mirror of
https://github.com/python/cpython.git
synced 2025-12-10 11:00:14 +00:00
Rename testSum to testFsum and move it to proper place in test_math.py
This commit is contained in:
parent
cda5ce24ed
commit
0f6414a0d6
1 changed files with 96 additions and 97 deletions
|
|
@ -364,6 +364,102 @@ class MathTests(unittest.TestCase):
|
||||||
self.assertEquals(math.frexp(NINF)[0], NINF)
|
self.assertEquals(math.frexp(NINF)[0], NINF)
|
||||||
self.assert_(math.isnan(math.frexp(NAN)[0]))
|
self.assert_(math.isnan(math.frexp(NAN)[0]))
|
||||||
|
|
||||||
|
def testFsum(self):
|
||||||
|
# math.fsum relies on exact rounding for correct operation.
|
||||||
|
# There's a known problem with IA32 floating-point that causes
|
||||||
|
# inexact rounding in some situations, and will cause the
|
||||||
|
# math.fsum tests below to fail; see issue #2937. On non IEEE
|
||||||
|
# 754 platforms, and on IEEE 754 platforms that exhibit the
|
||||||
|
# problem described in issue #2937, we simply skip the whole
|
||||||
|
# test.
|
||||||
|
|
||||||
|
if not float.__getformat__("double").startswith("IEEE"):
|
||||||
|
return
|
||||||
|
|
||||||
|
# on IEEE 754 compliant machines, both of the expressions
|
||||||
|
# below should round to 10000000000000002.0.
|
||||||
|
if 1e16+2.0 != 1e16+2.9999:
|
||||||
|
return
|
||||||
|
|
||||||
|
# Python version of math.fsum, for comparison. Uses a
|
||||||
|
# different algorithm based on frexp, ldexp and integer
|
||||||
|
# arithmetic.
|
||||||
|
from sys import float_info
|
||||||
|
mant_dig = float_info.mant_dig
|
||||||
|
etiny = float_info.min_exp - mant_dig
|
||||||
|
|
||||||
|
def msum(iterable):
|
||||||
|
"""Full precision summation. Compute sum(iterable) without any
|
||||||
|
intermediate accumulation of error. Based on the 'lsum' function
|
||||||
|
at http://code.activestate.com/recipes/393090/
|
||||||
|
|
||||||
|
"""
|
||||||
|
tmant, texp = 0, 0
|
||||||
|
for x in iterable:
|
||||||
|
mant, exp = math.frexp(x)
|
||||||
|
mant, exp = int(math.ldexp(mant, mant_dig)), exp - mant_dig
|
||||||
|
if texp > exp:
|
||||||
|
tmant <<= texp-exp
|
||||||
|
texp = exp
|
||||||
|
else:
|
||||||
|
mant <<= exp-texp
|
||||||
|
tmant += mant
|
||||||
|
# Round tmant * 2**texp to a float. The original recipe
|
||||||
|
# used float(str(tmant)) * 2.0**texp for this, but that's
|
||||||
|
# a little unsafe because str -> float conversion can't be
|
||||||
|
# relied upon to do correct rounding on all platforms.
|
||||||
|
tail = max(len(bin(abs(tmant)))-2 - mant_dig, etiny - texp)
|
||||||
|
if tail > 0:
|
||||||
|
h = 1 << (tail-1)
|
||||||
|
tmant = tmant // (2*h) + bool(tmant & h and tmant & 3*h-1)
|
||||||
|
texp += tail
|
||||||
|
return math.ldexp(tmant, texp)
|
||||||
|
|
||||||
|
test_values = [
|
||||||
|
([], 0.0),
|
||||||
|
([0.0], 0.0),
|
||||||
|
([1e100, 1.0, -1e100, 1e-100, 1e50, -1.0, -1e50], 1e-100),
|
||||||
|
([2.0**53, -0.5, -2.0**-54], 2.0**53-1.0),
|
||||||
|
([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0),
|
||||||
|
([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0),
|
||||||
|
([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0),
|
||||||
|
([1./n for n in range(1, 1001)],
|
||||||
|
float.fromhex('0x1.df11f45f4e61ap+2')),
|
||||||
|
([(-1.)**n/n for n in range(1, 1001)],
|
||||||
|
float.fromhex('-0x1.62a2af1bd3624p-1')),
|
||||||
|
([1.7**(i+1)-1.7**i for i in range(1000)] + [-1.7**1000], -1.0),
|
||||||
|
([1e16, 1., 1e-16], 10000000000000002.0),
|
||||||
|
([1e16-2., 1.-2.**-53, -(1e16-2.), -(1.-2.**-53)], 0.0),
|
||||||
|
# exercise code for resizing partials array
|
||||||
|
([2.**n - 2.**(n+50) + 2.**(n+52) for n in range(-1074, 972, 2)] +
|
||||||
|
[-2.**1022],
|
||||||
|
float.fromhex('0x1.5555555555555p+970')),
|
||||||
|
]
|
||||||
|
|
||||||
|
for i, (vals, expected) in enumerate(test_values):
|
||||||
|
try:
|
||||||
|
actual = math.fsum(vals)
|
||||||
|
except OverflowError:
|
||||||
|
self.fail("test %d failed: got OverflowError, expected %r "
|
||||||
|
"for math.fsum(%.100r)" % (i, expected, vals))
|
||||||
|
except ValueError:
|
||||||
|
self.fail("test %d failed: got ValueError, expected %r "
|
||||||
|
"for math.fsum(%.100r)" % (i, expected, vals))
|
||||||
|
self.assertEqual(actual, expected)
|
||||||
|
|
||||||
|
from random import random, gauss, shuffle
|
||||||
|
for j in xrange(1000):
|
||||||
|
vals = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10
|
||||||
|
s = 0
|
||||||
|
for i in xrange(200):
|
||||||
|
v = gauss(0, random()) ** 7 - s
|
||||||
|
s += v
|
||||||
|
vals.append(v)
|
||||||
|
shuffle(vals)
|
||||||
|
|
||||||
|
s = msum(vals)
|
||||||
|
self.assertEqual(msum(vals), math.fsum(vals))
|
||||||
|
|
||||||
def testHypot(self):
|
def testHypot(self):
|
||||||
self.assertRaises(TypeError, math.hypot)
|
self.assertRaises(TypeError, math.hypot)
|
||||||
self.ftest('hypot(0,0)', math.hypot(0,0), 0)
|
self.ftest('hypot(0,0)', math.hypot(0,0), 0)
|
||||||
|
|
@ -645,103 +741,6 @@ class MathTests(unittest.TestCase):
|
||||||
self.assertRaises(ValueError, math.sqrt, NINF)
|
self.assertRaises(ValueError, math.sqrt, NINF)
|
||||||
self.assert_(math.isnan(math.sqrt(NAN)))
|
self.assert_(math.isnan(math.sqrt(NAN)))
|
||||||
|
|
||||||
def testSum(self):
|
|
||||||
# math.fsum relies on exact rounding for correct operation.
|
|
||||||
# There's a known problem with IA32 floating-point that causes
|
|
||||||
# inexact rounding in some situations, and will cause the
|
|
||||||
# math.fsum tests below to fail; see issue #2937. On non IEEE
|
|
||||||
# 754 platforms, and on IEEE 754 platforms that exhibit the
|
|
||||||
# problem described in issue #2937, we simply skip the whole
|
|
||||||
# test.
|
|
||||||
|
|
||||||
if not float.__getformat__("double").startswith("IEEE"):
|
|
||||||
return
|
|
||||||
|
|
||||||
# on IEEE 754 compliant machines, both of the expressions
|
|
||||||
# below should round to 10000000000000002.0.
|
|
||||||
if 1e16+2.0 != 1e16+2.9999:
|
|
||||||
return
|
|
||||||
|
|
||||||
# Python version of math.fsum, for comparison. Uses a
|
|
||||||
# different algorithm based on frexp, ldexp and integer
|
|
||||||
# arithmetic.
|
|
||||||
from sys import float_info
|
|
||||||
mant_dig = float_info.mant_dig
|
|
||||||
etiny = float_info.min_exp - mant_dig
|
|
||||||
|
|
||||||
def msum(iterable):
|
|
||||||
"""Full precision summation. Compute sum(iterable) without any
|
|
||||||
intermediate accumulation of error. Based on the 'lsum' function
|
|
||||||
at http://code.activestate.com/recipes/393090/
|
|
||||||
|
|
||||||
"""
|
|
||||||
tmant, texp = 0, 0
|
|
||||||
for x in iterable:
|
|
||||||
mant, exp = math.frexp(x)
|
|
||||||
mant, exp = int(math.ldexp(mant, mant_dig)), exp - mant_dig
|
|
||||||
if texp > exp:
|
|
||||||
tmant <<= texp-exp
|
|
||||||
texp = exp
|
|
||||||
else:
|
|
||||||
mant <<= exp-texp
|
|
||||||
tmant += mant
|
|
||||||
# Round tmant * 2**texp to a float. The original recipe
|
|
||||||
# used float(str(tmant)) * 2.0**texp for this, but that's
|
|
||||||
# a little unsafe because str -> float conversion can't be
|
|
||||||
# relied upon to do correct rounding on all platforms.
|
|
||||||
tail = max(len(bin(abs(tmant)))-2 - mant_dig, etiny - texp)
|
|
||||||
if tail > 0:
|
|
||||||
h = 1 << (tail-1)
|
|
||||||
tmant = tmant // (2*h) + bool(tmant & h and tmant & 3*h-1)
|
|
||||||
texp += tail
|
|
||||||
return math.ldexp(tmant, texp)
|
|
||||||
|
|
||||||
test_values = [
|
|
||||||
([], 0.0),
|
|
||||||
([0.0], 0.0),
|
|
||||||
([1e100, 1.0, -1e100, 1e-100, 1e50, -1.0, -1e50], 1e-100),
|
|
||||||
([2.0**53, -0.5, -2.0**-54], 2.0**53-1.0),
|
|
||||||
([2.0**53, 1.0, 2.0**-100], 2.0**53+2.0),
|
|
||||||
([2.0**53+10.0, 1.0, 2.0**-100], 2.0**53+12.0),
|
|
||||||
([2.0**53-4.0, 0.5, 2.0**-54], 2.0**53-3.0),
|
|
||||||
([1./n for n in range(1, 1001)],
|
|
||||||
float.fromhex('0x1.df11f45f4e61ap+2')),
|
|
||||||
([(-1.)**n/n for n in range(1, 1001)],
|
|
||||||
float.fromhex('-0x1.62a2af1bd3624p-1')),
|
|
||||||
([1.7**(i+1)-1.7**i for i in range(1000)] + [-1.7**1000], -1.0),
|
|
||||||
([1e16, 1., 1e-16], 10000000000000002.0),
|
|
||||||
([1e16-2., 1.-2.**-53, -(1e16-2.), -(1.-2.**-53)], 0.0),
|
|
||||||
# exercise code for resizing partials array
|
|
||||||
([2.**n - 2.**(n+50) + 2.**(n+52) for n in range(-1074, 972, 2)] +
|
|
||||||
[-2.**1022],
|
|
||||||
float.fromhex('0x1.5555555555555p+970')),
|
|
||||||
]
|
|
||||||
|
|
||||||
for i, (vals, expected) in enumerate(test_values):
|
|
||||||
try:
|
|
||||||
actual = math.fsum(vals)
|
|
||||||
except OverflowError:
|
|
||||||
self.fail("test %d failed: got OverflowError, expected %r "
|
|
||||||
"for math.fsum(%.100r)" % (i, expected, vals))
|
|
||||||
except ValueError:
|
|
||||||
self.fail("test %d failed: got ValueError, expected %r "
|
|
||||||
"for math.fsum(%.100r)" % (i, expected, vals))
|
|
||||||
self.assertEqual(actual, expected)
|
|
||||||
|
|
||||||
from random import random, gauss, shuffle
|
|
||||||
for j in xrange(1000):
|
|
||||||
vals = [7, 1e100, -7, -1e100, -9e-20, 8e-20] * 10
|
|
||||||
s = 0
|
|
||||||
for i in xrange(200):
|
|
||||||
v = gauss(0, random()) ** 7 - s
|
|
||||||
s += v
|
|
||||||
vals.append(v)
|
|
||||||
shuffle(vals)
|
|
||||||
|
|
||||||
s = msum(vals)
|
|
||||||
self.assertEqual(msum(vals), math.fsum(vals))
|
|
||||||
|
|
||||||
|
|
||||||
def testTan(self):
|
def testTan(self):
|
||||||
self.assertRaises(TypeError, math.tan)
|
self.assertRaises(TypeError, math.tan)
|
||||||
self.ftest('tan(0)', math.tan(0), 0)
|
self.ftest('tan(0)', math.tan(0), 0)
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue