: f64, color: Color, hardness: f64, flow: f64) -> BrushStampGenerator<Color> {
// Diameter
let radius = diameter / 2.;