mirror of
https://github.com/GraphiteEditor/Graphite.git
synced 2025-07-07 15:55:00 +00:00
Bezier-rs: Add method to check subpath insideness (#2183)
* add function to calculate if a subpath is inside polygon * make is_subpath_inside_polygon() flexible * obtimize is_subpath_inside_polygon function * move is_inside_subpath function to Subpath struct method * add interactive demo for subpath insideness * Code review --------- Co-authored-by: Keavon Chambers <keavon@keavon.com>
This commit is contained in:
parent
51d1c4eeac
commit
bf6ffbddeb
4 changed files with 125 additions and 5 deletions
|
@ -1,6 +1,6 @@
|
|||
use super::*;
|
||||
use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
|
||||
use crate::utils::{compute_circular_subpath_details, line_intersection, SubpathTValue};
|
||||
use crate::utils::{compute_circular_subpath_details, is_rectangle_inside_other, line_intersection, SubpathTValue};
|
||||
use crate::TValue;
|
||||
|
||||
use glam::{DAffine2, DMat2, DVec2};
|
||||
|
@ -237,6 +237,47 @@ impl<PointId: crate::Identifier> Subpath<PointId> {
|
|||
false
|
||||
}
|
||||
|
||||
/// Returns `true` if this subpath is completely inside the `other` subpath.
|
||||
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/inside-other/solo" title="Inside Other Subpath Demo"></iframe>
|
||||
pub fn is_inside_subpath(&self, other: &Subpath<PointId>, error: Option<f64>, minimum_separation: Option<f64>) -> bool {
|
||||
// Eliminate any possibility of one being inside the other, if either of them is empty
|
||||
if self.is_empty() || other.is_empty() {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Safe to unwrap because the subpath is not empty
|
||||
let inner_bbox = self.bounding_box().unwrap();
|
||||
let outer_bbox = other.bounding_box().unwrap();
|
||||
|
||||
// Eliminate this subpath if its bounding box is not completely inside the other subpath's bounding box.
|
||||
// Reasoning:
|
||||
// If the (min x, min y) of the inner subpath is less than or equal to the (min x, min y) of the outer subpath,
|
||||
// or if the (min x, min y) of the inner subpath is greater than or equal to the (max x, max y) of the outer subpath,
|
||||
// then the inner subpath is intersecting with or outside the outer subpath. The same logic applies for (max x, max y).
|
||||
if !is_rectangle_inside_other(inner_bbox, outer_bbox) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Eliminate this subpath if any of its anchors are outside the other subpath.
|
||||
for anchors in self.anchors() {
|
||||
if !other.contains_point(anchors) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Eliminate this subpath if it intersects with the other subpath.
|
||||
if !self.subpath_intersections(other, error, minimum_separation).is_empty() {
|
||||
return false;
|
||||
}
|
||||
|
||||
// At this point:
|
||||
// (1) This subpath's bounding box is inside the other subpath's bounding box,
|
||||
// (2) Its anchors are inside the other subpath, and
|
||||
// (3) It is not intersecting with the other subpath.
|
||||
// Hence, this subpath is completely inside the given other subpath.
|
||||
true
|
||||
}
|
||||
|
||||
/// Returns a normalized unit vector representing the tangent on the subpath based on the parametric `t`-value provided.
|
||||
/// <iframe frameBorder="0" width="100%" height="350px" src="https://graphite.rs/libraries/bezier-rs#subpath/tangent/solo" title="Tangent Demo"></iframe>
|
||||
pub fn tangent(&self, t: SubpathTValue) -> DVec2 {
|
||||
|
@ -267,7 +308,7 @@ impl<PointId: crate::Identifier> Subpath<PointId> {
|
|||
})
|
||||
}
|
||||
|
||||
/// Return the min and max corners that represent the bounding box of the subpath.
|
||||
/// Return the min and max corners that represent the bounding box of the subpath. Return `None` if the subpath is empty.
|
||||
/// <iframe frameBorder="0" width="100%" height="300px" src="https://graphite.rs/libraries/bezier-rs#subpath/bounding-box/solo" title="Bounding Box Demo"></iframe>
|
||||
pub fn bounding_box(&self) -> Option<[DVec2; 2]> {
|
||||
self.iter().map(|bezier| bezier.bounding_box()).reduce(|bbox1, bbox2| [bbox1[0].min(bbox2[0]), bbox1[1].max(bbox2[1])])
|
||||
|
@ -876,6 +917,28 @@ mod tests {
|
|||
|
||||
// TODO: add more intersection tests
|
||||
|
||||
#[test]
|
||||
fn is_inside_subpath() {
|
||||
let boundary_polygon = [DVec2::new(100., 100.), DVec2::new(500., 100.), DVec2::new(500., 500.), DVec2::new(100., 500.)].to_vec();
|
||||
let boundary_polygon = Subpath::from_anchors_linear(boundary_polygon, true);
|
||||
|
||||
let curve = Bezier::from_quadratic_dvec2(DVec2::new(189., 289.), DVec2::new(9., 286.), DVec2::new(45., 410.));
|
||||
let curve_intersecting = Subpath::<EmptyId>::from_bezier(&curve);
|
||||
assert_eq!(curve_intersecting.is_inside_subpath(&boundary_polygon, None, None), false);
|
||||
|
||||
let curve = Bezier::from_quadratic_dvec2(DVec2::new(115., 37.), DVec2::new(51.4, 91.8), DVec2::new(76.5, 242.));
|
||||
let curve_outside = Subpath::<EmptyId>::from_bezier(&curve);
|
||||
assert_eq!(curve_outside.is_inside_subpath(&boundary_polygon, None, None), false);
|
||||
|
||||
let curve = Bezier::from_cubic_dvec2(DVec2::new(210.1, 133.5), DVec2::new(150.2, 436.9), DVec2::new(436., 285.), DVec2::new(247.6, 240.7));
|
||||
let curve_inside = Subpath::<EmptyId>::from_bezier(&curve);
|
||||
assert_eq!(curve_inside.is_inside_subpath(&boundary_polygon, None, None), true);
|
||||
|
||||
let line = Bezier::from_linear_dvec2(DVec2::new(101., 101.5), DVec2::new(150.2, 499.));
|
||||
let line_inside = Subpath::<EmptyId>::from_bezier(&line);
|
||||
assert_eq!(line_inside.is_inside_subpath(&boundary_polygon, None, None), true);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn round_join_counter_clockwise_rotation() {
|
||||
// Test case where the round join is drawn in the counter clockwise direction between two consecutive offsets
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use crate::consts::{MAX_ABSOLUTE_DIFFERENCE, STRICT_MAX_ABSOLUTE_DIFFERENCE};
|
||||
use crate::ManipulatorGroup;
|
||||
use crate::{ManipulatorGroup, Subpath};
|
||||
|
||||
use glam::{BVec2, DMat2, DVec2};
|
||||
|
||||
|
@ -171,7 +171,7 @@ pub fn solve_cubic(a: f64, b: f64, c: f64, d: f64) -> [Option<f64>; 3] {
|
|||
}
|
||||
}
|
||||
|
||||
/// Determine if two rectangles have any overlap. The rectangles are represented by a pair of coordinates that designate the top left and bottom right corners (in a graphical coordinate system).
|
||||
/// Determines if two rectangles have any overlap. The rectangles are represented by a pair of coordinates that designate the top left and bottom right corners (in a graphical coordinate system).
|
||||
pub fn do_rectangles_overlap(rectangle1: [DVec2; 2], rectangle2: [DVec2; 2]) -> bool {
|
||||
let [bottom_left1, top_right1] = rectangle1;
|
||||
let [bottom_left2, top_right2] = rectangle2;
|
||||
|
@ -179,6 +179,17 @@ pub fn do_rectangles_overlap(rectangle1: [DVec2; 2], rectangle2: [DVec2; 2]) ->
|
|||
top_right1.x >= bottom_left2.x && top_right2.x >= bottom_left1.x && top_right2.y >= bottom_left1.y && top_right1.y >= bottom_left2.y
|
||||
}
|
||||
|
||||
/// Determines if a point is completely inside a rectangle, which is represented as a pair of coordinates [top-left, bottom-right].
|
||||
pub fn is_point_inside_rectangle(rect: [DVec2; 2], point: DVec2) -> bool {
|
||||
let [top_left, bottom_right] = rect;
|
||||
point.x > top_left.x && point.x < bottom_right.x && point.y > top_left.y && point.y < bottom_right.y
|
||||
}
|
||||
|
||||
/// Determines if the inner rectangle is completely inside the outer rectangle. The rectangles are represented as pairs of coordinates [top-left, bottom-right].
|
||||
pub fn is_rectangle_inside_other(inner: [DVec2; 2], outer: [DVec2; 2]) -> bool {
|
||||
is_point_inside_rectangle(outer, inner[0]) && is_point_inside_rectangle(outer, inner[1])
|
||||
}
|
||||
|
||||
/// Returns the intersection of two lines. The lines are given by a point on the line and its slope (represented by a vector).
|
||||
pub fn line_intersection(point1: DVec2, point1_slope_vector: DVec2, point2: DVec2, point2_slope_vector: DVec2) -> DVec2 {
|
||||
assert!(point1_slope_vector.normalize() != point2_slope_vector.normalize());
|
||||
|
@ -286,7 +297,7 @@ pub fn compute_circular_subpath_details<PointId: crate::Identifier>(left: DVec2,
|
|||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::consts::MAX_ABSOLUTE_DIFFERENCE;
|
||||
use crate::{consts::MAX_ABSOLUTE_DIFFERENCE, Bezier, EmptyId};
|
||||
|
||||
/// Compare vectors of `f64`s with a provided max absolute value difference.
|
||||
fn f64_compare_vector(a: Vec<f64>, b: Vec<f64>, max_abs_diff: f64) -> bool {
|
||||
|
@ -352,6 +363,16 @@ mod tests {
|
|||
assert!(!do_rectangles_overlap([DVec2::new(0., 0.), DVec2::new(10., 10.)], [DVec2::new(0., 20.), DVec2::new(20., 30.)]));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_is_rectangle_inside_other() {
|
||||
assert!(!is_rectangle_inside_other([DVec2::new(10., 10.), DVec2::new(50., 50.)], [DVec2::new(10., 10.), DVec2::new(50., 50.)]));
|
||||
assert!(is_rectangle_inside_other(
|
||||
[DVec2::new(10.01, 10.01), DVec2::new(49., 49.)],
|
||||
[DVec2::new(10., 10.), DVec2::new(50., 50.)]
|
||||
));
|
||||
assert!(!is_rectangle_inside_other([DVec2::new(5., 5.), DVec2::new(50., 9.99)], [DVec2::new(10., 10.), DVec2::new(50., 50.)]));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_find_intersection() {
|
||||
// y = 2x + 10
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue