mirror of
https://github.com/python/cpython.git
synced 2025-10-09 16:34:44 +00:00
bpo-39310: Add math.ulp(x) (GH-17965)
Add math.ulp(): return the value of the least significant bit of a float.
This commit is contained in:
parent
7ba6f18de2
commit
0b2ab21956
7 changed files with 144 additions and 37 deletions
|
@ -53,30 +53,6 @@ def to_ulps(x):
|
|||
return n
|
||||
|
||||
|
||||
def ulp(x):
|
||||
"""Return the value of the least significant bit of a
|
||||
float x, such that the first float bigger than x is x+ulp(x).
|
||||
Then, given an expected result x and a tolerance of n ulps,
|
||||
the result y should be such that abs(y-x) <= n * ulp(x).
|
||||
The results from this function will only make sense on platforms
|
||||
where native doubles are represented in IEEE 754 binary64 format.
|
||||
"""
|
||||
x = abs(float(x))
|
||||
if math.isnan(x) or math.isinf(x):
|
||||
return x
|
||||
|
||||
# Find next float up from x.
|
||||
n = struct.unpack('<q', struct.pack('<d', x))[0]
|
||||
x_next = struct.unpack('<d', struct.pack('<q', n + 1))[0]
|
||||
if math.isinf(x_next):
|
||||
# Corner case: x was the largest finite float. Then it's
|
||||
# not an exact power of two, so we can take the difference
|
||||
# between x and the previous float.
|
||||
x_prev = struct.unpack('<d', struct.pack('<q', n - 1))[0]
|
||||
return x - x_prev
|
||||
else:
|
||||
return x_next - x
|
||||
|
||||
# Here's a pure Python version of the math.factorial algorithm, for
|
||||
# documentation and comparison purposes.
|
||||
#
|
||||
|
@ -470,9 +446,9 @@ class MathTests(unittest.TestCase):
|
|||
|
||||
def testCos(self):
|
||||
self.assertRaises(TypeError, math.cos)
|
||||
self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0, abs_tol=ulp(1))
|
||||
self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0, abs_tol=math.ulp(1))
|
||||
self.ftest('cos(0)', math.cos(0), 1)
|
||||
self.ftest('cos(pi/2)', math.cos(math.pi/2), 0, abs_tol=ulp(1))
|
||||
self.ftest('cos(pi/2)', math.cos(math.pi/2), 0, abs_tol=math.ulp(1))
|
||||
self.ftest('cos(pi)', math.cos(math.pi), -1)
|
||||
try:
|
||||
self.assertTrue(math.isnan(math.cos(INF)))
|
||||
|
@ -1445,7 +1421,7 @@ class MathTests(unittest.TestCase):
|
|||
self.assertRaises(TypeError, math.tanh)
|
||||
self.ftest('tanh(0)', math.tanh(0), 0)
|
||||
self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0,
|
||||
abs_tol=ulp(1))
|
||||
abs_tol=math.ulp(1))
|
||||
self.ftest('tanh(inf)', math.tanh(INF), 1)
|
||||
self.ftest('tanh(-inf)', math.tanh(NINF), -1)
|
||||
self.assertTrue(math.isnan(math.tanh(NAN)))
|
||||
|
@ -2036,7 +2012,7 @@ class IsCloseTests(unittest.TestCase):
|
|||
def assertEqualSign(self, x, y):
|
||||
"""Similar to assertEqual(), but compare also the sign.
|
||||
|
||||
Function useful to check to signed zero.
|
||||
Function useful to compare signed zeros.
|
||||
"""
|
||||
self.assertEqual(x, y)
|
||||
self.assertEqual(math.copysign(1.0, x), math.copysign(1.0, y))
|
||||
|
@ -2087,6 +2063,29 @@ class IsCloseTests(unittest.TestCase):
|
|||
self.assertTrue(math.isnan(math.nextafter(1.0, NAN)))
|
||||
self.assertTrue(math.isnan(math.nextafter(NAN, NAN)))
|
||||
|
||||
@requires_IEEE_754
|
||||
def test_ulp(self):
|
||||
self.assertEqual(math.ulp(1.0), sys.float_info.epsilon)
|
||||
# use int ** int rather than float ** int to not rely on pow() accuracy
|
||||
self.assertEqual(math.ulp(2 ** 52), 1.0)
|
||||
self.assertEqual(math.ulp(2 ** 53), 2.0)
|
||||
self.assertEqual(math.ulp(2 ** 64), 4096.0)
|
||||
|
||||
# min and max
|
||||
self.assertEqual(math.ulp(0.0),
|
||||
sys.float_info.min * sys.float_info.epsilon)
|
||||
self.assertEqual(math.ulp(FLOAT_MAX),
|
||||
FLOAT_MAX - math.nextafter(FLOAT_MAX, -INF))
|
||||
|
||||
# special cases
|
||||
self.assertEqual(math.ulp(INF), INF)
|
||||
self.assertTrue(math.isnan(math.ulp(math.nan)))
|
||||
|
||||
# negative number: ulp(-x) == ulp(x)
|
||||
for x in (0.0, 1.0, 2 ** 52, 2 ** 64, INF):
|
||||
with self.subTest(x=x):
|
||||
self.assertEqual(math.ulp(-x), math.ulp(x))
|
||||
|
||||
|
||||
def test_main():
|
||||
from doctest import DocFileSuite
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue