mirror of
https://github.com/python/cpython.git
synced 2025-10-09 08:31:26 +00:00
Issue 21424: Apply the nlargest() optimizations to nsmallest() as well.
This commit is contained in:
parent
3a17e21755
commit
234fb2d503
4 changed files with 138 additions and 118 deletions
156
Lib/heapq.py
156
Lib/heapq.py
|
@ -127,7 +127,7 @@ From all times, sorting has always been a Great Art! :-)
|
|||
__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge',
|
||||
'nlargest', 'nsmallest', 'heappushpop']
|
||||
|
||||
from itertools import islice, count, tee, chain
|
||||
from itertools import islice, count
|
||||
|
||||
def heappush(heap, item):
|
||||
"""Push item onto heap, maintaining the heap invariant."""
|
||||
|
@ -179,12 +179,12 @@ def heapify(x):
|
|||
for i in reversed(range(n//2)):
|
||||
_siftup(x, i)
|
||||
|
||||
def _heappushpop_max(heap, item):
|
||||
"""Maxheap version of a heappush followed by a heappop."""
|
||||
if heap and item < heap[0]:
|
||||
item, heap[0] = heap[0], item
|
||||
_siftup_max(heap, 0)
|
||||
return item
|
||||
def _heapreplace_max(heap, item):
|
||||
"""Maxheap version of a heappop followed by a heappush."""
|
||||
returnitem = heap[0] # raises appropriate IndexError if heap is empty
|
||||
heap[0] = item
|
||||
_siftup_max(heap, 0)
|
||||
return returnitem
|
||||
|
||||
def _heapify_max(x):
|
||||
"""Transform list into a maxheap, in-place, in O(len(x)) time."""
|
||||
|
@ -192,24 +192,6 @@ def _heapify_max(x):
|
|||
for i in reversed(range(n//2)):
|
||||
_siftup_max(x, i)
|
||||
|
||||
def nsmallest(n, iterable):
|
||||
"""Find the n smallest elements in a dataset.
|
||||
|
||||
Equivalent to: sorted(iterable)[:n]
|
||||
"""
|
||||
if n <= 0:
|
||||
return []
|
||||
it = iter(iterable)
|
||||
result = list(islice(it, n))
|
||||
if not result:
|
||||
return result
|
||||
_heapify_max(result)
|
||||
_heappushpop = _heappushpop_max
|
||||
for elem in it:
|
||||
_heappushpop(result, elem)
|
||||
result.sort()
|
||||
return result
|
||||
|
||||
# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
|
||||
# is the index of a leaf with a possibly out-of-order value. Restore the
|
||||
# heap invariant.
|
||||
|
@ -327,6 +309,10 @@ try:
|
|||
from _heapq import *
|
||||
except ImportError:
|
||||
pass
|
||||
try:
|
||||
from _heapq import _heapreplace_max
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
def merge(*iterables):
|
||||
'''Merge multiple sorted inputs into a single sorted output.
|
||||
|
@ -367,22 +353,86 @@ def merge(*iterables):
|
|||
yield v
|
||||
yield from next.__self__
|
||||
|
||||
# Extend the implementations of nsmallest and nlargest to use a key= argument
|
||||
_nsmallest = nsmallest
|
||||
|
||||
# Algorithm notes for nlargest() and nsmallest()
|
||||
# ==============================================
|
||||
#
|
||||
# Makes just a single pass over the data while keeping the k most extreme values
|
||||
# in a heap. Memory consumption is limited to keeping k values in a list.
|
||||
#
|
||||
# Measured performance for random inputs:
|
||||
#
|
||||
# number of comparisons
|
||||
# n inputs k-extreme values (average of 5 trials) % more than min()
|
||||
# ------------- ---------------- - ------------------- -----------------
|
||||
# 1,000 100 3,317 133.2%
|
||||
# 10,000 100 14,046 40.5%
|
||||
# 100,000 100 105,749 5.7%
|
||||
# 1,000,000 100 1,007,751 0.8%
|
||||
# 10,000,000 100 10,009,401 0.1%
|
||||
#
|
||||
# Theoretical number of comparisons for k smallest of n random inputs:
|
||||
#
|
||||
# Step Comparisons Action
|
||||
# ---- -------------------------- ---------------------------
|
||||
# 1 1.66 * k heapify the first k-inputs
|
||||
# 2 n - k compare remaining elements to top of heap
|
||||
# 3 k * (1 + lg2(k)) * ln(n/k) replace the topmost value on the heap
|
||||
# 4 k * lg2(k) - (k/2) final sort of the k most extreme values
|
||||
# Combining and simplifying for a rough estimate gives:
|
||||
# comparisons = n + k * (1 + log(n/k)) * (1 + log(k, 2))
|
||||
#
|
||||
# Computing the number of comparisons for step 3:
|
||||
# -----------------------------------------------
|
||||
# * For the i-th new value from the iterable, the probability of being in the
|
||||
# k most extreme values is k/i. For example, the probability of the 101st
|
||||
# value seen being in the 100 most extreme values is 100/101.
|
||||
# * If the value is a new extreme value, the cost of inserting it into the
|
||||
# heap is 1 + log(k, 2).
|
||||
# * The probabilty times the cost gives:
|
||||
# (k/i) * (1 + log(k, 2))
|
||||
# * Summing across the remaining n-k elements gives:
|
||||
# sum((k/i) * (1 + log(k, 2)) for xrange(k+1, n+1))
|
||||
# * This reduces to:
|
||||
# (H(n) - H(k)) * k * (1 + log(k, 2))
|
||||
# * Where H(n) is the n-th harmonic number estimated by:
|
||||
# gamma = 0.5772156649
|
||||
# H(n) = log(n, e) + gamma + 1.0 / (2.0 * n)
|
||||
# http://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Rate_of_divergence
|
||||
# * Substituting the H(n) formula:
|
||||
# comparisons = k * (1 + log(k, 2)) * (log(n/k, e) + (1/n - 1/k) / 2)
|
||||
#
|
||||
# Worst-case for step 3:
|
||||
# ----------------------
|
||||
# In the worst case, the input data is reversed sorted so that every new element
|
||||
# must be inserted in the heap:
|
||||
#
|
||||
# comparisons = 1.66 * k + log(k, 2) * (n - k)
|
||||
#
|
||||
# Alternative Algorithms
|
||||
# ----------------------
|
||||
# Other algorithms were not used because they:
|
||||
# 1) Took much more auxiliary memory,
|
||||
# 2) Made multiple passes over the data.
|
||||
# 3) Made more comparisons in common cases (small k, large n, semi-random input).
|
||||
# See the more detailed comparison of approach at:
|
||||
# http://code.activestate.com/recipes/577573-compare-algorithms-for-heapqsmallest
|
||||
|
||||
def nsmallest(n, iterable, key=None):
|
||||
"""Find the n smallest elements in a dataset.
|
||||
|
||||
Equivalent to: sorted(iterable, key=key)[:n]
|
||||
"""
|
||||
|
||||
# Short-cut for n==1 is to use min() when len(iterable)>0
|
||||
if n == 1:
|
||||
it = iter(iterable)
|
||||
head = list(islice(it, 1))
|
||||
if not head:
|
||||
return []
|
||||
sentinel = object()
|
||||
if key is None:
|
||||
return [min(chain(head, it))]
|
||||
return [min(chain(head, it), key=key)]
|
||||
result = min(it, default=sentinel)
|
||||
else:
|
||||
result = min(it, default=sentinel, key=key)
|
||||
return [] if result is sentinel else [result]
|
||||
|
||||
# When n>=size, it's faster to use sorted()
|
||||
try:
|
||||
|
@ -395,15 +445,39 @@ def nsmallest(n, iterable, key=None):
|
|||
|
||||
# When key is none, use simpler decoration
|
||||
if key is None:
|
||||
it = zip(iterable, count()) # decorate
|
||||
result = _nsmallest(n, it)
|
||||
return [r[0] for r in result] # undecorate
|
||||
it = iter(iterable)
|
||||
result = list(islice(zip(it, count()), n))
|
||||
if not result:
|
||||
return result
|
||||
_heapify_max(result)
|
||||
order = n
|
||||
top = result[0][0]
|
||||
_heapreplace = _heapreplace_max
|
||||
for elem in it:
|
||||
if elem < top:
|
||||
_heapreplace(result, (elem, order))
|
||||
top = result[0][0]
|
||||
order += 1
|
||||
result.sort()
|
||||
return [r[0] for r in result]
|
||||
|
||||
# General case, slowest method
|
||||
in1, in2 = tee(iterable)
|
||||
it = zip(map(key, in1), count(), in2) # decorate
|
||||
result = _nsmallest(n, it)
|
||||
return [r[2] for r in result] # undecorate
|
||||
it = iter(iterable)
|
||||
result = [(key(elem), i, elem) for i, elem in zip(range(n), it)]
|
||||
if not result:
|
||||
return result
|
||||
_heapify_max(result)
|
||||
order = n
|
||||
top = result[0][0]
|
||||
_heapreplace = _heapreplace_max
|
||||
for elem in it:
|
||||
k = key(elem)
|
||||
if k < top:
|
||||
_heapreplace(result, (k, order, elem))
|
||||
top = result[0][0]
|
||||
order += 1
|
||||
result.sort()
|
||||
return [r[2] for r in result]
|
||||
|
||||
def nlargest(n, iterable, key=None):
|
||||
"""Find the n largest elements in a dataset.
|
||||
|
@ -442,9 +516,9 @@ def nlargest(n, iterable, key=None):
|
|||
_heapreplace = heapreplace
|
||||
for elem in it:
|
||||
if top < elem:
|
||||
order -= 1
|
||||
_heapreplace(result, (elem, order))
|
||||
top = result[0][0]
|
||||
order -= 1
|
||||
result.sort(reverse=True)
|
||||
return [r[0] for r in result]
|
||||
|
||||
|
@ -460,9 +534,9 @@ def nlargest(n, iterable, key=None):
|
|||
for elem in it:
|
||||
k = key(elem)
|
||||
if top < k:
|
||||
order -= 1
|
||||
_heapreplace(result, (k, order, elem))
|
||||
top = result[0][0]
|
||||
order -= 1
|
||||
result.sort(reverse=True)
|
||||
return [r[2] for r in result]
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue