mirror of
https://github.com/GraphiteEditor/Graphite.git
synced 2025-07-07 15:55:00 +00:00
unified log and arc spiral into spiral node
This commit is contained in:
parent
0dbf3155c7
commit
917e79e53d
8 changed files with 188 additions and 171 deletions
|
@ -2150,6 +2150,7 @@ fn static_node_properties() -> NodeProperties {
|
|||
map.insert("math_properties".to_string(), Box::new(node_properties::math_properties));
|
||||
map.insert("rectangle_properties".to_string(), Box::new(node_properties::rectangle_properties));
|
||||
map.insert("grid_properties".to_string(), Box::new(node_properties::grid_properties));
|
||||
map.insert("spiral_properties".to_string(), Box::new(node_properties::spiral_properties));
|
||||
map.insert("sample_polyline_properties".to_string(), Box::new(node_properties::sample_polyline_properties));
|
||||
map.insert(
|
||||
"identity_properties".to_string(),
|
||||
|
|
|
@ -23,9 +23,9 @@ use graphene_std::raster_types::{CPU, GPU, RasterDataTable};
|
|||
use graphene_std::text::Font;
|
||||
use graphene_std::transform::{Footprint, ReferencePoint};
|
||||
use graphene_std::vector::VectorDataTable;
|
||||
use graphene_std::vector::misc::GridType;
|
||||
use graphene_std::vector::misc::{ArcType, MergeByDistanceAlgorithm};
|
||||
use graphene_std::vector::misc::{CentroidType, PointSpacingType};
|
||||
use graphene_std::vector::misc::{GridType, SpiralType};
|
||||
use graphene_std::vector::style::{Fill, FillChoice, FillType, GradientStops};
|
||||
use graphene_std::vector::style::{GradientType, PaintOrder, StrokeAlign, StrokeCap, StrokeJoin};
|
||||
use graphene_std::{GraphicGroupTable, NodeInputDecleration};
|
||||
|
@ -1227,6 +1227,73 @@ pub(crate) fn grid_properties(node_id: NodeId, context: &mut NodePropertiesConte
|
|||
widgets
|
||||
}
|
||||
|
||||
pub(crate) fn spiral_properties(node_id: NodeId, context: &mut NodePropertiesContext) -> Vec<LayoutGroup> {
|
||||
use graphene_std::vector::generator_nodes::spiral::*;
|
||||
|
||||
let document_node = match get_document_node(node_id, context) {
|
||||
Ok(document_node) => document_node,
|
||||
Err(err) => {
|
||||
log::error!("Could not get document node in exposure_properties: {err}");
|
||||
return Vec::new();
|
||||
}
|
||||
};
|
||||
let spiral_type = enum_choice::<SpiralType>()
|
||||
.for_socket(ParameterWidgetsInfo::from_index(document_node, node_id, SpiralTypeInput::INDEX, true, context))
|
||||
.property_row();
|
||||
|
||||
let mut widgets = vec![spiral_type];
|
||||
|
||||
let Some(spiral_type_input) = document_node.inputs.get(SpiralTypeInput::INDEX) else {
|
||||
log::warn!("A widget failed to be built because its node's input index is invalid.");
|
||||
return vec![];
|
||||
};
|
||||
if let Some(&TaggedValue::SpiralType(spiral_type)) = spiral_type_input.as_non_exposed_value() {
|
||||
match spiral_type {
|
||||
SpiralType::Archimedean => {
|
||||
let start_radius = LayoutGroup::Row {
|
||||
widgets: number_widget(ParameterWidgetsInfo::from_index(document_node, node_id, InnerRadiusInput::INDEX, true, context), NumberInput::default()),
|
||||
};
|
||||
|
||||
let tightness = LayoutGroup::Row {
|
||||
widgets: number_widget(ParameterWidgetsInfo::from_index(document_node, node_id, TightnessInput::INDEX, true, context), NumberInput::default()),
|
||||
};
|
||||
|
||||
widgets.extend([start_radius, tightness]);
|
||||
}
|
||||
SpiralType::Logarithmic => {
|
||||
let start_radius = LayoutGroup::Row {
|
||||
widgets: number_widget(
|
||||
ParameterWidgetsInfo::from_index(document_node, node_id, StartRadiusInput::INDEX, true, context),
|
||||
NumberInput::default().min(0.1),
|
||||
),
|
||||
};
|
||||
|
||||
let growth = LayoutGroup::Row {
|
||||
widgets: number_widget(
|
||||
ParameterWidgetsInfo::from_index(document_node, node_id, GrowthInput::INDEX, true, context),
|
||||
NumberInput::default().max(1.).min(0.1).increment_behavior(NumberInputIncrementBehavior::Add).increment_step(0.02),
|
||||
),
|
||||
};
|
||||
|
||||
widgets.extend([start_radius, growth]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let turns = number_widget(
|
||||
ParameterWidgetsInfo::from_index(document_node, node_id, TurnsInput::INDEX, true, context),
|
||||
NumberInput::default().min(0.1),
|
||||
);
|
||||
let angle_offset = number_widget(
|
||||
ParameterWidgetsInfo::from_index(document_node, node_id, AngleOffsetInput::INDEX, true, context),
|
||||
NumberInput::default().min(0.1).max(180.),
|
||||
);
|
||||
|
||||
widgets.extend([LayoutGroup::Row { widgets: turns }, LayoutGroup::Row { widgets: angle_offset }]);
|
||||
|
||||
widgets
|
||||
}
|
||||
|
||||
pub(crate) const SAMPLE_POLYLINE_TOOLTIP_SPACING: &str = "Use a point sampling density controlled by a distance between, or specific number of, points.";
|
||||
pub(crate) const SAMPLE_POLYLINE_TOOLTIP_SEPARATION: &str = "Distance between each instance (exact if 'Adaptive Spacing' is disabled, approximate if enabled).";
|
||||
pub(crate) const SAMPLE_POLYLINE_TOOLTIP_QUANTITY: &str = "Number of points to place along the path.";
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use super::*;
|
||||
use crate::utils::format_point;
|
||||
use crate::utils::{format_point, spiral_arc_length, spiral_point, spiral_tangent, split_cubic_bezier};
|
||||
use crate::{BezierHandles, consts::*};
|
||||
use glam::DVec2;
|
||||
use std::fmt::Write;
|
||||
|
@ -271,42 +271,7 @@ impl<PointId: crate::Identifier> Subpath<PointId> {
|
|||
)
|
||||
}
|
||||
|
||||
pub fn spiral_point(theta: f64, a: f64, b: f64) -> DVec2 {
|
||||
let r = a + b * theta;
|
||||
DVec2::new(r * theta.cos(), -r * theta.sin())
|
||||
}
|
||||
|
||||
fn spiral_tangent(theta: f64, a: f64, b: f64) -> DVec2 {
|
||||
let r = a + b * theta;
|
||||
let dx = b * theta.cos() - r * theta.sin();
|
||||
let dy = b * theta.sin() + r * theta.cos();
|
||||
DVec2::new(dx, -dy).normalize()
|
||||
}
|
||||
|
||||
pub fn wrap_angle(angle: f64) -> f64 {
|
||||
(angle + std::f64::consts::PI).rem_euclid(2.0 * std::f64::consts::PI) - std::f64::consts::PI
|
||||
}
|
||||
|
||||
fn spiral_arc_length(theta: f64, a: f64, b: f64) -> f64 {
|
||||
let r = a + b * theta;
|
||||
let sqrt_term = (r * r + b * b).sqrt();
|
||||
(r * sqrt_term + b * b * ((r + sqrt_term).ln())) / (2.0 * b)
|
||||
}
|
||||
|
||||
fn split_cubic_bezier(p0: DVec2, p1: DVec2, p2: DVec2, p3: DVec2, t: f64) -> (DVec2, DVec2, DVec2, DVec2) {
|
||||
let p01 = p0.lerp(p1, t);
|
||||
let p12 = p1.lerp(p2, t);
|
||||
let p23 = p2.lerp(p3, t);
|
||||
|
||||
let p012 = p01.lerp(p12, t);
|
||||
let p123 = p12.lerp(p23, t);
|
||||
|
||||
let p0123 = p012.lerp(p123, t); // final split point
|
||||
|
||||
(p0, p01, p012, p0123) // First half of the Bézier
|
||||
}
|
||||
|
||||
pub fn generate_equal_arc_bezier_spiral2(a: f64, b: f64, turns: f64, delta_theta: f64) -> Self {
|
||||
pub fn new_spiral(a: f64, b: f64, turns: f64, delta_theta: f64, spiral_type: SpiralType) -> Self {
|
||||
let mut manipulator_groups = Vec::new();
|
||||
let mut prev_in_handle = None;
|
||||
let theta_end = turns * std::f64::consts::TAU;
|
||||
|
@ -315,12 +280,12 @@ impl<PointId: crate::Identifier> Subpath<PointId> {
|
|||
while theta < theta_end {
|
||||
let theta_next = theta + delta_theta;
|
||||
|
||||
let p0 = Self::spiral_point(theta, a, b);
|
||||
let p3 = Self::spiral_point(theta_next, a, b);
|
||||
let t0 = Self::spiral_tangent(theta, a, b);
|
||||
let t1 = Self::spiral_tangent(theta_next, a, b);
|
||||
let p0 = spiral_point(theta, a, b, spiral_type);
|
||||
let p3 = spiral_point(theta_next, a, b, spiral_type);
|
||||
let t0 = spiral_tangent(theta, a, b, spiral_type);
|
||||
let t1 = spiral_tangent(theta_next, a, b, spiral_type);
|
||||
|
||||
let arc_len = Self::spiral_arc_length(theta_next, a, b) - Self::spiral_arc_length(theta, a, b);
|
||||
let arc_len = spiral_arc_length(theta, theta_next, a, b, spiral_type);
|
||||
let d = arc_len / 3.0;
|
||||
|
||||
let p1 = p0 + d * t0;
|
||||
|
@ -329,65 +294,7 @@ impl<PointId: crate::Identifier> Subpath<PointId> {
|
|||
let is_last_segment = theta_next >= theta_end;
|
||||
if is_last_segment {
|
||||
let t = (theta_end - theta) / (theta_next - theta); // t in [0, 1]
|
||||
let (trim_p0, trim_p1, trim_p2, trim_p3) = Self::split_cubic_bezier(p0, p1, p2, p3, t);
|
||||
|
||||
manipulator_groups.push(ManipulatorGroup::new(trim_p0, prev_in_handle, Some(trim_p1)));
|
||||
prev_in_handle = Some(trim_p2);
|
||||
manipulator_groups.push(ManipulatorGroup::new(trim_p3, prev_in_handle, None));
|
||||
break;
|
||||
} else {
|
||||
manipulator_groups.push(ManipulatorGroup::new(p0, prev_in_handle, Some(p1)));
|
||||
prev_in_handle = Some(p2);
|
||||
}
|
||||
|
||||
theta = theta_next;
|
||||
}
|
||||
|
||||
Self::new(manipulator_groups, false)
|
||||
}
|
||||
|
||||
pub fn log_spiral_point(theta: f64, a: f64, b: f64) -> DVec2 {
|
||||
let r = a * (b * theta).exp(); // a * e^(bθ)
|
||||
DVec2::new(r * theta.cos(), -r * theta.sin())
|
||||
}
|
||||
|
||||
pub fn log_spiral_arc_length(theta_start: f64, theta_end: f64, a: f64, b: f64) -> f64 {
|
||||
let factor = (1. + b * b).sqrt();
|
||||
(a / b) * factor * ((b * theta_end).exp() - (b * theta_start).exp())
|
||||
}
|
||||
|
||||
pub fn log_spiral_tangent(theta: f64, a: f64, b: f64) -> DVec2 {
|
||||
let r = a * (b * theta).exp();
|
||||
let dx = r * (b * theta.cos() - theta.sin());
|
||||
let dy = r * (b * theta.sin() + theta.cos());
|
||||
|
||||
DVec2::new(dx, -dy).normalize()
|
||||
}
|
||||
|
||||
pub fn generate_logarithmic_spiral(a: f64, b: f64, turns: f64, delta_theta: f64) -> Self {
|
||||
let mut manipulator_groups = Vec::new();
|
||||
let mut prev_in_handle = None;
|
||||
let theta_end = turns * std::f64::consts::TAU;
|
||||
|
||||
let mut theta = 0.0;
|
||||
while theta < theta_end {
|
||||
let theta_next = theta + delta_theta;
|
||||
|
||||
let p0 = Self::log_spiral_point(theta, a, b);
|
||||
let p3 = Self::log_spiral_point(theta_next, a, b);
|
||||
let t0 = Self::log_spiral_tangent(theta, a, b);
|
||||
let t1 = Self::log_spiral_tangent(theta_next, a, b);
|
||||
|
||||
let arc_len = Self::log_spiral_arc_length(theta, theta_next, a, b);
|
||||
let d = arc_len / 3.0;
|
||||
|
||||
let p1 = p0 + d * t0;
|
||||
let p2 = p3 - d * t1;
|
||||
|
||||
let is_last_segment = theta_next >= theta_end;
|
||||
if is_last_segment {
|
||||
let t = (theta_end - theta) / (theta_next - theta); // t in [0, 1]
|
||||
let (trim_p0, trim_p1, trim_p2, trim_p3) = Self::split_cubic_bezier(p0, p1, p2, p3, t);
|
||||
let (trim_p0, trim_p1, trim_p2, trim_p3) = split_cubic_bezier(p0, p1, p2, p3, t);
|
||||
|
||||
manipulator_groups.push(ManipulatorGroup::new(trim_p0, prev_in_handle, Some(trim_p1)));
|
||||
prev_in_handle = Some(trim_p2);
|
||||
|
|
|
@ -144,3 +144,9 @@ pub enum ArcType {
|
|||
Closed,
|
||||
PieSlice,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
|
||||
pub enum SpiralType {
|
||||
Archimedean,
|
||||
Logarithmic,
|
||||
}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use crate::consts::{MAX_ABSOLUTE_DIFFERENCE, STRICT_MAX_ABSOLUTE_DIFFERENCE};
|
||||
use crate::{ManipulatorGroup, Subpath};
|
||||
use crate::{ManipulatorGroup, SpiralType, Subpath};
|
||||
use glam::{BVec2, DMat2, DVec2};
|
||||
use std::fmt::Write;
|
||||
|
||||
|
@ -302,47 +302,91 @@ pub fn format_point(svg: &mut String, prefix: &str, x: f64, y: f64) -> std::fmt:
|
|||
Ok(())
|
||||
}
|
||||
|
||||
pub fn spiral_point(theta: f64, a: f64, b: f64) -> DVec2 {
|
||||
/// Returns a point on the given spiral type at angle `theta`.
|
||||
pub fn spiral_point(theta: f64, a: f64, b: f64, spiral_type: SpiralType) -> DVec2 {
|
||||
match spiral_type {
|
||||
SpiralType::Archimedean => archimedean_spiral_point(theta, a, b),
|
||||
SpiralType::Logarithmic => log_spiral_point(theta, a, b),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the tangent direction at angle `theta` for the given spiral type.
|
||||
pub fn spiral_tangent(theta: f64, a: f64, b: f64, spiral_type: SpiralType) -> DVec2 {
|
||||
match spiral_type {
|
||||
SpiralType::Archimedean => archimedean_spiral_tangent(theta, a, b),
|
||||
SpiralType::Logarithmic => log_spiral_tangent(theta, a, b),
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes arc length between two angles for the given spiral type.
|
||||
pub fn spiral_arc_length(theta_start: f64, theta_end: f64, a: f64, b: f64, spiral_type: SpiralType) -> f64 {
|
||||
match spiral_type {
|
||||
SpiralType::Archimedean => archimedean_spiral_arc_length(theta_start, theta_end, a, b),
|
||||
SpiralType::Logarithmic => log_spiral_arc_length(theta_start, theta_end, a, b),
|
||||
}
|
||||
}
|
||||
|
||||
/// Splits a cubic Bézier curve at parameter `t`, returning the first half.
|
||||
pub fn split_cubic_bezier(p0: DVec2, p1: DVec2, p2: DVec2, p3: DVec2, t: f64) -> (DVec2, DVec2, DVec2, DVec2) {
|
||||
let p01 = p0.lerp(p1, t);
|
||||
let p12 = p1.lerp(p2, t);
|
||||
let p23 = p2.lerp(p3, t);
|
||||
|
||||
let p012 = p01.lerp(p12, t);
|
||||
let p123 = p12.lerp(p23, t);
|
||||
|
||||
// final split point
|
||||
let p0123 = p012.lerp(p123, t);
|
||||
|
||||
// First half of the Bézier
|
||||
(p0, p01, p012, p0123)
|
||||
}
|
||||
|
||||
/// Returns a point on a logarithmic spiral at angle `theta`.
|
||||
pub fn log_spiral_point(theta: f64, a: f64, b: f64) -> DVec2 {
|
||||
let r = a * (b * theta).exp(); // a * e^(bθ)
|
||||
DVec2::new(r * theta.cos(), -r * theta.sin())
|
||||
}
|
||||
|
||||
/// Computes arc length along a logarithmic spiral between two angles.
|
||||
pub fn log_spiral_arc_length(theta_start: f64, theta_end: f64, a: f64, b: f64) -> f64 {
|
||||
let factor = (1. + b * b).sqrt();
|
||||
(a / b) * factor * ((b * theta_end).exp() - (b * theta_start).exp())
|
||||
}
|
||||
|
||||
/// Returns the tangent direction of a logarithmic spiral at angle `theta`.
|
||||
pub fn log_spiral_tangent(theta: f64, a: f64, b: f64) -> DVec2 {
|
||||
let r = a * (b * theta).exp();
|
||||
let dx = r * (b * theta.cos() - theta.sin());
|
||||
let dy = r * (b * theta.sin() + theta.cos());
|
||||
|
||||
DVec2::new(dx, -dy).normalize()
|
||||
}
|
||||
|
||||
/// Returns a point on an Archimedean spiral at angle `theta`.
|
||||
pub fn archimedean_spiral_point(theta: f64, a: f64, b: f64) -> DVec2 {
|
||||
let r = a + b * theta;
|
||||
DVec2::new(r * theta.cos(), -r * theta.sin())
|
||||
}
|
||||
|
||||
pub fn spiral_tangent(theta: f64, b: f64) -> DVec2 {
|
||||
let dx = b * (theta.cos() - theta * theta.sin());
|
||||
let dy = b * (theta.sin() + theta * theta.cos());
|
||||
DVec2::new(dx, dy).normalize()
|
||||
/// Returns the tangent direction of an Archimedean spiral at angle `theta`.
|
||||
pub fn archimedean_spiral_tangent(theta: f64, a: f64, b: f64) -> DVec2 {
|
||||
let r = a + b * theta;
|
||||
let dx = b * theta.cos() - r * theta.sin();
|
||||
let dy = b * theta.sin() + r * theta.cos();
|
||||
DVec2::new(dx, -dy).normalize()
|
||||
}
|
||||
|
||||
pub fn wrap_angle(angle: f64) -> f64 {
|
||||
(angle + std::f64::consts::PI).rem_euclid(2.0 * std::f64::consts::PI) - std::f64::consts::PI
|
||||
/// Computes arc length along an Archimedean spiral between two angles.
|
||||
pub fn archimedean_spiral_arc_length(theta_start: f64, theta_end: f64, a: f64, b: f64) -> f64 {
|
||||
archimedean_spiral_arc_length_origin(theta_end, a, b) - archimedean_spiral_arc_length_origin(theta_start, a, b)
|
||||
}
|
||||
|
||||
pub fn bezier_point(p0: DVec2, p1: DVec2, p2: DVec2, p3: DVec2, t: f64) -> DVec2 {
|
||||
let u = 1.0 - t;
|
||||
p0 * u * u * u + p1 * 3.0 * u * u * t + p2 * 3.0 * u * t * t + p3 * t * t * t
|
||||
}
|
||||
|
||||
pub fn bezier_derivative(p0: DVec2, p1: DVec2, p2: DVec2, p3: DVec2, t: f64) -> DVec2 {
|
||||
let u = 1.0 - t;
|
||||
-3.0 * u * u * p0 + 3.0 * (u * u - 2.0 * u * t) * p1 + 3.0 * (2.0 * u * t - t * t) * p2 + 3.0 * t * t * p3
|
||||
}
|
||||
|
||||
pub fn esq_for_d(p0: DVec2, t0: DVec2, p3: DVec2, t1: DVec2, theta0: f64, theta1: f64, d: f64, a: f64, b: f64, samples: usize) -> f64 {
|
||||
let p1 = p0 + d * t0;
|
||||
let p2 = p3 - d * t1;
|
||||
let mut total = 0.0;
|
||||
for i in 1..samples {
|
||||
let t = i as f64 / samples as f64;
|
||||
let bez = bezier_point(p0, p1, p2, p3, t);
|
||||
let bez_d = bezier_derivative(p0, p1, p2, p3, t);
|
||||
let bez_angle = bez_d.y.atan2(bez_d.x);
|
||||
|
||||
let theta = theta0 + (theta1 - theta0) * t;
|
||||
let spiral_angle = theta;
|
||||
let diff = wrap_angle(bez_angle - spiral_angle);
|
||||
total += diff * diff * bez_d.length();
|
||||
}
|
||||
total / samples as f64
|
||||
/// Computes arc length from origin to a point on Archimedean spiral at angle `theta`.
|
||||
pub fn archimedean_spiral_arc_length_origin(theta: f64, a: f64, b: f64) -> f64 {
|
||||
let r = a + b * theta;
|
||||
let sqrt_term = (r * r + b * b).sqrt();
|
||||
(r * sqrt_term + b * b * ((r + sqrt_term).ln())) / (2.0 * b)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
use std::f64::consts::{FRAC_PI_4, FRAC_PI_8, TAU};
|
||||
|
||||
use super::misc::{ArcType, AsU64, GridType};
|
||||
use super::{PointId, SegmentId, StrokeId};
|
||||
use crate::Ctx;
|
||||
use crate::registry::types::{Angle, PixelSize};
|
||||
use crate::vector::misc::SpiralType;
|
||||
use crate::vector::{HandleId, VectorData, VectorDataTable};
|
||||
use bezier_rs::Subpath;
|
||||
use glam::DVec2;
|
||||
|
@ -67,45 +66,29 @@ fn arc(
|
|||
)))
|
||||
}
|
||||
|
||||
#[node_macro::node(category("Vector: Shape"))]
|
||||
fn archimedean_spiral(
|
||||
#[node_macro::node(category("Vector: Shape"), properties("spiral_properties"))]
|
||||
fn spiral(
|
||||
_: impl Ctx,
|
||||
_primary: (),
|
||||
spiral_type: SpiralType,
|
||||
#[default(0.5)] start_radius: f64,
|
||||
#[default(1.)] inner_radius: f64,
|
||||
#[default(0.2)] growth: f64,
|
||||
#[default(1.)] tightness: f64,
|
||||
#[default(6)]
|
||||
#[hard_min(1.)]
|
||||
turns: f64,
|
||||
#[default(45.)]
|
||||
#[range((1., 180.))]
|
||||
angle_offset: f64,
|
||||
#[default(6)] turns: f64,
|
||||
#[default(45.)] angle_offset: f64,
|
||||
) -> VectorDataTable {
|
||||
VectorDataTable::new(VectorData::from_subpath(Subpath::generate_equal_arc_bezier_spiral2(
|
||||
inner_radius,
|
||||
tightness,
|
||||
turns,
|
||||
angle_offset.to_radians(),
|
||||
)))
|
||||
}
|
||||
let (a, b) = match spiral_type {
|
||||
SpiralType::Archimedean => (inner_radius, tightness),
|
||||
SpiralType::Logarithmic => (start_radius, growth),
|
||||
};
|
||||
|
||||
#[node_macro::node(category("Vector: Shape"))]
|
||||
fn logarithmic_spiral(
|
||||
_: impl Ctx,
|
||||
_primary: (),
|
||||
#[range((0.1, 1.))]
|
||||
#[default(0.5)]
|
||||
start_radius: f64,
|
||||
#[range((0.1, 1.))]
|
||||
#[default(0.2)]
|
||||
growth: f64,
|
||||
#[default(3)]
|
||||
#[hard_min(0.5)]
|
||||
turns: f64,
|
||||
#[default(45.)]
|
||||
#[range((1., 180.))]
|
||||
angle_offset: f64,
|
||||
) -> VectorDataTable {
|
||||
VectorDataTable::new(VectorData::from_subpath(Subpath::generate_logarithmic_spiral(start_radius, growth, turns, angle_offset.to_radians())))
|
||||
let spiral_type = match spiral_type {
|
||||
SpiralType::Archimedean => bezier_rs::SpiralType::Archimedean,
|
||||
SpiralType::Logarithmic => bezier_rs::SpiralType::Logarithmic,
|
||||
};
|
||||
|
||||
VectorDataTable::new(VectorData::from_subpath(Subpath::new_spiral(a, b, turns, angle_offset.to_radians(), spiral_type)))
|
||||
}
|
||||
|
||||
#[node_macro::node(category("Vector: Shape"))]
|
||||
|
|
|
@ -96,3 +96,11 @@ pub fn point_to_dvec2(point: Point) -> DVec2 {
|
|||
pub fn dvec2_to_point(value: DVec2) -> Point {
|
||||
Point { x: value.x, y: value.y }
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, Clone, Copy, PartialEq, Eq, serde::Serialize, serde::Deserialize, Hash, DynAny, specta::Type, node_macro::ChoiceType)]
|
||||
#[widget(Dropdown)]
|
||||
pub enum SpiralType {
|
||||
#[default]
|
||||
Archimedean,
|
||||
Logarithmic,
|
||||
}
|
||||
|
|
|
@ -236,6 +236,7 @@ tagged_value! {
|
|||
ArcType(graphene_core::vector::misc::ArcType),
|
||||
MergeByDistanceAlgorithm(graphene_core::vector::misc::MergeByDistanceAlgorithm),
|
||||
PointSpacingType(graphene_core::vector::misc::PointSpacingType),
|
||||
SpiralType(graphene_core::vector::misc::SpiralType),
|
||||
#[serde(alias = "LineCap")]
|
||||
StrokeCap(graphene_core::vector::style::StrokeCap),
|
||||
#[serde(alias = "LineJoin")]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue