bpo-36018: Add the NormalDist class to the statistics module (GH-11973)

This commit is contained in:
Raymond Hettinger 2019-02-23 14:44:07 -08:00 committed by GitHub
parent 64d6cc826d
commit 11c7953165
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 556 additions and 1 deletions

View file

@ -5,9 +5,11 @@ approx_equal function.
import collections
import collections.abc
import copy
import decimal
import doctest
import math
import pickle
import random
import sys
import unittest
@ -2025,6 +2027,181 @@ class TestStdev(VarianceStdevMixin, NumericTestCase):
expected = math.sqrt(statistics.variance(data))
self.assertEqual(self.func(data), expected)
class TestNormalDist(unittest.TestCase):
def test_slots(self):
nd = statistics.NormalDist(300, 23)
with self.assertRaises(TypeError):
vars(nd)
self.assertEqual(nd.__slots__, ('mu', 'sigma'))
def test_instantiation_and_attributes(self):
nd = statistics.NormalDist(500, 17)
self.assertEqual(nd.mu, 500)
self.assertEqual(nd.sigma, 17)
self.assertEqual(nd.variance, 17**2)
# default arguments
nd = statistics.NormalDist()
self.assertEqual(nd.mu, 0)
self.assertEqual(nd.sigma, 1)
self.assertEqual(nd.variance, 1**2)
# error case: negative sigma
with self.assertRaises(statistics.StatisticsError):
statistics.NormalDist(500, -10)
def test_alternative_constructor(self):
NormalDist = statistics.NormalDist
data = [96, 107, 90, 92, 110]
# list input
self.assertEqual(NormalDist.from_samples(data), NormalDist(99, 9))
# tuple input
self.assertEqual(NormalDist.from_samples(tuple(data)), NormalDist(99, 9))
# iterator input
self.assertEqual(NormalDist.from_samples(iter(data)), NormalDist(99, 9))
# error cases
with self.assertRaises(statistics.StatisticsError):
NormalDist.from_samples([]) # empty input
with self.assertRaises(statistics.StatisticsError):
NormalDist.from_samples([10]) # only one input
def test_sample_generation(self):
NormalDist = statistics.NormalDist
mu, sigma = 10_000, 3.0
X = NormalDist(mu, sigma)
n = 1_000
data = X.samples(n)
self.assertEqual(len(data), n)
self.assertEqual(set(map(type, data)), {float})
# mean(data) expected to fall within 8 standard deviations
xbar = statistics.mean(data)
self.assertTrue(mu - sigma*8 <= xbar <= mu + sigma*8)
# verify that seeding makes reproducible sequences
n = 100
data1 = X.samples(n, seed='happiness and joy')
data2 = X.samples(n, seed='trouble and despair')
data3 = X.samples(n, seed='happiness and joy')
data4 = X.samples(n, seed='trouble and despair')
self.assertEqual(data1, data3)
self.assertEqual(data2, data4)
self.assertNotEqual(data1, data2)
# verify that subclass type is honored
class NewNormalDist(NormalDist):
pass
nnd = NewNormalDist(200, 5)
self.assertEqual(type(nnd), NewNormalDist)
def test_pdf(self):
NormalDist = statistics.NormalDist
X = NormalDist(100, 15)
# Verify peak around center
self.assertLess(X.pdf(99), X.pdf(100))
self.assertLess(X.pdf(101), X.pdf(100))
# Test symmetry
self.assertAlmostEqual(X.pdf(99), X.pdf(101))
self.assertAlmostEqual(X.pdf(98), X.pdf(102))
self.assertAlmostEqual(X.pdf(97), X.pdf(103))
# Test vs CDF
dx = 2.0 ** -10
for x in range(90, 111):
est_pdf = (X.cdf(x + dx) - X.cdf(x)) / dx
self.assertAlmostEqual(X.pdf(x), est_pdf, places=4)
# Error case: variance is zero
Y = NormalDist(100, 0)
with self.assertRaises(statistics.StatisticsError):
Y.pdf(90)
def test_cdf(self):
NormalDist = statistics.NormalDist
X = NormalDist(100, 15)
cdfs = [X.cdf(x) for x in range(1, 200)]
self.assertEqual(set(map(type, cdfs)), {float})
# Verify montonic
self.assertEqual(cdfs, sorted(cdfs))
# Verify center
self.assertAlmostEqual(X.cdf(100), 0.50)
# Error case: variance is zero
Y = NormalDist(100, 0)
with self.assertRaises(statistics.StatisticsError):
Y.cdf(90)
def test_same_type_addition_and_subtraction(self):
NormalDist = statistics.NormalDist
X = NormalDist(100, 12)
Y = NormalDist(40, 5)
self.assertEqual(X + Y, NormalDist(140, 13)) # __add__
self.assertEqual(X - Y, NormalDist(60, 13)) # __sub__
def test_translation_and_scaling(self):
NormalDist = statistics.NormalDist
X = NormalDist(100, 15)
y = 10
self.assertEqual(+X, NormalDist(100, 15)) # __pos__
self.assertEqual(-X, NormalDist(-100, 15)) # __neg__
self.assertEqual(X + y, NormalDist(110, 15)) # __add__
self.assertEqual(y + X, NormalDist(110, 15)) # __radd__
self.assertEqual(X - y, NormalDist(90, 15)) # __sub__
self.assertEqual(y - X, NormalDist(-90, 15)) # __rsub__
self.assertEqual(X * y, NormalDist(1000, 150)) # __mul__
self.assertEqual(y * X, NormalDist(1000, 150)) # __rmul__
self.assertEqual(X / y, NormalDist(10, 1.5)) # __truediv__
with self.assertRaises(TypeError):
y / X
def test_equality(self):
NormalDist = statistics.NormalDist
nd1 = NormalDist()
nd2 = NormalDist(2, 4)
nd3 = NormalDist()
self.assertNotEqual(nd1, nd2)
self.assertEqual(nd1, nd3)
# Test NotImplemented when types are different
class A:
def __eq__(self, other):
return 10
a = A()
self.assertEqual(nd1.__eq__(a), NotImplemented)
self.assertEqual(nd1 == a, 10)
self.assertEqual(a == nd1, 10)
# All subclasses to compare equal giving the same behavior
# as list, tuple, int, float, complex, str, dict, set, etc.
class SizedNormalDist(NormalDist):
def __init__(self, mu, sigma, n):
super().__init__(mu, sigma)
self.n = n
s = SizedNormalDist(100, 15, 57)
nd4 = NormalDist(100, 15)
self.assertEqual(s, nd4)
# Don't allow duck type equality because we wouldn't
# want a lognormal distribution to compare equal
# to a normal distribution with the same parameters
class LognormalDist:
def __init__(self, mu, sigma):
self.mu = mu
self.sigma = sigma
lnd = LognormalDist(100, 15)
nd = NormalDist(100, 15)
self.assertNotEqual(nd, lnd)
def test_pickle_and_copy(self):
nd = statistics.NormalDist(37.5, 5.625)
nd1 = copy.copy(nd)
self.assertEqual(nd, nd1)
nd2 = copy.deepcopy(nd)
self.assertEqual(nd, nd2)
nd3 = pickle.loads(pickle.dumps(nd))
self.assertEqual(nd, nd3)
def test_repr(self):
nd = statistics.NormalDist(37.5, 5.625)
self.assertEqual(repr(nd), 'NormalDist(mu=37.5, sigma=5.625)')
# === Run tests ===