//! This module takes care of lexing python source text. //! //! This means source code is translated into separate tokens. pub use super::token::{StringKind, Tok}; use crate::ast::Location; use crate::error::{LexicalError, LexicalErrorType}; use num_bigint::BigInt; use num_traits::identities::Zero; use num_traits::Num; use std::char; use std::cmp::Ordering; use std::ops::Index; use std::slice::SliceIndex; use std::str::FromStr; use unic_emoji_char::is_emoji_presentation; use unic_ucd_ident::{is_xid_continue, is_xid_start}; #[derive(Clone, Copy, PartialEq, Debug, Default)] struct IndentationLevel { tabs: usize, spaces: usize, } impl IndentationLevel { fn compare_strict( &self, other: &IndentationLevel, location: Location, ) -> Result { // We only know for sure that we're smaller or bigger if tabs // and spaces both differ in the same direction. Otherwise we're // dependent on the size of tabs. match self.tabs.cmp(&other.tabs) { Ordering::Less => { if self.spaces <= other.spaces { Ok(Ordering::Less) } else { Err(LexicalError { location, error: LexicalErrorType::TabError, }) } } Ordering::Greater => { if self.spaces >= other.spaces { Ok(Ordering::Greater) } else { Err(LexicalError { location, error: LexicalErrorType::TabError, }) } } Ordering::Equal => Ok(self.spaces.cmp(&other.spaces)), } } } #[derive(Debug)] struct Indentations { indent_stack: Vec, } impl Indentations { fn is_empty(&self) -> bool { self.indent_stack.len() == 1 } fn push(&mut self, indent: IndentationLevel) { self.indent_stack.push(indent); } fn pop(&mut self) -> Option { if self.is_empty() { return None; } self.indent_stack.pop() } fn current(&self) -> &IndentationLevel { self.indent_stack .last() .expect("Indentations must have at least one level") } } impl Default for Indentations { fn default() -> Self { Self { indent_stack: vec![IndentationLevel::default()], } } } struct CharWindow, const N: usize> { source: T, window: [Option; N], } impl CharWindow where T: Iterator, { fn new(source: T) -> Self { Self { source, window: [None; N], } } fn slide(&mut self) -> Option { self.window.rotate_left(1); let next = self.source.next(); *self.window.last_mut().expect("never empty") = next; next } fn change_first(&mut self, ch: char) { *self.window.first_mut().expect("never empty") = Some(ch); } } impl Index for CharWindow where T: Iterator, Idx: SliceIndex<[Option]>, { type Output = Idx::Output; fn index(&self, index: Idx) -> &Self::Output { &self.window[index] } } pub struct Lexer> { window: CharWindow, at_begin_of_line: bool, nesting: usize, // Amount of parenthesis indentations: Indentations, pending: Vec, location: Location, } // generated in build.rs, in gen_phf() pub static KEYWORDS: phf::Map<&'static str, Tok> = include!(concat!(env!("OUT_DIR"), "/keywords.rs")); pub type Spanned = (Location, Tok, Location); pub type LexResult = Result; #[inline] pub fn make_tokenizer(source: &str) -> impl Iterator + '_ { make_tokenizer_located(source, Location::default()) } pub fn make_tokenizer_located( source: &str, start_location: Location, ) -> impl Iterator + '_ { let nlh = NewlineHandler::new(source.chars()); Lexer::new(nlh, start_location) } // The newline handler is an iterator which collapses different newline // types into \n always. pub struct NewlineHandler> { window: CharWindow, } impl NewlineHandler where T: Iterator, { pub fn new(source: T) -> Self { let mut nlh = NewlineHandler { window: CharWindow::new(source), }; nlh.shift(); nlh.shift(); nlh } fn shift(&mut self) -> Option { let result = self.window[0]; self.window.slide(); result } } impl Iterator for NewlineHandler where T: Iterator, { type Item = char; fn next(&mut self) -> Option { // Collapse \r\n into \n loop { match self.window[..2] { [Some('\r'), Some('\n')] => { // Windows EOL into \n self.shift(); } [Some('\r'), _] => { // MAC EOL into \n self.window.change_first('\n'); } _ => break, } } self.shift() } } impl Lexer where T: Iterator, { pub fn new(input: T, start: Location) -> Self { let mut lxr = Lexer { at_begin_of_line: true, nesting: 0, indentations: Indentations::default(), pending: Vec::new(), location: start, window: CharWindow::new(input), }; lxr.window.slide(); lxr.window.slide(); lxr.window.slide(); // TODO: Handle possible mismatch between BOM and explicit encoding declaration. if let Some('\u{feff}') = lxr.window[0] { lxr.window.slide(); } lxr } // Lexer helper functions: fn lex_identifier(&mut self) -> LexResult { // Detect potential string like rb'' b'' f'' u'' r'' match self.window[..3] { [Some(c), Some('"' | '\''), ..] => { if let Ok(kind) = StringKind::try_from(c) { return self.lex_string(kind); } } [Some(c1), Some(c2), Some('"' | '\'')] => { if let Ok(kind) = StringKind::try_from([c1, c2]) { return self.lex_string(kind); } } _ => {} }; let start_pos = self.get_pos(); let mut name = String::new(); while self.is_identifier_continuation() { name.push(self.next_char().unwrap()); } let end_pos = self.get_pos(); if let Some(tok) = KEYWORDS.get(name.as_str()) { Ok((start_pos, tok.clone(), end_pos)) } else { Ok((start_pos, Tok::Name { name }, end_pos)) } } /// Numeric lexing. The feast can start! fn lex_number(&mut self) -> LexResult { let start_pos = self.get_pos(); match self.window[..2] { [Some('0'), Some('x' | 'X')] => { // Hex! (0xdeadbeef) self.next_char(); self.next_char(); self.lex_number_radix(start_pos, 16) } [Some('0'), Some('o' | 'O')] => { // Octal style! (0o377) self.next_char(); self.next_char(); self.lex_number_radix(start_pos, 8) } [Some('0'), Some('b' | 'B')] => { // Binary! (0b_1110_0101) self.next_char(); self.next_char(); self.lex_number_radix(start_pos, 2) } _ => self.lex_normal_number(), } } /// Lex a hex/octal/decimal/binary number without a decimal point. fn lex_number_radix(&mut self, start_pos: Location, radix: u32) -> LexResult { let value_text = self.radix_run(radix); let end_pos = self.get_pos(); let value = BigInt::from_str_radix(&value_text, radix).map_err(|e| LexicalError { error: LexicalErrorType::OtherError(format!("{e:?}")), location: start_pos, })?; Ok((start_pos, Tok::Int { value }, end_pos)) } /// Lex a normal number, that is, no octal, hex or binary number. fn lex_normal_number(&mut self) -> LexResult { let start_pos = self.get_pos(); let start_is_zero = self.window[0] == Some('0'); // Normal number: let mut value_text = self.radix_run(10); // If float: if self.window[0] == Some('.') || self.at_exponent() { // Take '.': if self.window[0] == Some('.') { if self.window[1] == Some('_') { return Err(LexicalError { error: LexicalErrorType::OtherError("Invalid Syntax".to_owned()), location: self.get_pos(), }); } value_text.push(self.next_char().unwrap()); value_text.push_str(&self.radix_run(10)); } // 1e6 for example: if let Some('e' | 'E') = self.window[0] { if self.window[1] == Some('_') { return Err(LexicalError { error: LexicalErrorType::OtherError("Invalid Syntax".to_owned()), location: self.get_pos(), }); } value_text.push(self.next_char().unwrap().to_ascii_lowercase()); // Optional +/- if matches!(self.window[0], Some('-' | '+')) { if self.window[1] == Some('_') { return Err(LexicalError { error: LexicalErrorType::OtherError("Invalid Syntax".to_owned()), location: self.get_pos(), }); } value_text.push(self.next_char().unwrap()); } value_text.push_str(&self.radix_run(10)); } let value = f64::from_str(&value_text).map_err(|_| LexicalError { error: LexicalErrorType::OtherError("Invalid decimal literal".to_owned()), location: self.get_pos(), })?; // Parse trailing 'j': if matches!(self.window[0], Some('j' | 'J')) { self.next_char(); let end_pos = self.get_pos(); Ok(( start_pos, Tok::Complex { real: 0.0, imag: value, }, end_pos, )) } else { let end_pos = self.get_pos(); Ok((start_pos, Tok::Float { value }, end_pos)) } } else { // Parse trailing 'j': if matches!(self.window[0], Some('j' | 'J')) { self.next_char(); let end_pos = self.get_pos(); let imag = f64::from_str(&value_text).unwrap(); Ok((start_pos, Tok::Complex { real: 0.0, imag }, end_pos)) } else { let end_pos = self.get_pos(); let value = value_text.parse::().unwrap(); if start_is_zero && !value.is_zero() { // leading zeros in decimal integer literals are not permitted return Err(LexicalError { error: LexicalErrorType::OtherError("Invalid Token".to_owned()), location: self.get_pos(), }); } Ok((start_pos, Tok::Int { value }, end_pos)) } } } /// Consume a sequence of numbers with the given radix, /// the digits can be decorated with underscores /// like this: '1_2_3_4' == '1234' fn radix_run(&mut self, radix: u32) -> String { let mut value_text = String::new(); loop { if let Some(c) = self.take_number(radix) { value_text.push(c); } else if self.window[0] == Some('_') && Lexer::::is_digit_of_radix(self.window[1], radix) { self.next_char(); } else { break; } } value_text } /// Consume a single character with the given radix. fn take_number(&mut self, radix: u32) -> Option { let take_char = Lexer::::is_digit_of_radix(self.window[0], radix); take_char.then(|| self.next_char().unwrap()) } /// Test if a digit is of a certain radix. fn is_digit_of_radix(c: Option, radix: u32) -> bool { match radix { 2 => matches!(c, Some('0'..='1')), 8 => matches!(c, Some('0'..='7')), 10 => matches!(c, Some('0'..='9')), 16 => matches!(c, Some('0'..='9') | Some('a'..='f') | Some('A'..='F')), other => unimplemented!("Radix not implemented: {}", other), } } /// Test if we face '[eE][-+]?[0-9]+' fn at_exponent(&self) -> bool { match self.window[..2] { [Some('e' | 'E'), Some('+' | '-')] => matches!(self.window[2], Some('0'..='9')), [Some('e' | 'E'), Some('0'..='9')] => true, _ => false, } } /// Skip everything until end of line fn lex_comment(&mut self) -> LexResult { let start_pos = self.get_pos(); self.next_char(); loop { match self.window[0] { Some('\n') | None => { let end_pos = self.get_pos(); return Ok((start_pos, Tok::Comment, end_pos)); } Some(_) => {} } self.next_char(); } } fn lex_string(&mut self, kind: StringKind) -> LexResult { let start_pos = self.get_pos(); for _ in 0..kind.prefix_len() { self.next_char(); } let quote_char = self.next_char().unwrap(); let mut string_content = String::new(); // If the next two characters are also the quote character, then we have a triple-quoted // string; consume those two characters and ensure that we require a triple-quote to close let triple_quoted = if self.window[..2] == [Some(quote_char); 2] { self.next_char(); self.next_char(); true } else { false }; loop { match self.next_char() { Some(c) => { if c == '\\' { if let Some(next_c) = self.next_char() { string_content.push('\\'); string_content.push(next_c); continue; } } if c == '\n' && !triple_quoted { return Err(LexicalError { error: LexicalErrorType::OtherError( "EOL while scanning string literal".to_owned(), ), location: self.get_pos(), }); } if c == quote_char { if triple_quoted { // Look ahead at the next two characters; if we have two more // quote_chars, it's the end of the string; consume the remaining // closing quotes and break the loop if self.window[..2] == [Some(quote_char); 2] { self.next_char(); self.next_char(); break; } } else { break; } } string_content.push(c); } None => { return Err(LexicalError { error: if triple_quoted { LexicalErrorType::Eof } else { LexicalErrorType::StringError }, location: self.get_pos(), }); } } } let end_pos = self.get_pos(); let tok = Tok::String { value: string_content, kind, triple_quoted, }; Ok((start_pos, tok, end_pos)) } fn is_identifier_start(&self, c: char) -> bool { c == '_' || is_xid_start(c) } fn is_identifier_continuation(&self) -> bool { match self.window[0] { Some('_' | '0'..='9') => true, Some(c) => is_xid_continue(c), _ => false, } } /// This is the main entry point. Call this function to retrieve the next token. /// This function is used by the iterator implementation. fn inner_next(&mut self) -> LexResult { // top loop, keep on processing, until we have something pending. while self.pending.is_empty() { // Detect indentation levels if self.at_begin_of_line { self.handle_indentations()?; } self.consume_normal()?; } Ok(self.pending.remove(0)) } /// Given we are at the start of a line, count the number of spaces and/or tabs until the first character. fn eat_indentation(&mut self) -> Result { // Determine indentation: let mut spaces: usize = 0; let mut tabs: usize = 0; loop { match self.window[0] { Some(' ') => { /* if tabs != 0 { // Don't allow spaces after tabs as part of indentation. // This is technically stricter than python3 but spaces after // tabs is even more insane than mixing spaces and tabs. return Some(Err(LexicalError { error: LexicalErrorType::OtherError("Spaces not allowed as part of indentation after tabs".to_owned()), location: self.get_pos(), })); } */ self.next_char(); spaces += 1; } Some('\t') => { if spaces != 0 { // Don't allow tabs after spaces as part of indentation. // This is technically stricter than python3 but spaces before // tabs is even more insane than mixing spaces and tabs. return Err(LexicalError { error: LexicalErrorType::TabsAfterSpaces, location: self.get_pos(), }); } self.next_char(); tabs += 1; } Some('#') => { let comment = self.lex_comment()?; self.emit(comment); spaces = 0; tabs = 0; } Some('\x0C') => { // Form feed character! // Reset indentation for the Emacs user. self.next_char(); spaces = 0; tabs = 0; } Some('\n') => { // Empty line! self.next_char(); spaces = 0; tabs = 0; } None => { spaces = 0; tabs = 0; break; } _ => { self.at_begin_of_line = false; break; } } } Ok(IndentationLevel { tabs, spaces }) } fn handle_indentations(&mut self) -> Result<(), LexicalError> { let indentation_level = self.eat_indentation()?; if self.nesting != 0 { return Ok(()); } // Determine indent or dedent: let current_indentation = self.indentations.current(); let ordering = indentation_level.compare_strict(current_indentation, self.get_pos())?; match ordering { Ordering::Equal => { // Same same } Ordering::Greater => { // New indentation level: self.indentations.push(indentation_level); let tok_pos = self.get_pos(); self.emit((tok_pos, Tok::Indent, tok_pos)); } Ordering::Less => { // One or more dedentations // Pop off other levels until col is found: loop { let current_indentation = self.indentations.current(); let ordering = indentation_level.compare_strict(current_indentation, self.get_pos())?; match ordering { Ordering::Less => { self.indentations.pop(); let tok_pos = self.get_pos(); self.emit((tok_pos, Tok::Dedent, tok_pos)); } Ordering::Equal => { // We arrived at proper level of indentation. break; } Ordering::Greater => { return Err(LexicalError { error: LexicalErrorType::IndentationError, location: self.get_pos(), }); } } } } } Ok(()) } /// Take a look at the next character, if any, and decide upon the next steps. fn consume_normal(&mut self) -> Result<(), LexicalError> { // Check if we have some character: if let Some(c) = self.window[0] { // First check identifier: if self.is_identifier_start(c) { let identifier = self.lex_identifier()?; self.emit(identifier); } else if is_emoji_presentation(c) { let tok_start = self.get_pos(); self.next_char(); let tok_end = self.get_pos(); self.emit(( tok_start, Tok::Name { name: c.to_string(), }, tok_end, )); } else { self.consume_character(c)?; } } else { // We reached end of file. let tok_pos = self.get_pos(); // First of all, we need all nestings to be finished. if self.nesting > 0 { return Err(LexicalError { error: LexicalErrorType::Eof, location: tok_pos, }); } // Next, insert a trailing newline, if required. if !self.at_begin_of_line { self.at_begin_of_line = true; self.emit((tok_pos, Tok::Newline, tok_pos)); } // Next, flush the indentation stack to zero. while !self.indentations.is_empty() { self.indentations.pop(); self.emit((tok_pos, Tok::Dedent, tok_pos)); } self.emit((tok_pos, Tok::EndOfFile, tok_pos)); } Ok(()) } /// Okay, we are facing a weird character, what is it? Determine that. fn consume_character(&mut self, c: char) -> Result<(), LexicalError> { match c { '0'..='9' => { let number = self.lex_number()?; self.emit(number); } '#' => { let comment = self.lex_comment()?; self.emit(comment); } '"' | '\'' => { let string = self.lex_string(StringKind::String)?; self.emit(string); } '=' => { let tok_start = self.get_pos(); self.next_char(); match self.window[0] { Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::EqEqual, tok_end)); } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Equal, tok_end)); } } } '+' => { let tok_start = self.get_pos(); self.next_char(); if let Some('=') = self.window[0] { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::PlusEqual, tok_end)); } else { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Plus, tok_end)); } } '*' => { let tok_start = self.get_pos(); self.next_char(); match self.window[0] { Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::StarEqual, tok_end)); } Some('*') => { self.next_char(); match self.window[0] { Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::DoubleStarEqual, tok_end)); } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::DoubleStar, tok_end)); } } } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Star, tok_end)); } } } '/' => { let tok_start = self.get_pos(); self.next_char(); match self.window[0] { Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::SlashEqual, tok_end)); } Some('/') => { self.next_char(); match self.window[0] { Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::DoubleSlashEqual, tok_end)); } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::DoubleSlash, tok_end)); } } } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Slash, tok_end)); } } } '%' => { let tok_start = self.get_pos(); self.next_char(); if let Some('=') = self.window[0] { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::PercentEqual, tok_end)); } else { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Percent, tok_end)); } } '|' => { let tok_start = self.get_pos(); self.next_char(); if let Some('=') = self.window[0] { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::VbarEqual, tok_end)); } else { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Vbar, tok_end)); } } '^' => { let tok_start = self.get_pos(); self.next_char(); if let Some('=') = self.window[0] { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::CircumflexEqual, tok_end)); } else { let tok_end = self.get_pos(); self.emit((tok_start, Tok::CircumFlex, tok_end)); } } '&' => { let tok_start = self.get_pos(); self.next_char(); if let Some('=') = self.window[0] { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::AmperEqual, tok_end)); } else { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Amper, tok_end)); } } '-' => { let tok_start = self.get_pos(); self.next_char(); match self.window[0] { Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::MinusEqual, tok_end)); } Some('>') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::Rarrow, tok_end)); } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Minus, tok_end)); } } } '@' => { let tok_start = self.get_pos(); self.next_char(); if let Some('=') = self.window[0] { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::AtEqual, tok_end)); } else { let tok_end = self.get_pos(); self.emit((tok_start, Tok::At, tok_end)); } } '!' => { let tok_start = self.get_pos(); self.next_char(); if let Some('=') = self.window[0] { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::NotEqual, tok_end)); } else { return Err(LexicalError { error: LexicalErrorType::UnrecognizedToken { tok: '!' }, location: tok_start, }); } } '~' => { self.eat_single_char(Tok::Tilde); } '(' => { self.eat_single_char(Tok::Lpar); self.nesting += 1; } ')' => { self.eat_single_char(Tok::Rpar); if self.nesting == 0 { return Err(LexicalError { error: LexicalErrorType::NestingError, location: self.get_pos(), }); } self.nesting -= 1; } '[' => { self.eat_single_char(Tok::Lsqb); self.nesting += 1; } ']' => { self.eat_single_char(Tok::Rsqb); if self.nesting == 0 { return Err(LexicalError { error: LexicalErrorType::NestingError, location: self.get_pos(), }); } self.nesting -= 1; } '{' => { self.eat_single_char(Tok::Lbrace); self.nesting += 1; } '}' => { self.eat_single_char(Tok::Rbrace); if self.nesting == 0 { return Err(LexicalError { error: LexicalErrorType::NestingError, location: self.get_pos(), }); } self.nesting -= 1; } ':' => { let tok_start = self.get_pos(); self.next_char(); if let Some('=') = self.window[0] { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::ColonEqual, tok_end)); } else { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Colon, tok_end)); } } ';' => { self.eat_single_char(Tok::Semi); } '<' => { let tok_start = self.get_pos(); self.next_char(); match self.window[0] { Some('<') => { self.next_char(); match self.window[0] { Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::LeftShiftEqual, tok_end)); } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::LeftShift, tok_end)); } } } Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::LessEqual, tok_end)); } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Less, tok_end)); } } } '>' => { let tok_start = self.get_pos(); self.next_char(); match self.window[0] { Some('>') => { self.next_char(); match self.window[0] { Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::RightShiftEqual, tok_end)); } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::RightShift, tok_end)); } } } Some('=') => { self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::GreaterEqual, tok_end)); } _ => { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Greater, tok_end)); } } } ',' => { let tok_start = self.get_pos(); self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::Comma, tok_end)); } '.' => { if let Some('0'..='9') = self.window[1] { let number = self.lex_number()?; self.emit(number); } else { let tok_start = self.get_pos(); self.next_char(); if self.window[..2] == [Some('.'); 2] { self.next_char(); self.next_char(); let tok_end = self.get_pos(); self.emit((tok_start, Tok::Ellipsis, tok_end)); } else { let tok_end = self.get_pos(); self.emit((tok_start, Tok::Dot, tok_end)); } } } '\n' => { let tok_start = self.get_pos(); self.next_char(); let tok_end = self.get_pos(); // Depending on the nesting level, we emit newline or not: if self.nesting == 0 { self.at_begin_of_line = true; self.emit((tok_start, Tok::Newline, tok_end)); } } ' ' | '\t' | '\x0C' => { // Skip whitespaces self.next_char(); while let Some(' ' | '\t' | '\x0C') = self.window[0] { self.next_char(); } } '\\' => { self.next_char(); if let Some('\n') = self.window[0] { self.next_char(); } else { return Err(LexicalError { error: LexicalErrorType::LineContinuationError, location: self.get_pos(), }); } if self.window[0].is_none() { return Err(LexicalError { error: LexicalErrorType::Eof, location: self.get_pos(), }); } } _ => { let c = self.next_char(); return Err(LexicalError { error: LexicalErrorType::UnrecognizedToken { tok: c.unwrap() }, location: self.get_pos(), }); } // Ignore all the rest.. } Ok(()) } fn eat_single_char(&mut self, ty: Tok) { let tok_start = self.get_pos(); self.next_char().unwrap(); let tok_end = self.get_pos(); self.emit((tok_start, ty, tok_end)); } /// Helper function to go to the next character coming up. fn next_char(&mut self) -> Option { let c = self.window[0]; self.window.slide(); if c == Some('\n') { self.location.newline(); } else { self.location.go_right(); } c } /// Helper function to retrieve the current position. fn get_pos(&self) -> Location { self.location } /// Helper function to emit a lexed token to the queue of tokens. fn emit(&mut self, spanned: Spanned) { self.pending.push(spanned); } } /* Implement iterator pattern for the get_tok function. Calling the next element in the iterator will yield the next lexical token. */ impl Iterator for Lexer where T: Iterator, { type Item = LexResult; fn next(&mut self) -> Option { // Idea: create some sort of hash map for single char tokens: // let mut X = HashMap::new(); // X.insert('=', Tok::Equal); let token = self.inner_next(); trace!( "Lex token {:?}, nesting={:?}, indent stack: {:?}", token, self.nesting, self.indentations, ); match token { Ok((_, Tok::EndOfFile, _)) => None, r => Some(r), } } } #[cfg(test)] mod tests { use super::{make_tokenizer, NewlineHandler, StringKind, Tok}; use num_bigint::BigInt; const WINDOWS_EOL: &str = "\r\n"; const MAC_EOL: &str = "\r"; const UNIX_EOL: &str = "\n"; pub fn lex_source(source: &str) -> Vec { let lexer = make_tokenizer(source); lexer.map(|x| x.unwrap().1).collect() } #[test] fn test_newline_processor() { // Escape \ followed by \n (by removal): let src = "b\\\r\n"; assert_eq!(4, src.len()); let nlh = NewlineHandler::new(src.chars()); let x: Vec = nlh.collect(); assert_eq!(vec!['b', '\\', '\n'], x); } fn stok(s: &str) -> Tok { Tok::String { value: s.to_owned(), kind: StringKind::String, triple_quoted: false, } } fn raw_stok(s: &str) -> Tok { Tok::String { value: s.to_owned(), kind: StringKind::RawString, triple_quoted: false, } } #[test] fn test_numbers() { let source = "0x2f 0o12 0b1101 0 123 123_45_67_890 0.2 1e+2 2.1e3 2j 2.2j"; let tokens = lex_source(source); assert_eq!( tokens, vec![ Tok::Int { value: BigInt::from(47), }, Tok::Int { value: BigInt::from(10) }, Tok::Int { value: BigInt::from(13), }, Tok::Int { value: BigInt::from(0), }, Tok::Int { value: BigInt::from(123), }, Tok::Int { value: BigInt::from(1234567890), }, Tok::Float { value: 0.2 }, Tok::Float { value: 100.0 }, Tok::Float { value: 2100.0 }, Tok::Complex { real: 0.0, imag: 2.0, }, Tok::Complex { real: 0.0, imag: 2.2, }, Tok::Newline, ] ); } macro_rules! test_line_comment { ($($name:ident: $eol:expr,)*) => { $( #[test] fn $name() { let source = format!(r"99232 # {}", $eol); let tokens = lex_source(&source); assert_eq!(tokens, vec![Tok::Int { value: BigInt::from(99232) }, Tok::Comment, Tok::Newline]); } )* } } test_line_comment! { test_line_comment_long: " foo", test_line_comment_whitespace: " ", test_line_comment_single_whitespace: " ", test_line_comment_empty: "", } macro_rules! test_comment_until_eol { ($($name:ident: $eol:expr,)*) => { $( #[test] fn $name() { let source = format!("123 # Foo{}456", $eol); let tokens = lex_source(&source); assert_eq!( tokens, vec![ Tok::Int { value: BigInt::from(123) }, Tok::Comment, Tok::Newline, Tok::Int { value: BigInt::from(456) }, Tok::Newline, ] ) } )* } } test_comment_until_eol! { test_comment_until_windows_eol: WINDOWS_EOL, test_comment_until_mac_eol: MAC_EOL, test_comment_until_unix_eol: UNIX_EOL, } #[test] fn test_assignment() { let source = r"avariable = 99 + 2-0"; let tokens = lex_source(source); assert_eq!( tokens, vec![ Tok::Name { name: String::from("avariable"), }, Tok::Equal, Tok::Int { value: BigInt::from(99) }, Tok::Plus, Tok::Int { value: BigInt::from(2) }, Tok::Minus, Tok::Int { value: BigInt::from(0) }, Tok::Newline, ] ); } macro_rules! test_indentation_with_eol { ($($name:ident: $eol:expr,)*) => { $( #[test] fn $name() { let source = format!("def foo():{} return 99{}{}", $eol, $eol, $eol); let tokens = lex_source(&source); assert_eq!( tokens, vec![ Tok::Def, Tok::Name { name: String::from("foo"), }, Tok::Lpar, Tok::Rpar, Tok::Colon, Tok::Newline, Tok::Indent, Tok::Return, Tok::Int { value: BigInt::from(99) }, Tok::Newline, Tok::Dedent, ] ); } )* }; } test_indentation_with_eol! { test_indentation_windows_eol: WINDOWS_EOL, test_indentation_mac_eol: MAC_EOL, test_indentation_unix_eol: UNIX_EOL, } macro_rules! test_double_dedent_with_eol { ($($name:ident: $eol:expr,)*) => { $( #[test] fn $name() { let source = format!("def foo():{} if x:{}{} return 99{}{}", $eol, $eol, $eol, $eol, $eol); let tokens = lex_source(&source); assert_eq!( tokens, vec![ Tok::Def, Tok::Name { name: String::from("foo"), }, Tok::Lpar, Tok::Rpar, Tok::Colon, Tok::Newline, Tok::Indent, Tok::If, Tok::Name { name: String::from("x"), }, Tok::Colon, Tok::Newline, Tok::Indent, Tok::Return, Tok::Int { value: BigInt::from(99) }, Tok::Newline, Tok::Dedent, Tok::Dedent, ] ); } )* } } macro_rules! test_double_dedent_with_tabs { ($($name:ident: $eol:expr,)*) => { $( #[test] fn $name() { let source = format!("def foo():{}\tif x:{}{}\t return 99{}{}", $eol, $eol, $eol, $eol, $eol); let tokens = lex_source(&source); assert_eq!( tokens, vec![ Tok::Def, Tok::Name { name: String::from("foo"), }, Tok::Lpar, Tok::Rpar, Tok::Colon, Tok::Newline, Tok::Indent, Tok::If, Tok::Name { name: String::from("x"), }, Tok::Colon, Tok::Newline, Tok::Indent, Tok::Return, Tok::Int { value: BigInt::from(99) }, Tok::Newline, Tok::Dedent, Tok::Dedent, ] ); } )* } } test_double_dedent_with_eol! { test_double_dedent_windows_eol: WINDOWS_EOL, test_double_dedent_mac_eol: MAC_EOL, test_double_dedent_unix_eol: UNIX_EOL, } test_double_dedent_with_tabs! { test_double_dedent_tabs_windows_eol: WINDOWS_EOL, test_double_dedent_tabs_mac_eol: MAC_EOL, test_double_dedent_tabs_unix_eol: UNIX_EOL, } macro_rules! test_newline_in_brackets { ($($name:ident: $eol:expr,)*) => { $( #[test] fn $name() { let source = format!("x = [{} 1,2{}]{}", $eol, $eol, $eol); let tokens = lex_source(&source); assert_eq!( tokens, vec![ Tok::Name { name: String::from("x"), }, Tok::Equal, Tok::Lsqb, Tok::Int { value: BigInt::from(1) }, Tok::Comma, Tok::Int { value: BigInt::from(2) }, Tok::Rsqb, Tok::Newline, ] ); } )* }; } test_newline_in_brackets! { test_newline_in_brackets_windows_eol: WINDOWS_EOL, test_newline_in_brackets_mac_eol: MAC_EOL, test_newline_in_brackets_unix_eol: UNIX_EOL, } #[test] fn test_operators() { let source = "//////=/ /"; let tokens = lex_source(source); assert_eq!( tokens, vec![ Tok::DoubleSlash, Tok::DoubleSlash, Tok::DoubleSlashEqual, Tok::Slash, Tok::Slash, Tok::Newline, ] ); } #[test] fn test_string() { let source = r#""double" 'single' 'can\'t' "\\\"" '\t\r\n' '\g' r'raw\'' '\420' '\200\0a'"#; let tokens = lex_source(source); assert_eq!( tokens, vec![ stok("double"), stok("single"), stok(r"can\'t"), stok(r#"\\\""#), stok(r"\t\r\n"), stok(r"\g"), raw_stok(r"raw\'"), stok(r"\420"), stok(r"\200\0a"), Tok::Newline, ] ); } macro_rules! test_string_continuation { ($($name:ident: $eol:expr,)*) => { $( #[test] fn $name() { let source = format!("\"abc\\{}def\"", $eol); let tokens = lex_source(&source); assert_eq!( tokens, vec![ stok("abc\\\ndef"), Tok::Newline, ] ) } )* } } test_string_continuation! { test_string_continuation_windows_eol: WINDOWS_EOL, test_string_continuation_mac_eol: MAC_EOL, test_string_continuation_unix_eol: UNIX_EOL, } #[test] fn test_escape_unicode_name() { let source = r#""\N{EN SPACE}""#; let tokens = lex_source(source); assert_eq!(tokens, vec![stok(r"\N{EN SPACE}"), Tok::Newline]) } }