mirror of
https://github.com/python/cpython.git
synced 2025-10-09 16:34:44 +00:00
Whitespace normalization.
This commit is contained in:
parent
2344fae6d0
commit
0c9886d589
7 changed files with 488 additions and 488 deletions
406
Lib/random.py
406
Lib/random.py
|
@ -28,101 +28,101 @@ from math import log, exp, pi, e, sqrt, acos, cos, sin
|
|||
# XXX TO DO: make the distribution functions below into methods.
|
||||
|
||||
def makeseed(a=None):
|
||||
"""Turn a hashable value into three seed values for whrandom.seed().
|
||||
"""Turn a hashable value into three seed values for whrandom.seed().
|
||||
|
||||
None or no argument returns (0, 0, 0), to seed from current time.
|
||||
None or no argument returns (0, 0, 0), to seed from current time.
|
||||
|
||||
"""
|
||||
if a is None:
|
||||
return (0, 0, 0)
|
||||
a = hash(a)
|
||||
a, x = divmod(a, 256)
|
||||
a, y = divmod(a, 256)
|
||||
a, z = divmod(a, 256)
|
||||
x = (x + a) % 256 or 1
|
||||
y = (y + a) % 256 or 1
|
||||
z = (z + a) % 256 or 1
|
||||
return (x, y, z)
|
||||
"""
|
||||
if a is None:
|
||||
return (0, 0, 0)
|
||||
a = hash(a)
|
||||
a, x = divmod(a, 256)
|
||||
a, y = divmod(a, 256)
|
||||
a, z = divmod(a, 256)
|
||||
x = (x + a) % 256 or 1
|
||||
y = (y + a) % 256 or 1
|
||||
z = (z + a) % 256 or 1
|
||||
return (x, y, z)
|
||||
|
||||
def seed(a=None):
|
||||
"""Seed the default generator from any hashable value.
|
||||
"""Seed the default generator from any hashable value.
|
||||
|
||||
None or no argument seeds from current time.
|
||||
None or no argument seeds from current time.
|
||||
|
||||
"""
|
||||
x, y, z = makeseed(a)
|
||||
whrandom.seed(x, y, z)
|
||||
"""
|
||||
x, y, z = makeseed(a)
|
||||
whrandom.seed(x, y, z)
|
||||
|
||||
class generator(whrandom.whrandom):
|
||||
"""Random generator class."""
|
||||
"""Random generator class."""
|
||||
|
||||
def __init__(self, a=None):
|
||||
"""Constructor. Seed from current time or hashable value."""
|
||||
self.seed(a)
|
||||
def __init__(self, a=None):
|
||||
"""Constructor. Seed from current time or hashable value."""
|
||||
self.seed(a)
|
||||
|
||||
def seed(self, a=None):
|
||||
"""Seed the generator from current time or hashable value."""
|
||||
x, y, z = makeseed(a)
|
||||
whrandom.whrandom.seed(self, x, y, z)
|
||||
def seed(self, a=None):
|
||||
"""Seed the generator from current time or hashable value."""
|
||||
x, y, z = makeseed(a)
|
||||
whrandom.whrandom.seed(self, x, y, z)
|
||||
|
||||
def new_generator(a=None):
|
||||
"""Return a new random generator instance."""
|
||||
return generator(a)
|
||||
"""Return a new random generator instance."""
|
||||
return generator(a)
|
||||
|
||||
# Housekeeping function to verify that magic constants have been
|
||||
# computed correctly
|
||||
|
||||
def verify(name, expected):
|
||||
computed = eval(name)
|
||||
if abs(computed - expected) > 1e-7:
|
||||
raise ValueError, \
|
||||
'computed value for %s deviates too much (computed %g, expected %g)' % \
|
||||
(name, computed, expected)
|
||||
computed = eval(name)
|
||||
if abs(computed - expected) > 1e-7:
|
||||
raise ValueError, \
|
||||
'computed value for %s deviates too much (computed %g, expected %g)' % \
|
||||
(name, computed, expected)
|
||||
|
||||
# -------------------- normal distribution --------------------
|
||||
|
||||
NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
|
||||
verify('NV_MAGICCONST', 1.71552776992141)
|
||||
def normalvariate(mu, sigma):
|
||||
# mu = mean, sigma = standard deviation
|
||||
# mu = mean, sigma = standard deviation
|
||||
|
||||
# Uses Kinderman and Monahan method. Reference: Kinderman,
|
||||
# A.J. and Monahan, J.F., "Computer generation of random
|
||||
# variables using the ratio of uniform deviates", ACM Trans
|
||||
# Math Software, 3, (1977), pp257-260.
|
||||
# Uses Kinderman and Monahan method. Reference: Kinderman,
|
||||
# A.J. and Monahan, J.F., "Computer generation of random
|
||||
# variables using the ratio of uniform deviates", ACM Trans
|
||||
# Math Software, 3, (1977), pp257-260.
|
||||
|
||||
while 1:
|
||||
u1 = random()
|
||||
u2 = random()
|
||||
z = NV_MAGICCONST*(u1-0.5)/u2
|
||||
zz = z*z/4.0
|
||||
if zz <= -log(u2):
|
||||
break
|
||||
return mu+z*sigma
|
||||
while 1:
|
||||
u1 = random()
|
||||
u2 = random()
|
||||
z = NV_MAGICCONST*(u1-0.5)/u2
|
||||
zz = z*z/4.0
|
||||
if zz <= -log(u2):
|
||||
break
|
||||
return mu+z*sigma
|
||||
|
||||
# -------------------- lognormal distribution --------------------
|
||||
|
||||
def lognormvariate(mu, sigma):
|
||||
return exp(normalvariate(mu, sigma))
|
||||
return exp(normalvariate(mu, sigma))
|
||||
|
||||
# -------------------- circular uniform --------------------
|
||||
|
||||
def cunifvariate(mean, arc):
|
||||
# mean: mean angle (in radians between 0 and pi)
|
||||
# arc: range of distribution (in radians between 0 and pi)
|
||||
# mean: mean angle (in radians between 0 and pi)
|
||||
# arc: range of distribution (in radians between 0 and pi)
|
||||
|
||||
return (mean + arc * (random() - 0.5)) % pi
|
||||
return (mean + arc * (random() - 0.5)) % pi
|
||||
|
||||
# -------------------- exponential distribution --------------------
|
||||
|
||||
def expovariate(lambd):
|
||||
# lambd: rate lambd = 1/mean
|
||||
# ('lambda' is a Python reserved word)
|
||||
# lambd: rate lambd = 1/mean
|
||||
# ('lambda' is a Python reserved word)
|
||||
|
||||
u = random()
|
||||
while u <= 1e-7:
|
||||
u = random()
|
||||
return -log(u)/lambd
|
||||
u = random()
|
||||
while u <= 1e-7:
|
||||
u = random()
|
||||
return -log(u)/lambd
|
||||
|
||||
# -------------------- von Mises distribution --------------------
|
||||
|
||||
|
@ -130,43 +130,43 @@ TWOPI = 2.0*pi
|
|||
verify('TWOPI', 6.28318530718)
|
||||
|
||||
def vonmisesvariate(mu, kappa):
|
||||
# mu: mean angle (in radians between 0 and 2*pi)
|
||||
# kappa: concentration parameter kappa (>= 0)
|
||||
# if kappa = 0 generate uniform random angle
|
||||
# mu: mean angle (in radians between 0 and 2*pi)
|
||||
# kappa: concentration parameter kappa (>= 0)
|
||||
# if kappa = 0 generate uniform random angle
|
||||
|
||||
# Based upon an algorithm published in: Fisher, N.I.,
|
||||
# "Statistical Analysis of Circular Data", Cambridge
|
||||
# University Press, 1993.
|
||||
# Based upon an algorithm published in: Fisher, N.I.,
|
||||
# "Statistical Analysis of Circular Data", Cambridge
|
||||
# University Press, 1993.
|
||||
|
||||
# Thanks to Magnus Kessler for a correction to the
|
||||
# implementation of step 4.
|
||||
# Thanks to Magnus Kessler for a correction to the
|
||||
# implementation of step 4.
|
||||
|
||||
if kappa <= 1e-6:
|
||||
return TWOPI * random()
|
||||
if kappa <= 1e-6:
|
||||
return TWOPI * random()
|
||||
|
||||
a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
|
||||
b = (a - sqrt(2.0 * a))/(2.0 * kappa)
|
||||
r = (1.0 + b * b)/(2.0 * b)
|
||||
a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
|
||||
b = (a - sqrt(2.0 * a))/(2.0 * kappa)
|
||||
r = (1.0 + b * b)/(2.0 * b)
|
||||
|
||||
while 1:
|
||||
u1 = random()
|
||||
while 1:
|
||||
u1 = random()
|
||||
|
||||
z = cos(pi * u1)
|
||||
f = (1.0 + r * z)/(r + z)
|
||||
c = kappa * (r - f)
|
||||
z = cos(pi * u1)
|
||||
f = (1.0 + r * z)/(r + z)
|
||||
c = kappa * (r - f)
|
||||
|
||||
u2 = random()
|
||||
u2 = random()
|
||||
|
||||
if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
|
||||
break
|
||||
if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
|
||||
break
|
||||
|
||||
u3 = random()
|
||||
if u3 > 0.5:
|
||||
theta = (mu % TWOPI) + acos(f)
|
||||
else:
|
||||
theta = (mu % TWOPI) - acos(f)
|
||||
u3 = random()
|
||||
if u3 > 0.5:
|
||||
theta = (mu % TWOPI) + acos(f)
|
||||
else:
|
||||
theta = (mu % TWOPI) - acos(f)
|
||||
|
||||
return theta
|
||||
return theta
|
||||
|
||||
# -------------------- gamma distribution --------------------
|
||||
|
||||
|
@ -174,62 +174,62 @@ LOG4 = log(4.0)
|
|||
verify('LOG4', 1.38629436111989)
|
||||
|
||||
def gammavariate(alpha, beta):
|
||||
# beta times standard gamma
|
||||
ainv = sqrt(2.0 * alpha - 1.0)
|
||||
return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
|
||||
# beta times standard gamma
|
||||
ainv = sqrt(2.0 * alpha - 1.0)
|
||||
return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
|
||||
|
||||
SG_MAGICCONST = 1.0 + log(4.5)
|
||||
verify('SG_MAGICCONST', 2.50407739677627)
|
||||
|
||||
def stdgamma(alpha, ainv, bbb, ccc):
|
||||
# ainv = sqrt(2 * alpha - 1)
|
||||
# bbb = alpha - log(4)
|
||||
# ccc = alpha + ainv
|
||||
# ainv = sqrt(2 * alpha - 1)
|
||||
# bbb = alpha - log(4)
|
||||
# ccc = alpha + ainv
|
||||
|
||||
if alpha <= 0.0:
|
||||
raise ValueError, 'stdgamma: alpha must be > 0.0'
|
||||
if alpha <= 0.0:
|
||||
raise ValueError, 'stdgamma: alpha must be > 0.0'
|
||||
|
||||
if alpha > 1.0:
|
||||
if alpha > 1.0:
|
||||
|
||||
# Uses R.C.H. Cheng, "The generation of Gamma
|
||||
# variables with non-integral shape parameters",
|
||||
# Applied Statistics, (1977), 26, No. 1, p71-74
|
||||
# Uses R.C.H. Cheng, "The generation of Gamma
|
||||
# variables with non-integral shape parameters",
|
||||
# Applied Statistics, (1977), 26, No. 1, p71-74
|
||||
|
||||
while 1:
|
||||
u1 = random()
|
||||
u2 = random()
|
||||
v = log(u1/(1.0-u1))/ainv
|
||||
x = alpha*exp(v)
|
||||
z = u1*u1*u2
|
||||
r = bbb+ccc*v-x
|
||||
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
|
||||
return x
|
||||
while 1:
|
||||
u1 = random()
|
||||
u2 = random()
|
||||
v = log(u1/(1.0-u1))/ainv
|
||||
x = alpha*exp(v)
|
||||
z = u1*u1*u2
|
||||
r = bbb+ccc*v-x
|
||||
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
|
||||
return x
|
||||
|
||||
elif alpha == 1.0:
|
||||
# expovariate(1)
|
||||
u = random()
|
||||
while u <= 1e-7:
|
||||
u = random()
|
||||
return -log(u)
|
||||
elif alpha == 1.0:
|
||||
# expovariate(1)
|
||||
u = random()
|
||||
while u <= 1e-7:
|
||||
u = random()
|
||||
return -log(u)
|
||||
|
||||
else: # alpha is between 0 and 1 (exclusive)
|
||||
else: # alpha is between 0 and 1 (exclusive)
|
||||
|
||||
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
|
||||
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
|
||||
|
||||
while 1:
|
||||
u = random()
|
||||
b = (e + alpha)/e
|
||||
p = b*u
|
||||
if p <= 1.0:
|
||||
x = pow(p, 1.0/alpha)
|
||||
else:
|
||||
# p > 1
|
||||
x = -log((b-p)/alpha)
|
||||
u1 = random()
|
||||
if not (((p <= 1.0) and (u1 > exp(-x))) or
|
||||
((p > 1) and (u1 > pow(x, alpha - 1.0)))):
|
||||
break
|
||||
return x
|
||||
while 1:
|
||||
u = random()
|
||||
b = (e + alpha)/e
|
||||
p = b*u
|
||||
if p <= 1.0:
|
||||
x = pow(p, 1.0/alpha)
|
||||
else:
|
||||
# p > 1
|
||||
x = -log((b-p)/alpha)
|
||||
u1 = random()
|
||||
if not (((p <= 1.0) and (u1 > exp(-x))) or
|
||||
((p > 1) and (u1 > pow(x, alpha - 1.0)))):
|
||||
break
|
||||
return x
|
||||
|
||||
|
||||
# -------------------- Gauss (faster alternative) --------------------
|
||||
|
@ -237,61 +237,61 @@ def stdgamma(alpha, ainv, bbb, ccc):
|
|||
gauss_next = None
|
||||
def gauss(mu, sigma):
|
||||
|
||||
# When x and y are two variables from [0, 1), uniformly
|
||||
# distributed, then
|
||||
#
|
||||
# cos(2*pi*x)*sqrt(-2*log(1-y))
|
||||
# sin(2*pi*x)*sqrt(-2*log(1-y))
|
||||
#
|
||||
# are two *independent* variables with normal distribution
|
||||
# (mu = 0, sigma = 1).
|
||||
# (Lambert Meertens)
|
||||
# (corrected version; bug discovered by Mike Miller, fixed by LM)
|
||||
# When x and y are two variables from [0, 1), uniformly
|
||||
# distributed, then
|
||||
#
|
||||
# cos(2*pi*x)*sqrt(-2*log(1-y))
|
||||
# sin(2*pi*x)*sqrt(-2*log(1-y))
|
||||
#
|
||||
# are two *independent* variables with normal distribution
|
||||
# (mu = 0, sigma = 1).
|
||||
# (Lambert Meertens)
|
||||
# (corrected version; bug discovered by Mike Miller, fixed by LM)
|
||||
|
||||
# Multithreading note: When two threads call this function
|
||||
# simultaneously, it is possible that they will receive the
|
||||
# same return value. The window is very small though. To
|
||||
# avoid this, you have to use a lock around all calls. (I
|
||||
# didn't want to slow this down in the serial case by using a
|
||||
# lock here.)
|
||||
# Multithreading note: When two threads call this function
|
||||
# simultaneously, it is possible that they will receive the
|
||||
# same return value. The window is very small though. To
|
||||
# avoid this, you have to use a lock around all calls. (I
|
||||
# didn't want to slow this down in the serial case by using a
|
||||
# lock here.)
|
||||
|
||||
global gauss_next
|
||||
global gauss_next
|
||||
|
||||
z = gauss_next
|
||||
gauss_next = None
|
||||
if z is None:
|
||||
x2pi = random() * TWOPI
|
||||
g2rad = sqrt(-2.0 * log(1.0 - random()))
|
||||
z = cos(x2pi) * g2rad
|
||||
gauss_next = sin(x2pi) * g2rad
|
||||
z = gauss_next
|
||||
gauss_next = None
|
||||
if z is None:
|
||||
x2pi = random() * TWOPI
|
||||
g2rad = sqrt(-2.0 * log(1.0 - random()))
|
||||
z = cos(x2pi) * g2rad
|
||||
gauss_next = sin(x2pi) * g2rad
|
||||
|
||||
return mu + z*sigma
|
||||
return mu + z*sigma
|
||||
|
||||
# -------------------- beta --------------------
|
||||
|
||||
def betavariate(alpha, beta):
|
||||
|
||||
# Discrete Event Simulation in C, pp 87-88.
|
||||
# Discrete Event Simulation in C, pp 87-88.
|
||||
|
||||
y = expovariate(alpha)
|
||||
z = expovariate(1.0/beta)
|
||||
return z/(y+z)
|
||||
y = expovariate(alpha)
|
||||
z = expovariate(1.0/beta)
|
||||
return z/(y+z)
|
||||
|
||||
# -------------------- Pareto --------------------
|
||||
|
||||
def paretovariate(alpha):
|
||||
# Jain, pg. 495
|
||||
# Jain, pg. 495
|
||||
|
||||
u = random()
|
||||
return 1.0 / pow(u, 1.0/alpha)
|
||||
u = random()
|
||||
return 1.0 / pow(u, 1.0/alpha)
|
||||
|
||||
# -------------------- Weibull --------------------
|
||||
|
||||
def weibullvariate(alpha, beta):
|
||||
# Jain, pg. 499; bug fix courtesy Bill Arms
|
||||
# Jain, pg. 499; bug fix courtesy Bill Arms
|
||||
|
||||
u = random()
|
||||
return alpha * pow(-log(u), 1.0/beta)
|
||||
u = random()
|
||||
return alpha * pow(-log(u), 1.0/beta)
|
||||
|
||||
# -------------------- shuffle --------------------
|
||||
# Not quite a random distribution, but a standard algorithm.
|
||||
|
@ -310,55 +310,55 @@ def shuffle(x, random=random, int=int):
|
|||
"""
|
||||
|
||||
for i in xrange(len(x)-1, 0, -1):
|
||||
# pick an element in x[:i+1] with which to exchange x[i]
|
||||
# pick an element in x[:i+1] with which to exchange x[i]
|
||||
j = int(random() * (i+1))
|
||||
x[i], x[j] = x[j], x[i]
|
||||
|
||||
# -------------------- test program --------------------
|
||||
|
||||
def test(N = 200):
|
||||
print 'TWOPI =', TWOPI
|
||||
print 'LOG4 =', LOG4
|
||||
print 'NV_MAGICCONST =', NV_MAGICCONST
|
||||
print 'SG_MAGICCONST =', SG_MAGICCONST
|
||||
test_generator(N, 'random()')
|
||||
test_generator(N, 'normalvariate(0.0, 1.0)')
|
||||
test_generator(N, 'lognormvariate(0.0, 1.0)')
|
||||
test_generator(N, 'cunifvariate(0.0, 1.0)')
|
||||
test_generator(N, 'expovariate(1.0)')
|
||||
test_generator(N, 'vonmisesvariate(0.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(0.5, 1.0)')
|
||||
test_generator(N, 'gammavariate(0.9, 1.0)')
|
||||
test_generator(N, 'gammavariate(1.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(2.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(20.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(200.0, 1.0)')
|
||||
test_generator(N, 'gauss(0.0, 1.0)')
|
||||
test_generator(N, 'betavariate(3.0, 3.0)')
|
||||
test_generator(N, 'paretovariate(1.0)')
|
||||
test_generator(N, 'weibullvariate(1.0, 1.0)')
|
||||
print 'TWOPI =', TWOPI
|
||||
print 'LOG4 =', LOG4
|
||||
print 'NV_MAGICCONST =', NV_MAGICCONST
|
||||
print 'SG_MAGICCONST =', SG_MAGICCONST
|
||||
test_generator(N, 'random()')
|
||||
test_generator(N, 'normalvariate(0.0, 1.0)')
|
||||
test_generator(N, 'lognormvariate(0.0, 1.0)')
|
||||
test_generator(N, 'cunifvariate(0.0, 1.0)')
|
||||
test_generator(N, 'expovariate(1.0)')
|
||||
test_generator(N, 'vonmisesvariate(0.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(0.5, 1.0)')
|
||||
test_generator(N, 'gammavariate(0.9, 1.0)')
|
||||
test_generator(N, 'gammavariate(1.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(2.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(20.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(200.0, 1.0)')
|
||||
test_generator(N, 'gauss(0.0, 1.0)')
|
||||
test_generator(N, 'betavariate(3.0, 3.0)')
|
||||
test_generator(N, 'paretovariate(1.0)')
|
||||
test_generator(N, 'weibullvariate(1.0, 1.0)')
|
||||
|
||||
def test_generator(n, funccall):
|
||||
import time
|
||||
print n, 'times', funccall
|
||||
code = compile(funccall, funccall, 'eval')
|
||||
sum = 0.0
|
||||
sqsum = 0.0
|
||||
smallest = 1e10
|
||||
largest = -1e10
|
||||
t0 = time.time()
|
||||
for i in range(n):
|
||||
x = eval(code)
|
||||
sum = sum + x
|
||||
sqsum = sqsum + x*x
|
||||
smallest = min(x, smallest)
|
||||
largest = max(x, largest)
|
||||
t1 = time.time()
|
||||
print round(t1-t0, 3), 'sec,',
|
||||
avg = sum/n
|
||||
stddev = sqrt(sqsum/n - avg*avg)
|
||||
print 'avg %g, stddev %g, min %g, max %g' % \
|
||||
(avg, stddev, smallest, largest)
|
||||
import time
|
||||
print n, 'times', funccall
|
||||
code = compile(funccall, funccall, 'eval')
|
||||
sum = 0.0
|
||||
sqsum = 0.0
|
||||
smallest = 1e10
|
||||
largest = -1e10
|
||||
t0 = time.time()
|
||||
for i in range(n):
|
||||
x = eval(code)
|
||||
sum = sum + x
|
||||
sqsum = sqsum + x*x
|
||||
smallest = min(x, smallest)
|
||||
largest = max(x, largest)
|
||||
t1 = time.time()
|
||||
print round(t1-t0, 3), 'sec,',
|
||||
avg = sum/n
|
||||
stddev = sqrt(sqsum/n - avg*avg)
|
||||
print 'avg %g, stddev %g, min %g, max %g' % \
|
||||
(avg, stddev, smallest, largest)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
||||
test()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue