bpo-36018: Add the NormalDist class to the statistics module (GH-11973)

This commit is contained in:
Raymond Hettinger 2019-02-23 14:44:07 -08:00 committed by GitHub
parent 64d6cc826d
commit 11c7953165
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 556 additions and 1 deletions

View file

@ -76,7 +76,7 @@ A single exception is defined: StatisticsError is a subclass of ValueError.
"""
__all__ = [ 'StatisticsError',
__all__ = [ 'StatisticsError', 'NormalDist',
'pstdev', 'pvariance', 'stdev', 'variance',
'median', 'median_low', 'median_high', 'median_grouped',
'mean', 'mode', 'harmonic_mean', 'fmean',
@ -85,11 +85,13 @@ __all__ = [ 'StatisticsError',
import collections
import math
import numbers
import random
from fractions import Fraction
from decimal import Decimal
from itertools import groupby
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau
@ -694,3 +696,155 @@ def pstdev(data, mu=None):
return var.sqrt()
except AttributeError:
return math.sqrt(var)
## Normal Distribution #####################################################
class NormalDist:
'Normal distribution of a random variable'
# https://en.wikipedia.org/wiki/Normal_distribution
# https://en.wikipedia.org/wiki/Variance#Properties
__slots__ = ('mu', 'sigma')
def __init__(self, mu=0.0, sigma=1.0):
'NormalDist where mu is the mean and sigma is the standard deviation'
if sigma < 0.0:
raise StatisticsError('sigma must be non-negative')
self.mu = mu
self.sigma = sigma
@classmethod
def from_samples(cls, data):
'Make a normal distribution instance from sample data'
if not isinstance(data, (list, tuple)):
data = list(data)
xbar = fmean(data)
return cls(xbar, stdev(data, xbar))
def samples(self, n, seed=None):
'Generate *n* samples for a given mean and standard deviation'
gauss = random.gauss if seed is None else random.Random(seed).gauss
mu, sigma = self.mu, self.sigma
return [gauss(mu, sigma) for i in range(n)]
def pdf(self, x):
'Probability density function: P(x <= X < x+dx) / dx'
variance = self.sigma ** 2.0
if not variance:
raise StatisticsError('pdf() not defined when sigma is zero')
return exp((x - self.mu)**2.0 / (-2.0*variance)) / sqrt(tau * variance)
def cdf(self, x):
'Cumulative density function: P(X <= x)'
if not self.sigma:
raise StatisticsError('cdf() not defined when sigma is zero')
return 0.5 * (1.0 + erf((x - self.mu) / (self.sigma * sqrt(2.0))))
@property
def variance(self):
'Square of the standard deviation'
return self.sigma ** 2.0
def __add__(x1, x2):
if isinstance(x2, NormalDist):
return NormalDist(x1.mu + x2.mu, hypot(x1.sigma, x2.sigma))
return NormalDist(x1.mu + x2, x1.sigma)
def __sub__(x1, x2):
if isinstance(x2, NormalDist):
return NormalDist(x1.mu - x2.mu, hypot(x1.sigma, x2.sigma))
return NormalDist(x1.mu - x2, x1.sigma)
def __mul__(x1, x2):
return NormalDist(x1.mu * x2, x1.sigma * fabs(x2))
def __truediv__(x1, x2):
return NormalDist(x1.mu / x2, x1.sigma / fabs(x2))
def __pos__(x1):
return x1
def __neg__(x1):
return NormalDist(-x1.mu, x1.sigma)
__radd__ = __add__
def __rsub__(x1, x2):
return -(x1 - x2)
__rmul__ = __mul__
def __eq__(x1, x2):
if not isinstance(x2, NormalDist):
return NotImplemented
return (x1.mu, x2.sigma) == (x2.mu, x2.sigma)
def __repr__(self):
return f'{type(self).__name__}(mu={self.mu!r}, sigma={self.sigma!r})'
if __name__ == '__main__':
# Show math operations computed analytically in comparsion
# to a monte carlo simulation of the same operations
from math import isclose
from operator import add, sub, mul, truediv
from itertools import repeat
g1 = NormalDist(10, 20)
g2 = NormalDist(-5, 25)
# Test scaling by a constant
assert (g1 * 5 / 5).mu == g1.mu
assert (g1 * 5 / 5).sigma == g1.sigma
n = 100_000
G1 = g1.samples(n)
G2 = g2.samples(n)
for func in (add, sub):
print(f'\nTest {func.__name__} with another NormalDist:')
print(func(g1, g2))
print(NormalDist.from_samples(map(func, G1, G2)))
const = 11
for func in (add, sub, mul, truediv):
print(f'\nTest {func.__name__} with a constant:')
print(func(g1, const))
print(NormalDist.from_samples(map(func, G1, repeat(const))))
const = 19
for func in (add, sub, mul):
print(f'\nTest constant with {func.__name__}:')
print(func(const, g1))
print(NormalDist.from_samples(map(func, repeat(const), G1)))
def assert_close(G1, G2):
assert isclose(G1.mu, G1.mu, rel_tol=0.01), (G1, G2)
assert isclose(G1.sigma, G2.sigma, rel_tol=0.01), (G1, G2)
X = NormalDist(-105, 73)
Y = NormalDist(31, 47)
s = 32.75
n = 100_000
S = NormalDist.from_samples([x + s for x in X.samples(n)])
assert_close(X + s, S)
S = NormalDist.from_samples([x - s for x in X.samples(n)])
assert_close(X - s, S)
S = NormalDist.from_samples([x * s for x in X.samples(n)])
assert_close(X * s, S)
S = NormalDist.from_samples([x / s for x in X.samples(n)])
assert_close(X / s, S)
S = NormalDist.from_samples([x + y for x, y in zip(X.samples(n),
Y.samples(n))])
assert_close(X + Y, S)
S = NormalDist.from_samples([x - y for x, y in zip(X.samples(n),
Y.samples(n))])
assert_close(X - Y, S)