Graphite/node-graph/node-macro/src/validation.rs
James Lindsay fc0cf604df
Update some dependencies (#2134)
* Update some dependencies

* Update to action v2

* Fix for v2
2024-12-12 18:28:49 +00:00

109 lines
3.6 KiB
Rust

use crate::parsing::{Implementation, ParsedField, ParsedNodeFn};
use proc_macro_error2::emit_error;
use quote::quote;
use syn::{spanned::Spanned, GenericParam, Type};
pub fn validate_node_fn(parsed: &ParsedNodeFn) -> syn::Result<()> {
let validators: &[fn(&ParsedNodeFn)] = &[
// Add more validators here as needed
validate_implementations_for_generics,
validate_primary_input_expose,
];
for validator in validators {
validator(parsed);
}
Ok(())
}
fn validate_primary_input_expose(parsed: &ParsedNodeFn) {
if let Some(ParsedField::Regular { exposed: true, pat_ident, .. }) = parsed.fields.first() {
emit_error!(
pat_ident.span(),
"Unnecessary #[expose] attribute on primary input `{}`. Primary inputs are always exposed.",
pat_ident.ident;
help = "You can safely remove the #[expose] attribute from this field.";
note = "The function's second argument, `{}`, is the node's primary input and it's always exposed by default", pat_ident.ident
);
}
}
fn validate_implementations_for_generics(parsed: &ParsedNodeFn) {
let has_skip_impl = parsed.attributes.skip_impl;
if !has_skip_impl && !parsed.fn_generics.is_empty() {
for field in &parsed.fields {
match field {
ParsedField::Regular { ty, implementations, pat_ident, .. } => {
if contains_generic_param(ty, &parsed.fn_generics) && implementations.is_empty() {
emit_error!(
ty.span(),
"Generic type `{}` in field `{}` requires an #[implementations(...)] attribute",
quote!(#ty),
pat_ident.ident;
help = "Add #[implementations(ConcreteType1, ConcreteType2)] to field '{}'", pat_ident.ident;
help = "Or use #[skip_impl] if you want to manually implement the node"
);
}
}
ParsedField::Node {
input_type,
output_type,
implementations,
pat_ident,
..
} => {
if (contains_generic_param(input_type, &parsed.fn_generics) || contains_generic_param(output_type, &parsed.fn_generics)) && implementations.is_empty() {
emit_error!(
pat_ident.span(),
"Generic types in Node field `{}` require an #[implementations(...)] attribute",
pat_ident.ident;
help = "Add #[implementations(InputType1 -> OutputType1, InputType2 -> OutputType2)] to field '{}'", pat_ident.ident;
help = "Or use #[skip_impl] if you want to manually implement the node"
);
}
// Additional check for Node implementations
for impl_ in implementations {
validate_node_implementation(impl_, input_type, output_type, &parsed.fn_generics);
}
}
}
}
}
}
fn validate_node_implementation(impl_: &Implementation, input_type: &Type, output_type: &Type, fn_generics: &[GenericParam]) {
if contains_generic_param(&impl_.input, fn_generics) || contains_generic_param(&impl_.output, fn_generics) {
emit_error!(
impl_.input.span(),
"Implementation types `{}` and `{}` must be concrete, not generic",
quote!(#input_type), quote!(#output_type);
help = "Replace generic types with concrete types in the implementation"
);
}
}
fn contains_generic_param(ty: &Type, fn_generics: &[GenericParam]) -> bool {
struct GenericParamChecker<'a> {
fn_generics: &'a [GenericParam],
found: bool,
}
impl<'a> syn::visit::Visit<'a> for GenericParamChecker<'a> {
fn visit_ident(&mut self, ident: &'a syn::Ident) {
if self
.fn_generics
.iter()
.any(|param| if let GenericParam::Type(type_param) = param { type_param.ident == *ident } else { false })
{
self.found = true;
}
}
}
let mut checker = GenericParamChecker { fn_generics, found: false };
syn::visit::visit_type(&mut checker, ty);
checker.found
}