mirror of
https://github.com/python/cpython.git
synced 2025-07-24 11:44:31 +00:00
Beef-up tests for the itertool docs. (gh-116679)
This commit is contained in:
parent
290330714b
commit
126186674e
1 changed files with 103 additions and 9 deletions
|
@ -998,7 +998,7 @@ The following recipes have a more mathematical flavor:
|
|||
|
||||
def sum_of_squares(it):
|
||||
"Add up the squares of the input values."
|
||||
# sum_of_squares([10, 20, 30]) -> 1400
|
||||
# sum_of_squares([10, 20, 30]) --> 1400
|
||||
return math.sumprod(*tee(it))
|
||||
|
||||
def reshape(matrix, cols):
|
||||
|
@ -1019,17 +1019,16 @@ The following recipes have a more mathematical flavor:
|
|||
|
||||
def convolve(signal, kernel):
|
||||
"""Discrete linear convolution of two iterables.
|
||||
Equivalent to polynomial multiplication.
|
||||
|
||||
The kernel is fully consumed before the calculations begin.
|
||||
The signal is consumed lazily and can be infinite.
|
||||
|
||||
Convolutions are mathematically commutative.
|
||||
If the signal and kernel are swapped,
|
||||
the output will be the same.
|
||||
Convolutions are mathematically commutative; however, the inputs are
|
||||
evaluated differently. The signal is consumed lazily and can be
|
||||
infinite. The kernel is fully consumed before the calculations begin.
|
||||
|
||||
Article: https://betterexplained.com/articles/intuitive-convolution/
|
||||
Video: https://www.youtube.com/watch?v=KuXjwB4LzSA
|
||||
"""
|
||||
# convolve([1, -1, -20], [1, -3]) --> 1 -4 -17 60
|
||||
# convolve(data, [0.25, 0.25, 0.25, 0.25]) --> Moving average (blur)
|
||||
# convolve(data, [1/2, 0, -1/2]) --> 1st derivative estimate
|
||||
# convolve(data, [1, -2, 1]) --> 2nd derivative estimate
|
||||
|
@ -1067,7 +1066,7 @@ The following recipes have a more mathematical flavor:
|
|||
f(x) = x³ -4x² -17x + 60
|
||||
f'(x) = 3x² -8x -17
|
||||
"""
|
||||
# polynomial_derivative([1, -4, -17, 60]) -> [3, -8, -17]
|
||||
# polynomial_derivative([1, -4, -17, 60]) --> [3, -8, -17]
|
||||
n = len(coefficients)
|
||||
powers = reversed(range(1, n))
|
||||
return list(map(operator.mul, coefficients, powers))
|
||||
|
@ -1169,6 +1168,12 @@ The following recipes have a more mathematical flavor:
|
|||
|
||||
>>> take(10, count())
|
||||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
>>> # Verify that the input is consumed lazily
|
||||
>>> it = iter('abcdef')
|
||||
>>> take(3, it)
|
||||
['a', 'b', 'c']
|
||||
>>> list(it)
|
||||
['d', 'e', 'f']
|
||||
|
||||
>>> list(prepend(1, [2, 3, 4]))
|
||||
[1, 2, 3, 4]
|
||||
|
@ -1181,25 +1186,45 @@ The following recipes have a more mathematical flavor:
|
|||
|
||||
>>> list(tail(3, 'ABCDEFG'))
|
||||
['E', 'F', 'G']
|
||||
>>> # Verify the input is consumed greedily
|
||||
>>> input_iterator = iter('ABCDEFG')
|
||||
>>> output_iterator = tail(3, input_iterator)
|
||||
>>> list(input_iterator)
|
||||
[]
|
||||
|
||||
>>> it = iter(range(10))
|
||||
>>> consume(it, 3)
|
||||
>>> # Verify the input is consumed lazily
|
||||
>>> next(it)
|
||||
3
|
||||
>>> # Verify the input is consumed completely
|
||||
>>> consume(it)
|
||||
>>> next(it, 'Done')
|
||||
'Done'
|
||||
|
||||
>>> nth('abcde', 3)
|
||||
'd'
|
||||
|
||||
>>> nth('abcde', 9) is None
|
||||
True
|
||||
>>> # Verify that the input is consumed lazily
|
||||
>>> it = iter('abcde')
|
||||
>>> nth(it, 2)
|
||||
'c'
|
||||
>>> list(it)
|
||||
['d', 'e']
|
||||
|
||||
>>> [all_equal(s) for s in ('', 'A', 'AAAA', 'AAAB', 'AAABA')]
|
||||
[True, True, True, False, False]
|
||||
>>> [all_equal(s, key=str.casefold) for s in ('', 'A', 'AaAa', 'AAAB', 'AAABA')]
|
||||
[True, True, True, False, False]
|
||||
>>> # Verify that the input is consumed lazily and that only
|
||||
>>> # one element of a second equivalence class is used to disprove
|
||||
>>> # the assertion that all elements are equal.
|
||||
>>> it = iter('aaabbbccc')
|
||||
>>> all_equal(it)
|
||||
False
|
||||
>>> ''.join(it)
|
||||
'bbccc'
|
||||
|
||||
>>> quantify(range(99), lambda x: x%2==0)
|
||||
50
|
||||
|
@ -1222,6 +1247,11 @@ The following recipes have a more mathematical flavor:
|
|||
|
||||
>>> list(ncycles('abc', 3))
|
||||
['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']
|
||||
>>> # Verify greedy consumption of input iterator
|
||||
>>> input_iterator = iter('abc')
|
||||
>>> output_iterator = ncycles(input_iterator, 3)
|
||||
>>> list(input_iterator)
|
||||
[]
|
||||
|
||||
>>> sum_of_squares([10, 20, 30])
|
||||
1400
|
||||
|
@ -1248,12 +1278,22 @@ The following recipes have a more mathematical flavor:
|
|||
|
||||
>>> list(transpose([(1, 2, 3), (11, 22, 33)]))
|
||||
[(1, 11), (2, 22), (3, 33)]
|
||||
>>> # Verify that the inputs are consumed lazily
|
||||
>>> input1 = iter([1, 2, 3])
|
||||
>>> input2 = iter([11, 22, 33])
|
||||
>>> output_iterator = transpose([input1, input2])
|
||||
>>> next(output_iterator)
|
||||
(1, 11)
|
||||
>>> list(zip(input1, input2))
|
||||
[(2, 22), (3, 33)]
|
||||
|
||||
>>> list(matmul([(7, 5), (3, 5)], [[2, 5], [7, 9]]))
|
||||
[(49, 80), (41, 60)]
|
||||
>>> list(matmul([[2, 5], [7, 9], [3, 4]], [[7, 11, 5, 4, 9], [3, 5, 2, 6, 3]]))
|
||||
[(29, 47, 20, 38, 33), (76, 122, 53, 82, 90), (33, 53, 23, 36, 39)]
|
||||
|
||||
>>> list(convolve([1, -1, -20], [1, -3])) == [1, -4, -17, 60]
|
||||
True
|
||||
>>> data = [20, 40, 24, 32, 20, 28, 16]
|
||||
>>> list(convolve(data, [0.25, 0.25, 0.25, 0.25]))
|
||||
[5.0, 15.0, 21.0, 29.0, 29.0, 26.0, 24.0, 16.0, 11.0, 4.0]
|
||||
|
@ -1261,6 +1301,18 @@ The following recipes have a more mathematical flavor:
|
|||
[20, 20, -16, 8, -12, 8, -12, -16]
|
||||
>>> list(convolve(data, [1, -2, 1]))
|
||||
[20, 0, -36, 24, -20, 20, -20, -4, 16]
|
||||
>>> # Verify signal is consumed lazily and the kernel greedily
|
||||
>>> signal_iterator = iter([10, 20, 30, 40, 50])
|
||||
>>> kernel_iterator = iter([1, 2, 3])
|
||||
>>> output_iterator = convolve(signal_iterator, kernel_iterator)
|
||||
>>> list(kernel_iterator)
|
||||
[]
|
||||
>>> next(output_iterator)
|
||||
10
|
||||
>>> next(output_iterator)
|
||||
40
|
||||
>>> list(signal_iterator)
|
||||
[30, 40, 50]
|
||||
|
||||
>>> from fractions import Fraction
|
||||
>>> from decimal import Decimal
|
||||
|
@ -1348,6 +1400,17 @@ The following recipes have a more mathematical flavor:
|
|||
>>> # Test list input. Lists do not support None for the stop argument
|
||||
>>> list(iter_index(list('AABCADEAF'), 'A'))
|
||||
[0, 1, 4, 7]
|
||||
>>> # Verify that input is consumed lazily
|
||||
>>> input_iterator = iter('AABCADEAF')
|
||||
>>> output_iterator = iter_index(input_iterator, 'A')
|
||||
>>> next(output_iterator)
|
||||
0
|
||||
>>> next(output_iterator)
|
||||
1
|
||||
>>> next(output_iterator)
|
||||
4
|
||||
>>> ''.join(input_iterator)
|
||||
'DEAF'
|
||||
|
||||
>>> list(sieve(30))
|
||||
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
|
||||
|
@ -1499,6 +1562,17 @@ The following recipes have a more mathematical flavor:
|
|||
[0, 2, 4, 6, 8]
|
||||
>>> list(odds)
|
||||
[1, 3, 5, 7, 9]
|
||||
>>> # Verify that the input is consumed lazily
|
||||
>>> input_iterator = iter(range(10))
|
||||
>>> evens, odds = partition(is_odd, input_iterator)
|
||||
>>> next(odds)
|
||||
1
|
||||
>>> next(odds)
|
||||
3
|
||||
>>> next(evens)
|
||||
0
|
||||
>>> list(input_iterator)
|
||||
[4, 5, 6, 7, 8, 9]
|
||||
|
||||
>>> list(subslices('ABCD'))
|
||||
['A', 'AB', 'ABC', 'ABCD', 'B', 'BC', 'BCD', 'C', 'CD', 'D']
|
||||
|
@ -1518,6 +1592,13 @@ The following recipes have a more mathematical flavor:
|
|||
['A', 'B', 'C', 'D']
|
||||
>>> list(unique_everseen('ABBcCAD', str.casefold))
|
||||
['A', 'B', 'c', 'D']
|
||||
>>> # Verify that the input is consumed lazily
|
||||
>>> input_iterator = iter('AAAABBBCCDAABBB')
|
||||
>>> output_iterator = unique_everseen(input_iterator)
|
||||
>>> next(output_iterator)
|
||||
'A'
|
||||
>>> ''.join(input_iterator)
|
||||
'AAABBBCCDAABBB'
|
||||
|
||||
>>> list(unique_justseen('AAAABBBCCDAABBB'))
|
||||
['A', 'B', 'C', 'D', 'A', 'B']
|
||||
|
@ -1525,6 +1606,13 @@ The following recipes have a more mathematical flavor:
|
|||
['A', 'B', 'C', 'A', 'D']
|
||||
>>> list(unique_justseen('ABBcCAD', str.casefold))
|
||||
['A', 'B', 'c', 'A', 'D']
|
||||
>>> # Verify that the input is consumed lazily
|
||||
>>> input_iterator = iter('AAAABBBCCDAABBB')
|
||||
>>> output_iterator = unique_justseen(input_iterator)
|
||||
>>> next(output_iterator)
|
||||
'A'
|
||||
>>> ''.join(input_iterator)
|
||||
'AAABBBCCDAABBB'
|
||||
|
||||
>>> d = dict(a=1, b=2, c=3)
|
||||
>>> it = iter_except(d.popitem, KeyError)
|
||||
|
@ -1545,6 +1633,12 @@ The following recipes have a more mathematical flavor:
|
|||
|
||||
>>> first_true('ABC0DEF1', '9', str.isdigit)
|
||||
'0'
|
||||
>>> # Verify that inputs are consumed lazily
|
||||
>>> it = iter('ABC0DEF1')
|
||||
>>> first_true(it, predicate=str.isdigit)
|
||||
'0'
|
||||
>>> ''.join(it)
|
||||
'DEF1'
|
||||
|
||||
|
||||
.. testcode::
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue