mirror of
https://github.com/python/cpython.git
synced 2025-08-03 16:39:00 +00:00
GH-113464: Generate a more efficient JIT (GH-118512)
This commit is contained in:
parent
139dc487b5
commit
1b7e5e6e60
3 changed files with 418 additions and 392 deletions
587
Python/jit.c
587
Python/jit.c
|
@ -16,8 +16,6 @@
|
|||
#include "pycore_sliceobject.h"
|
||||
#include "pycore_jit.h"
|
||||
|
||||
#include "jit_stencils.h"
|
||||
|
||||
// Memory management stuff: ////////////////////////////////////////////////////
|
||||
|
||||
#ifndef MS_WINDOWS
|
||||
|
@ -146,256 +144,275 @@ set_bits(uint32_t *loc, uint8_t loc_start, uint64_t value, uint8_t value_start,
|
|||
#define IS_AARCH64_LDR_OR_STR(I) (((I) & 0x3B000000) == 0x39000000)
|
||||
#define IS_AARCH64_MOV(I) (((I) & 0x9F800000) == 0x92800000)
|
||||
|
||||
// Fill all of stencil's holes in the memory pointed to by base, using the
|
||||
// values in patches.
|
||||
static void
|
||||
patch(unsigned char *base, const Stencil *stencil, uintptr_t patches[])
|
||||
// LLD is a great reference for performing relocations... just keep in
|
||||
// mind that Tools/jit/build.py does filtering and preprocessing for us!
|
||||
// Here's a good place to start for each platform:
|
||||
// - aarch64-apple-darwin:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64.cpp
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.cpp
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.h
|
||||
// - aarch64-pc-windows-msvc:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
|
||||
// - aarch64-unknown-linux-gnu:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/AArch64.cpp
|
||||
// - i686-pc-windows-msvc:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
|
||||
// - x86_64-apple-darwin:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/X86_64.cpp
|
||||
// - x86_64-pc-windows-msvc:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
|
||||
// - x86_64-unknown-linux-gnu:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/X86_64.cpp
|
||||
|
||||
// Many of these patches are "relaxing", meaning that they can rewrite the
|
||||
// code they're patching to be more efficient (like turning a 64-bit memory
|
||||
// load into a 32-bit immediate load). These patches have an "x" in their name.
|
||||
// Relative patches have an "r" in their name.
|
||||
|
||||
// 32-bit absolute address.
|
||||
void
|
||||
patch_32(unsigned char *location, uint64_t value)
|
||||
{
|
||||
for (size_t i = 0; i < stencil->holes_size; i++) {
|
||||
const Hole *hole = &stencil->holes[i];
|
||||
unsigned char *location = base + hole->offset;
|
||||
uint64_t value = patches[hole->value] + (uintptr_t)hole->symbol + hole->addend;
|
||||
uint8_t *loc8 = (uint8_t *)location;
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
uint64_t *loc64 = (uint64_t *)location;
|
||||
// LLD is a great reference for performing relocations... just keep in
|
||||
// mind that Tools/jit/build.py does filtering and preprocessing for us!
|
||||
// Here's a good place to start for each platform:
|
||||
// - aarch64-apple-darwin:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64.cpp
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.cpp
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/ARM64Common.h
|
||||
// - aarch64-pc-windows-msvc:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
|
||||
// - aarch64-unknown-linux-gnu:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/AArch64.cpp
|
||||
// - i686-pc-windows-msvc:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
|
||||
// - x86_64-apple-darwin:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/MachO/Arch/X86_64.cpp
|
||||
// - x86_64-pc-windows-msvc:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/COFF/Chunks.cpp
|
||||
// - x86_64-unknown-linux-gnu:
|
||||
// - https://github.com/llvm/llvm-project/blob/main/lld/ELF/Arch/X86_64.cpp
|
||||
switch (hole->kind) {
|
||||
case HoleKind_IMAGE_REL_I386_DIR32:
|
||||
// 32-bit absolute address.
|
||||
// Check that we're not out of range of 32 unsigned bits:
|
||||
assert(value < (1ULL << 32));
|
||||
*loc32 = (uint32_t)value;
|
||||
continue;
|
||||
case HoleKind_ARM64_RELOC_UNSIGNED:
|
||||
case HoleKind_R_AARCH64_ABS64:
|
||||
case HoleKind_X86_64_RELOC_UNSIGNED:
|
||||
case HoleKind_R_X86_64_64:
|
||||
// 64-bit absolute address.
|
||||
*loc64 = value;
|
||||
continue;
|
||||
case HoleKind_IMAGE_REL_AMD64_REL32:
|
||||
case HoleKind_IMAGE_REL_I386_REL32:
|
||||
case HoleKind_R_X86_64_GOTPCRELX:
|
||||
case HoleKind_R_X86_64_REX_GOTPCRELX:
|
||||
case HoleKind_X86_64_RELOC_GOT:
|
||||
case HoleKind_X86_64_RELOC_GOT_LOAD: {
|
||||
// 32-bit relative address.
|
||||
// Try to relax the GOT load into an immediate value:
|
||||
uint64_t relaxed = *(uint64_t *)(value + 4) - 4;
|
||||
if ((int64_t)relaxed - (int64_t)location >= -(1LL << 31) &&
|
||||
(int64_t)relaxed - (int64_t)location + 1 < (1LL << 31))
|
||||
{
|
||||
if (loc8[-2] == 0x8B) {
|
||||
// mov reg, dword ptr [rip + AAA] -> lea reg, [rip + XXX]
|
||||
loc8[-2] = 0x8D;
|
||||
value = relaxed;
|
||||
}
|
||||
else if (loc8[-2] == 0xFF && loc8[-1] == 0x15) {
|
||||
// call qword ptr [rip + AAA] -> nop; call XXX
|
||||
loc8[-2] = 0x90;
|
||||
loc8[-1] = 0xE8;
|
||||
value = relaxed;
|
||||
}
|
||||
else if (loc8[-2] == 0xFF && loc8[-1] == 0x25) {
|
||||
// jmp qword ptr [rip + AAA] -> nop; jmp XXX
|
||||
loc8[-2] = 0x90;
|
||||
loc8[-1] = 0xE9;
|
||||
value = relaxed;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Fall through...
|
||||
case HoleKind_R_X86_64_GOTPCREL:
|
||||
case HoleKind_R_X86_64_PC32:
|
||||
case HoleKind_X86_64_RELOC_SIGNED:
|
||||
case HoleKind_X86_64_RELOC_BRANCH:
|
||||
// 32-bit relative address.
|
||||
value -= (uintptr_t)location;
|
||||
// Check that we're not out of range of 32 signed bits:
|
||||
assert((int64_t)value >= -(1LL << 31));
|
||||
assert((int64_t)value < (1LL << 31));
|
||||
*loc32 = (uint32_t)value;
|
||||
continue;
|
||||
case HoleKind_ARM64_RELOC_BRANCH26:
|
||||
case HoleKind_IMAGE_REL_ARM64_BRANCH26:
|
||||
case HoleKind_R_AARCH64_CALL26:
|
||||
case HoleKind_R_AARCH64_JUMP26:
|
||||
// 28-bit relative branch.
|
||||
assert(IS_AARCH64_BRANCH(*loc32));
|
||||
value -= (uintptr_t)location;
|
||||
// Check that we're not out of range of 28 signed bits:
|
||||
assert((int64_t)value >= -(1 << 27));
|
||||
assert((int64_t)value < (1 << 27));
|
||||
// Since instructions are 4-byte aligned, only use 26 bits:
|
||||
assert(get_bits(value, 0, 2) == 0);
|
||||
set_bits(loc32, 0, value, 2, 26);
|
||||
continue;
|
||||
case HoleKind_R_AARCH64_MOVW_UABS_G0_NC:
|
||||
// 16-bit low part of an absolute address.
|
||||
assert(IS_AARCH64_MOV(*loc32));
|
||||
// Check the implicit shift (this is "part 0 of 3"):
|
||||
assert(get_bits(*loc32, 21, 2) == 0);
|
||||
set_bits(loc32, 5, value, 0, 16);
|
||||
continue;
|
||||
case HoleKind_R_AARCH64_MOVW_UABS_G1_NC:
|
||||
// 16-bit middle-low part of an absolute address.
|
||||
assert(IS_AARCH64_MOV(*loc32));
|
||||
// Check the implicit shift (this is "part 1 of 3"):
|
||||
assert(get_bits(*loc32, 21, 2) == 1);
|
||||
set_bits(loc32, 5, value, 16, 16);
|
||||
continue;
|
||||
case HoleKind_R_AARCH64_MOVW_UABS_G2_NC:
|
||||
// 16-bit middle-high part of an absolute address.
|
||||
assert(IS_AARCH64_MOV(*loc32));
|
||||
// Check the implicit shift (this is "part 2 of 3"):
|
||||
assert(get_bits(*loc32, 21, 2) == 2);
|
||||
set_bits(loc32, 5, value, 32, 16);
|
||||
continue;
|
||||
case HoleKind_R_AARCH64_MOVW_UABS_G3:
|
||||
// 16-bit high part of an absolute address.
|
||||
assert(IS_AARCH64_MOV(*loc32));
|
||||
// Check the implicit shift (this is "part 3 of 3"):
|
||||
assert(get_bits(*loc32, 21, 2) == 3);
|
||||
set_bits(loc32, 5, value, 48, 16);
|
||||
continue;
|
||||
case HoleKind_ARM64_RELOC_GOT_LOAD_PAGE21:
|
||||
case HoleKind_IMAGE_REL_ARM64_PAGEBASE_REL21:
|
||||
case HoleKind_R_AARCH64_ADR_GOT_PAGE:
|
||||
case HoleKind_R_AARCH64_ADR_PREL_PG_HI21:
|
||||
// 21-bit count of pages between this page and an absolute address's
|
||||
// page... I know, I know, it's weird. Pairs nicely with
|
||||
// ARM64_RELOC_GOT_LOAD_PAGEOFF12 (below).
|
||||
assert(IS_AARCH64_ADRP(*loc32));
|
||||
// Try to relax the pair of GOT loads into an immediate value:
|
||||
const Hole *next_hole = &stencil->holes[i + 1];
|
||||
if (i + 1 < stencil->holes_size &&
|
||||
(next_hole->kind == HoleKind_ARM64_RELOC_GOT_LOAD_PAGEOFF12 ||
|
||||
next_hole->kind == HoleKind_IMAGE_REL_ARM64_PAGEOFFSET_12L ||
|
||||
next_hole->kind == HoleKind_R_AARCH64_LD64_GOT_LO12_NC) &&
|
||||
next_hole->offset == hole->offset + 4 &&
|
||||
next_hole->symbol == hole->symbol &&
|
||||
next_hole->addend == hole->addend &&
|
||||
next_hole->value == hole->value)
|
||||
{
|
||||
unsigned char reg = get_bits(loc32[0], 0, 5);
|
||||
assert(IS_AARCH64_LDR_OR_STR(loc32[1]));
|
||||
// There should be only one register involved:
|
||||
assert(reg == get_bits(loc32[1], 0, 5)); // ldr's output register.
|
||||
assert(reg == get_bits(loc32[1], 5, 5)); // ldr's input register.
|
||||
uint64_t relaxed = *(uint64_t *)value;
|
||||
if (relaxed < (1UL << 16)) {
|
||||
// adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; nop
|
||||
loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg;
|
||||
loc32[1] = 0xD503201F;
|
||||
i++;
|
||||
continue;
|
||||
}
|
||||
if (relaxed < (1ULL << 32)) {
|
||||
// adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; movk reg, YYY
|
||||
loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg;
|
||||
loc32[1] = 0xF2A00000 | (get_bits(relaxed, 16, 16) << 5) | reg;
|
||||
i++;
|
||||
continue;
|
||||
}
|
||||
relaxed = value - (uintptr_t)location;
|
||||
if ((relaxed & 0x3) == 0 &&
|
||||
(int64_t)relaxed >= -(1L << 19) &&
|
||||
(int64_t)relaxed < (1L << 19))
|
||||
{
|
||||
// adrp reg, AAA; ldr reg, [reg + BBB] -> ldr reg, XXX; nop
|
||||
loc32[0] = 0x58000000 | (get_bits(relaxed, 2, 19) << 5) | reg;
|
||||
loc32[1] = 0xD503201F;
|
||||
i++;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// Fall through...
|
||||
case HoleKind_ARM64_RELOC_PAGE21:
|
||||
// Number of pages between this page and the value's page:
|
||||
value = (value >> 12) - ((uintptr_t)location >> 12);
|
||||
// Check that we're not out of range of 21 signed bits:
|
||||
assert((int64_t)value >= -(1 << 20));
|
||||
assert((int64_t)value < (1 << 20));
|
||||
// value[0:2] goes in loc[29:31]:
|
||||
set_bits(loc32, 29, value, 0, 2);
|
||||
// value[2:21] goes in loc[5:26]:
|
||||
set_bits(loc32, 5, value, 2, 19);
|
||||
continue;
|
||||
case HoleKind_ARM64_RELOC_GOT_LOAD_PAGEOFF12:
|
||||
case HoleKind_ARM64_RELOC_PAGEOFF12:
|
||||
case HoleKind_IMAGE_REL_ARM64_PAGEOFFSET_12A:
|
||||
case HoleKind_IMAGE_REL_ARM64_PAGEOFFSET_12L:
|
||||
case HoleKind_R_AARCH64_ADD_ABS_LO12_NC:
|
||||
case HoleKind_R_AARCH64_LD64_GOT_LO12_NC:
|
||||
// 12-bit low part of an absolute address. Pairs nicely with
|
||||
// ARM64_RELOC_GOT_LOAD_PAGE21 (above).
|
||||
assert(IS_AARCH64_LDR_OR_STR(*loc32) || IS_AARCH64_ADD_OR_SUB(*loc32));
|
||||
// There might be an implicit shift encoded in the instruction:
|
||||
uint8_t shift = 0;
|
||||
if (IS_AARCH64_LDR_OR_STR(*loc32)) {
|
||||
shift = (uint8_t)get_bits(*loc32, 30, 2);
|
||||
// If both of these are set, the shift is supposed to be 4.
|
||||
// That's pretty weird, and it's never actually been observed...
|
||||
assert(get_bits(*loc32, 23, 1) == 0 || get_bits(*loc32, 26, 1) == 0);
|
||||
}
|
||||
value = get_bits(value, 0, 12);
|
||||
assert(get_bits(value, 0, shift) == 0);
|
||||
set_bits(loc32, 10, value, shift, 12);
|
||||
continue;
|
||||
}
|
||||
Py_UNREACHABLE();
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
// Check that we're not out of range of 32 unsigned bits:
|
||||
assert(value < (1ULL << 32));
|
||||
*loc32 = (uint32_t)value;
|
||||
}
|
||||
|
||||
// 32-bit relative address.
|
||||
void
|
||||
patch_32r(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
value -= (uintptr_t)location;
|
||||
// Check that we're not out of range of 32 signed bits:
|
||||
assert((int64_t)value >= -(1LL << 31));
|
||||
assert((int64_t)value < (1LL << 31));
|
||||
*loc32 = (uint32_t)value;
|
||||
}
|
||||
|
||||
// 64-bit absolute address.
|
||||
void
|
||||
patch_64(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint64_t *loc64 = (uint64_t *)location;
|
||||
*loc64 = value;
|
||||
}
|
||||
|
||||
// 12-bit low part of an absolute address. Pairs nicely with patch_aarch64_21r
|
||||
// (below).
|
||||
void
|
||||
patch_aarch64_12(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
assert(IS_AARCH64_LDR_OR_STR(*loc32) || IS_AARCH64_ADD_OR_SUB(*loc32));
|
||||
// There might be an implicit shift encoded in the instruction:
|
||||
uint8_t shift = 0;
|
||||
if (IS_AARCH64_LDR_OR_STR(*loc32)) {
|
||||
shift = (uint8_t)get_bits(*loc32, 30, 2);
|
||||
// If both of these are set, the shift is supposed to be 4.
|
||||
// That's pretty weird, and it's never actually been observed...
|
||||
assert(get_bits(*loc32, 23, 1) == 0 || get_bits(*loc32, 26, 1) == 0);
|
||||
}
|
||||
value = get_bits(value, 0, 12);
|
||||
assert(get_bits(value, 0, shift) == 0);
|
||||
set_bits(loc32, 10, value, shift, 12);
|
||||
}
|
||||
|
||||
static void
|
||||
copy_and_patch(unsigned char *base, const Stencil *stencil, uintptr_t patches[])
|
||||
// Relaxable 12-bit low part of an absolute address. Pairs nicely with
|
||||
// patch_aarch64_21rx (below).
|
||||
void
|
||||
patch_aarch64_12x(unsigned char *location, uint64_t value)
|
||||
{
|
||||
memcpy(base, stencil->body, stencil->body_size);
|
||||
patch(base, stencil, patches);
|
||||
// This can *only* be relaxed if it occurs immediately before a matching
|
||||
// patch_aarch64_21rx. If that happens, the JIT build step will replace both
|
||||
// calls with a single call to patch_aarch64_33rx. Otherwise, we end up
|
||||
// here, and the instruction is patched normally:
|
||||
patch_aarch64_12(location, value);
|
||||
}
|
||||
|
||||
static void
|
||||
emit(const StencilGroup *group, uintptr_t patches[])
|
||||
// 16-bit low part of an absolute address.
|
||||
void
|
||||
patch_aarch64_16a(unsigned char *location, uint64_t value)
|
||||
{
|
||||
copy_and_patch((unsigned char *)patches[HoleValue_DATA], &group->data, patches);
|
||||
copy_and_patch((unsigned char *)patches[HoleValue_CODE], &group->code, patches);
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
assert(IS_AARCH64_MOV(*loc32));
|
||||
// Check the implicit shift (this is "part 0 of 3"):
|
||||
assert(get_bits(*loc32, 21, 2) == 0);
|
||||
set_bits(loc32, 5, value, 0, 16);
|
||||
}
|
||||
|
||||
// 16-bit middle-low part of an absolute address.
|
||||
void
|
||||
patch_aarch64_16b(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
assert(IS_AARCH64_MOV(*loc32));
|
||||
// Check the implicit shift (this is "part 1 of 3"):
|
||||
assert(get_bits(*loc32, 21, 2) == 1);
|
||||
set_bits(loc32, 5, value, 16, 16);
|
||||
}
|
||||
|
||||
// 16-bit middle-high part of an absolute address.
|
||||
void
|
||||
patch_aarch64_16c(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
assert(IS_AARCH64_MOV(*loc32));
|
||||
// Check the implicit shift (this is "part 2 of 3"):
|
||||
assert(get_bits(*loc32, 21, 2) == 2);
|
||||
set_bits(loc32, 5, value, 32, 16);
|
||||
}
|
||||
|
||||
// 16-bit high part of an absolute address.
|
||||
void
|
||||
patch_aarch64_16d(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
assert(IS_AARCH64_MOV(*loc32));
|
||||
// Check the implicit shift (this is "part 3 of 3"):
|
||||
assert(get_bits(*loc32, 21, 2) == 3);
|
||||
set_bits(loc32, 5, value, 48, 16);
|
||||
}
|
||||
|
||||
// 21-bit count of pages between this page and an absolute address's page... I
|
||||
// know, I know, it's weird. Pairs nicely with patch_aarch64_12 (above).
|
||||
void
|
||||
patch_aarch64_21r(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
value = (value >> 12) - ((uintptr_t)location >> 12);
|
||||
// Check that we're not out of range of 21 signed bits:
|
||||
assert((int64_t)value >= -(1 << 20));
|
||||
assert((int64_t)value < (1 << 20));
|
||||
// value[0:2] goes in loc[29:31]:
|
||||
set_bits(loc32, 29, value, 0, 2);
|
||||
// value[2:21] goes in loc[5:26]:
|
||||
set_bits(loc32, 5, value, 2, 19);
|
||||
}
|
||||
|
||||
// Relaxable 21-bit count of pages between this page and an absolute address's
|
||||
// page. Pairs nicely with patch_aarch64_12x (above).
|
||||
void
|
||||
patch_aarch64_21rx(unsigned char *location, uint64_t value)
|
||||
{
|
||||
// This can *only* be relaxed if it occurs immediately before a matching
|
||||
// patch_aarch64_12x. If that happens, the JIT build step will replace both
|
||||
// calls with a single call to patch_aarch64_33rx. Otherwise, we end up
|
||||
// here, and the instruction is patched normally:
|
||||
patch_aarch64_21r(location, value);
|
||||
}
|
||||
|
||||
// 28-bit relative branch.
|
||||
void
|
||||
patch_aarch64_26r(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
assert(IS_AARCH64_BRANCH(*loc32));
|
||||
value -= (uintptr_t)location;
|
||||
// Check that we're not out of range of 28 signed bits:
|
||||
assert((int64_t)value >= -(1 << 27));
|
||||
assert((int64_t)value < (1 << 27));
|
||||
// Since instructions are 4-byte aligned, only use 26 bits:
|
||||
assert(get_bits(value, 0, 2) == 0);
|
||||
set_bits(loc32, 0, value, 2, 26);
|
||||
}
|
||||
|
||||
// A pair of patch_aarch64_21rx and patch_aarch64_12x.
|
||||
void
|
||||
patch_aarch64_33rx(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint32_t *loc32 = (uint32_t *)location;
|
||||
// Try to relax the pair of GOT loads into an immediate value:
|
||||
assert(IS_AARCH64_ADRP(*loc32));
|
||||
unsigned char reg = get_bits(loc32[0], 0, 5);
|
||||
assert(IS_AARCH64_LDR_OR_STR(loc32[1]));
|
||||
// There should be only one register involved:
|
||||
assert(reg == get_bits(loc32[1], 0, 5)); // ldr's output register.
|
||||
assert(reg == get_bits(loc32[1], 5, 5)); // ldr's input register.
|
||||
uint64_t relaxed = *(uint64_t *)value;
|
||||
if (relaxed < (1UL << 16)) {
|
||||
// adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; nop
|
||||
loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg;
|
||||
loc32[1] = 0xD503201F;
|
||||
return;
|
||||
}
|
||||
if (relaxed < (1ULL << 32)) {
|
||||
// adrp reg, AAA; ldr reg, [reg + BBB] -> movz reg, XXX; movk reg, YYY
|
||||
loc32[0] = 0xD2800000 | (get_bits(relaxed, 0, 16) << 5) | reg;
|
||||
loc32[1] = 0xF2A00000 | (get_bits(relaxed, 16, 16) << 5) | reg;
|
||||
return;
|
||||
}
|
||||
relaxed = value - (uintptr_t)location;
|
||||
if ((relaxed & 0x3) == 0 &&
|
||||
(int64_t)relaxed >= -(1L << 19) &&
|
||||
(int64_t)relaxed < (1L << 19))
|
||||
{
|
||||
// adrp reg, AAA; ldr reg, [reg + BBB] -> ldr reg, XXX; nop
|
||||
loc32[0] = 0x58000000 | (get_bits(relaxed, 2, 19) << 5) | reg;
|
||||
loc32[1] = 0xD503201F;
|
||||
return;
|
||||
}
|
||||
// Couldn't do it. Just patch the two instructions normally:
|
||||
patch_aarch64_21rx(location, value);
|
||||
patch_aarch64_12x(location + 4, value);
|
||||
}
|
||||
|
||||
// Relaxable 32-bit relative address.
|
||||
void
|
||||
patch_x86_64_32rx(unsigned char *location, uint64_t value)
|
||||
{
|
||||
uint8_t *loc8 = (uint8_t *)location;
|
||||
// Try to relax the GOT load into an immediate value:
|
||||
uint64_t relaxed = *(uint64_t *)(value + 4) - 4;
|
||||
if ((int64_t)relaxed - (int64_t)location >= -(1LL << 31) &&
|
||||
(int64_t)relaxed - (int64_t)location + 1 < (1LL << 31))
|
||||
{
|
||||
if (loc8[-2] == 0x8B) {
|
||||
// mov reg, dword ptr [rip + AAA] -> lea reg, [rip + XXX]
|
||||
loc8[-2] = 0x8D;
|
||||
value = relaxed;
|
||||
}
|
||||
else if (loc8[-2] == 0xFF && loc8[-1] == 0x15) {
|
||||
// call qword ptr [rip + AAA] -> nop; call XXX
|
||||
loc8[-2] = 0x90;
|
||||
loc8[-1] = 0xE8;
|
||||
value = relaxed;
|
||||
}
|
||||
else if (loc8[-2] == 0xFF && loc8[-1] == 0x25) {
|
||||
// jmp qword ptr [rip + AAA] -> nop; jmp XXX
|
||||
loc8[-2] = 0x90;
|
||||
loc8[-1] = 0xE9;
|
||||
value = relaxed;
|
||||
}
|
||||
}
|
||||
patch_32r(location, value);
|
||||
}
|
||||
|
||||
#include "jit_stencils.h"
|
||||
|
||||
// Compiles executor in-place. Don't forget to call _PyJIT_Free later!
|
||||
int
|
||||
_PyJIT_Compile(_PyExecutorObject *executor, const _PyUOpInstruction *trace, size_t length)
|
||||
_PyJIT_Compile(_PyExecutorObject *executor, const _PyUOpInstruction trace[], size_t length)
|
||||
{
|
||||
const StencilGroup *group;
|
||||
// Loop once to find the total compiled size:
|
||||
size_t instruction_starts[UOP_MAX_TRACE_LENGTH];
|
||||
size_t code_size = trampoline.code.body_size;
|
||||
size_t data_size = trampoline.data.body_size;
|
||||
uintptr_t instruction_starts[UOP_MAX_TRACE_LENGTH];
|
||||
size_t code_size = 0;
|
||||
size_t data_size = 0;
|
||||
group = &trampoline;
|
||||
code_size += group->code_size;
|
||||
data_size += group->data_size;
|
||||
for (size_t i = 0; i < length; i++) {
|
||||
_PyUOpInstruction *instruction = (_PyUOpInstruction *)&trace[i];
|
||||
const StencilGroup *group = &stencil_groups[instruction->opcode];
|
||||
const _PyUOpInstruction *instruction = &trace[i];
|
||||
group = &stencil_groups[instruction->opcode];
|
||||
instruction_starts[i] = code_size;
|
||||
code_size += group->code.body_size;
|
||||
data_size += group->data.body_size;
|
||||
code_size += group->code_size;
|
||||
data_size += group->data_size;
|
||||
}
|
||||
code_size += stencil_groups[_FATAL_ERROR].code.body_size;
|
||||
data_size += stencil_groups[_FATAL_ERROR].data.body_size;
|
||||
group = &stencil_groups[_FATAL_ERROR];
|
||||
code_size += group->code_size;
|
||||
data_size += group->data_size;
|
||||
// Round up to the nearest page:
|
||||
size_t page_size = get_page_size();
|
||||
assert((page_size & (page_size - 1)) == 0);
|
||||
|
@ -405,87 +422,35 @@ _PyJIT_Compile(_PyExecutorObject *executor, const _PyUOpInstruction *trace, size
|
|||
if (memory == NULL) {
|
||||
return -1;
|
||||
}
|
||||
// Update the offsets of each instruction:
|
||||
for (size_t i = 0; i < length; i++) {
|
||||
instruction_starts[i] += (uintptr_t)memory;
|
||||
}
|
||||
// Loop again to emit the code:
|
||||
unsigned char *code = memory;
|
||||
unsigned char *data = memory + code_size;
|
||||
{
|
||||
// Compile the trampoline, which handles converting between the native
|
||||
// calling convention and the calling convention used by jitted code
|
||||
// (which may be different for efficiency reasons). On platforms where
|
||||
// we don't change calling conventions, the trampoline is empty and
|
||||
// nothing is emitted here:
|
||||
const StencilGroup *group = &trampoline;
|
||||
// Think of patches as a dictionary mapping HoleValue to uintptr_t:
|
||||
uintptr_t patches[] = GET_PATCHES();
|
||||
patches[HoleValue_CODE] = (uintptr_t)code;
|
||||
patches[HoleValue_CONTINUE] = (uintptr_t)code + group->code.body_size;
|
||||
patches[HoleValue_DATA] = (uintptr_t)data;
|
||||
patches[HoleValue_EXECUTOR] = (uintptr_t)executor;
|
||||
patches[HoleValue_TOP] = (uintptr_t)memory + trampoline.code.body_size;
|
||||
patches[HoleValue_ZERO] = 0;
|
||||
emit(group, patches);
|
||||
code += group->code.body_size;
|
||||
data += group->data.body_size;
|
||||
}
|
||||
// Compile the trampoline, which handles converting between the native
|
||||
// calling convention and the calling convention used by jitted code
|
||||
// (which may be different for efficiency reasons). On platforms where
|
||||
// we don't change calling conventions, the trampoline is empty and
|
||||
// nothing is emitted here:
|
||||
group = &trampoline;
|
||||
group->emit(code, data, executor, NULL, instruction_starts);
|
||||
code += group->code_size;
|
||||
data += group->data_size;
|
||||
assert(trace[0].opcode == _START_EXECUTOR || trace[0].opcode == _COLD_EXIT);
|
||||
for (size_t i = 0; i < length; i++) {
|
||||
_PyUOpInstruction *instruction = (_PyUOpInstruction *)&trace[i];
|
||||
const StencilGroup *group = &stencil_groups[instruction->opcode];
|
||||
uintptr_t patches[] = GET_PATCHES();
|
||||
patches[HoleValue_CODE] = (uintptr_t)code;
|
||||
patches[HoleValue_CONTINUE] = (uintptr_t)code + group->code.body_size;
|
||||
patches[HoleValue_DATA] = (uintptr_t)data;
|
||||
patches[HoleValue_EXECUTOR] = (uintptr_t)executor;
|
||||
patches[HoleValue_OPARG] = instruction->oparg;
|
||||
#if SIZEOF_VOID_P == 8
|
||||
patches[HoleValue_OPERAND] = instruction->operand;
|
||||
#else
|
||||
assert(SIZEOF_VOID_P == 4);
|
||||
patches[HoleValue_OPERAND_HI] = instruction->operand >> 32;
|
||||
patches[HoleValue_OPERAND_LO] = instruction->operand & UINT32_MAX;
|
||||
#endif
|
||||
switch (instruction->format) {
|
||||
case UOP_FORMAT_TARGET:
|
||||
patches[HoleValue_TARGET] = instruction->target;
|
||||
break;
|
||||
case UOP_FORMAT_EXIT:
|
||||
assert(instruction->exit_index < executor->exit_count);
|
||||
patches[HoleValue_EXIT_INDEX] = instruction->exit_index;
|
||||
if (instruction->error_target < length) {
|
||||
patches[HoleValue_ERROR_TARGET] = (uintptr_t)memory + instruction_starts[instruction->error_target];
|
||||
}
|
||||
break;
|
||||
case UOP_FORMAT_JUMP:
|
||||
assert(instruction->jump_target < length);
|
||||
patches[HoleValue_JUMP_TARGET] = (uintptr_t)memory + instruction_starts[instruction->jump_target];
|
||||
if (instruction->error_target < length) {
|
||||
patches[HoleValue_ERROR_TARGET] = (uintptr_t)memory + instruction_starts[instruction->error_target];
|
||||
}
|
||||
break;
|
||||
default:
|
||||
assert(0);
|
||||
Py_FatalError("Illegal instruction format");
|
||||
}
|
||||
patches[HoleValue_TOP] = (uintptr_t)memory + instruction_starts[1];
|
||||
patches[HoleValue_ZERO] = 0;
|
||||
emit(group, patches);
|
||||
code += group->code.body_size;
|
||||
data += group->data.body_size;
|
||||
}
|
||||
{
|
||||
// Protect against accidental buffer overrun into data:
|
||||
const StencilGroup *group = &stencil_groups[_FATAL_ERROR];
|
||||
uintptr_t patches[] = GET_PATCHES();
|
||||
patches[HoleValue_CODE] = (uintptr_t)code;
|
||||
patches[HoleValue_CONTINUE] = (uintptr_t)code;
|
||||
patches[HoleValue_DATA] = (uintptr_t)data;
|
||||
patches[HoleValue_EXECUTOR] = (uintptr_t)executor;
|
||||
patches[HoleValue_TOP] = (uintptr_t)code;
|
||||
patches[HoleValue_ZERO] = 0;
|
||||
emit(group, patches);
|
||||
code += group->code.body_size;
|
||||
data += group->data.body_size;
|
||||
const _PyUOpInstruction *instruction = &trace[i];
|
||||
group = &stencil_groups[instruction->opcode];
|
||||
group->emit(code, data, executor, instruction, instruction_starts);
|
||||
code += group->code_size;
|
||||
data += group->data_size;
|
||||
}
|
||||
// Protect against accidental buffer overrun into data:
|
||||
group = &stencil_groups[_FATAL_ERROR];
|
||||
group->emit(code, data, executor, NULL, instruction_starts);
|
||||
code += group->code_size;
|
||||
data += group->data_size;
|
||||
assert(code == memory + code_size);
|
||||
assert(data == memory + code_size + data_size);
|
||||
if (mark_executable(memory, total_size)) {
|
||||
|
@ -493,7 +458,7 @@ _PyJIT_Compile(_PyExecutorObject *executor, const _PyUOpInstruction *trace, size
|
|||
return -1;
|
||||
}
|
||||
executor->jit_code = memory;
|
||||
executor->jit_side_entry = memory + trampoline.code.body_size;
|
||||
executor->jit_side_entry = memory + trampoline.code_size;
|
||||
executor->jit_size = total_size;
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue