mirror of
https://github.com/python/cpython.git
synced 2025-08-04 00:48:58 +00:00
bpo-38490: statistics: Add covariance, Pearson's correlation, and simple linear regression (#16813)
Co-authored-by: Tymoteusz Wołodźko <twolodzko+gitkraken@gmail.com
This commit is contained in:
parent
172c0f2752
commit
09aa6f914d
6 changed files with 326 additions and 1 deletions
|
@ -73,6 +73,30 @@ second argument to the four "spread" functions to avoid recalculating it:
|
|||
2.5
|
||||
|
||||
|
||||
Statistics for relations between two inputs
|
||||
-------------------------------------------
|
||||
|
||||
================== ====================================================
|
||||
Function Description
|
||||
================== ====================================================
|
||||
covariance Sample covariance for two variables.
|
||||
correlation Pearson's correlation coefficient for two variables.
|
||||
linear_regression Intercept and slope for simple linear regression.
|
||||
================== ====================================================
|
||||
|
||||
Calculate covariance, Pearson's correlation, and simple linear regression
|
||||
for two inputs:
|
||||
|
||||
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
|
||||
>>> covariance(x, y)
|
||||
0.75
|
||||
>>> correlation(x, y) #doctest: +ELLIPSIS
|
||||
0.31622776601...
|
||||
>>> linear_regression(x, y) #doctest:
|
||||
LinearRegression(intercept=1.5, slope=0.1)
|
||||
|
||||
|
||||
Exceptions
|
||||
----------
|
||||
|
||||
|
@ -98,6 +122,9 @@ __all__ = [
|
|||
'quantiles',
|
||||
'stdev',
|
||||
'variance',
|
||||
'correlation',
|
||||
'covariance',
|
||||
'linear_regression',
|
||||
]
|
||||
|
||||
import math
|
||||
|
@ -110,7 +137,7 @@ from itertools import groupby, repeat
|
|||
from bisect import bisect_left, bisect_right
|
||||
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
|
||||
from operator import itemgetter
|
||||
from collections import Counter
|
||||
from collections import Counter, namedtuple
|
||||
|
||||
# === Exceptions ===
|
||||
|
||||
|
@ -826,6 +853,113 @@ def pstdev(data, mu=None):
|
|||
return math.sqrt(var)
|
||||
|
||||
|
||||
# === Statistics for relations between two inputs ===
|
||||
|
||||
# See https://en.wikipedia.org/wiki/Covariance
|
||||
# https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
|
||||
# https://en.wikipedia.org/wiki/Simple_linear_regression
|
||||
|
||||
|
||||
def covariance(x, y, /):
|
||||
"""Covariance
|
||||
|
||||
Return the sample covariance of two inputs *x* and *y*. Covariance
|
||||
is a measure of the joint variability of two inputs.
|
||||
|
||||
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
|
||||
>>> covariance(x, y)
|
||||
0.75
|
||||
>>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
|
||||
>>> covariance(x, z)
|
||||
-7.5
|
||||
>>> covariance(z, x)
|
||||
-7.5
|
||||
|
||||
"""
|
||||
n = len(x)
|
||||
if len(y) != n:
|
||||
raise StatisticsError('covariance requires that both inputs have same number of data points')
|
||||
if n < 2:
|
||||
raise StatisticsError('covariance requires at least two data points')
|
||||
xbar = mean(x)
|
||||
ybar = mean(y)
|
||||
total = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y))
|
||||
return total / (n - 1)
|
||||
|
||||
|
||||
def correlation(x, y, /):
|
||||
"""Pearson's correlation coefficient
|
||||
|
||||
Return the Pearson's correlation coefficient for two inputs. Pearson's
|
||||
correlation coefficient *r* takes values between -1 and +1. It measures the
|
||||
strength and direction of the linear relationship, where +1 means very
|
||||
strong, positive linear relationship, -1 very strong, negative linear
|
||||
relationship, and 0 no linear relationship.
|
||||
|
||||
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
>>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
|
||||
>>> correlation(x, x)
|
||||
1.0
|
||||
>>> correlation(x, y)
|
||||
-1.0
|
||||
|
||||
"""
|
||||
n = len(x)
|
||||
if len(y) != n:
|
||||
raise StatisticsError('correlation requires that both inputs have same number of data points')
|
||||
if n < 2:
|
||||
raise StatisticsError('correlation requires at least two data points')
|
||||
cov = covariance(x, y)
|
||||
stdx = stdev(x)
|
||||
stdy = stdev(y)
|
||||
try:
|
||||
return cov / (stdx * stdy)
|
||||
except ZeroDivisionError:
|
||||
raise StatisticsError('at least one of the inputs is constant')
|
||||
|
||||
|
||||
LinearRegression = namedtuple('LinearRegression', ['intercept', 'slope'])
|
||||
|
||||
|
||||
def linear_regression(regressor, dependent_variable, /):
|
||||
"""Intercept and slope for simple linear regression
|
||||
|
||||
Return the intercept and slope of simple linear regression
|
||||
parameters estimated using ordinary least squares. Simple linear
|
||||
regression describes relationship between *regressor* and
|
||||
*dependent variable* in terms of linear function::
|
||||
|
||||
dependent_variable = intercept + slope * regressor + noise
|
||||
|
||||
where ``intercept`` and ``slope`` are the regression parameters that are
|
||||
estimated, and noise term is an unobserved random variable, for the
|
||||
variability of the data that was not explained by the linear regression
|
||||
(it is equal to the difference between prediction and the actual values
|
||||
of dependent variable).
|
||||
|
||||
The parameters are returned as a named tuple.
|
||||
|
||||
>>> regressor = [1, 2, 3, 4, 5]
|
||||
>>> noise = NormalDist().samples(5, seed=42)
|
||||
>>> dependent_variable = [2 + 3 * regressor[i] + noise[i] for i in range(5)]
|
||||
>>> linear_regression(regressor, dependent_variable) #doctest: +ELLIPSIS
|
||||
LinearRegression(intercept=1.75684970486..., slope=3.09078914170...)
|
||||
|
||||
"""
|
||||
n = len(regressor)
|
||||
if len(dependent_variable) != n:
|
||||
raise StatisticsError('linear regression requires that both inputs have same number of data points')
|
||||
if n < 2:
|
||||
raise StatisticsError('linear regression requires at least two data points')
|
||||
try:
|
||||
slope = covariance(regressor, dependent_variable) / variance(regressor)
|
||||
except ZeroDivisionError:
|
||||
raise StatisticsError('regressor is constant')
|
||||
intercept = mean(dependent_variable) - slope * mean(regressor)
|
||||
return LinearRegression(intercept=intercept, slope=slope)
|
||||
|
||||
|
||||
## Normal Distribution #####################################################
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue