mirror of
https://github.com/python/cpython.git
synced 2025-09-11 03:07:01 +00:00
Whitespace normalization, via reindent.py.
This commit is contained in:
parent
e6ddc8b20b
commit
182b5aca27
453 changed files with 31318 additions and 31452 deletions
|
@ -6,47 +6,47 @@
|
|||
# taken out by normalize().
|
||||
|
||||
def normalize(p): # Strip unnecessary zero coefficients
|
||||
n = len(p)
|
||||
while n:
|
||||
if p[n-1]: return p[:n]
|
||||
n = n-1
|
||||
return []
|
||||
n = len(p)
|
||||
while n:
|
||||
if p[n-1]: return p[:n]
|
||||
n = n-1
|
||||
return []
|
||||
|
||||
def plus(a, b):
|
||||
if len(a) < len(b): a, b = b, a # make sure a is the longest
|
||||
res = a[:] # make a copy
|
||||
for i in range(len(b)):
|
||||
res[i] = res[i] + b[i]
|
||||
return normalize(res)
|
||||
if len(a) < len(b): a, b = b, a # make sure a is the longest
|
||||
res = a[:] # make a copy
|
||||
for i in range(len(b)):
|
||||
res[i] = res[i] + b[i]
|
||||
return normalize(res)
|
||||
|
||||
def minus(a, b):
|
||||
neg_b = map(lambda x: -x, b[:])
|
||||
return plus(a, neg_b)
|
||||
neg_b = map(lambda x: -x, b[:])
|
||||
return plus(a, neg_b)
|
||||
|
||||
def one(power, coeff): # Representation of coeff * x**power
|
||||
res = []
|
||||
for i in range(power): res.append(0)
|
||||
return res + [coeff]
|
||||
res = []
|
||||
for i in range(power): res.append(0)
|
||||
return res + [coeff]
|
||||
|
||||
def times(a, b):
|
||||
res = []
|
||||
for i in range(len(a)):
|
||||
for j in range(len(b)):
|
||||
res = plus(res, one(i+j, a[i]*b[j]))
|
||||
return res
|
||||
res = []
|
||||
for i in range(len(a)):
|
||||
for j in range(len(b)):
|
||||
res = plus(res, one(i+j, a[i]*b[j]))
|
||||
return res
|
||||
|
||||
def power(a, n): # Raise polynomial a to the positive integral power n
|
||||
if n == 0: return [1]
|
||||
if n == 1: return a
|
||||
if n/2*2 == n:
|
||||
b = power(a, n/2)
|
||||
return times(b, b)
|
||||
return times(power(a, n-1), a)
|
||||
if n == 0: return [1]
|
||||
if n == 1: return a
|
||||
if n/2*2 == n:
|
||||
b = power(a, n/2)
|
||||
return times(b, b)
|
||||
return times(power(a, n-1), a)
|
||||
|
||||
def der(a): # First derivative
|
||||
res = a[1:]
|
||||
for i in range(len(res)):
|
||||
res[i] = res[i] * (i+1)
|
||||
return res
|
||||
res = a[1:]
|
||||
for i in range(len(res)):
|
||||
res[i] = res[i] * (i+1)
|
||||
return res
|
||||
|
||||
# Computing a primitive function would require rational arithmetic...
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue